首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 884 毫秒
1.
During 2011–2012, 15 bacterial isolates were obtained from wilting banana plants from seven locations in Malaysia. Characterisation of the Malaysian isolates was determined by biovar determination, pathogenicity test, phylotype-specific multiplex PCR (Pmx-PCR) and endoglucanase (egl) gene amplification. Based on the genotype, phenotype and pathogenic characteristics, all isolates were identified as Ralstonia solanacearum. Pmx- and egl-PCRs indicated that all isolates belong to phylotype II of Ralstonia species complex hierarchical classification. The neighbour joining phylogenetic tree of egl sequences also verified the results where the isolates were all clustered into phylotype II, together with the reference sequences strains, UW070 and UW162. Therefore, the results of our study may provide a better understanding on the taxonomy of R. solanacearum species occupying banana plantations in Malaysia. This study is indeed the first report of phylotype II classification of R. solanacearum biovar 1 strains isolated from banana plants in Malaysia.  相似文献   

2.
We investigated a destructive pathogenic variant of the plant pathogen Ralstonia solanacearum that was consistently isolated in Martinique (French West Indies). Since the 1960s, bacterial wilt of solanaceous crops in Martinique has been caused primarily by strains of R. solanacearum that belong to either phylotype I or phylotype II. Since 1999, anthurium shade houses have been dramatically affected by uncharacterized phylotype II strains that also affected a wide range of species, such as Heliconia caribea, cucurbitaceous crops, and weeds. From 1989 to 2003, a total of 224 R. solanacearum isolates were collected and compared to 6 strains isolated in Martinique in the 1980s. The genetic diversity and phylogenetic position of selected strains from Martinique were assessed (multiplex PCRs, mutS and egl DNA sequence analysis) and compared to the genetic diversity and phylogenetic position of 32 reference strains covering the known diversity within the R. solanacearum species complex. Twenty-four representative isolates were tested for pathogenicity to Musa species (banana) and tomato, eggplant, and sweet pepper. Based upon both PCR and sequence analysis, 119 Martinique isolates from anthurium, members of the family Cucurbitaceae, Heliconia, and tomato, were determined to belong to a group termed phylotype II/sequevar 4 (II/4). While these strains cluster with the Moko disease-causing strains, they were not pathogenic to banana (NPB). The strains belonging to phylotype II/4NPB were highly pathogenic to tomato, eggplant, and pepper, were able to wilt the resistant tomato variety Hawaii7996, and may latently infect cooking banana. Phylotype II/4NPB constitutes a new pathogenic variant of R. solanacearum that has recently appeared in Martinique and may be latently prevalent throughout Caribbean and Central/South America.  相似文献   

3.
Loop-mediated isothermal amplification (LAMP) assay was effective in detecting Salmonella enterica in naturally contaminated liquid egg samples. Salmonella was detected in 110 samples taken from four egg-breaking plants. The egg samples were pre-enriched in buffered peptone water (BPW) at 37°C for 20 h. The selective enrichment was done in Rappaport-Vassiliadis or tetrathionate broth and plated onto xylose lysine deoxycholate agar and brilliant green agar, modified. In addition, the PCR assay was used to detect Salmonella after pre-enrichment in BPW at 37°C for 20 h. The culture method and PCR assay were compared to the LAMP assay, which was also performed after pre-enrichment in BPW. PCR failed to detect Salmonella in 10% of 110 samples, whereas the culture method and LAMP assay successfully identified Salmonella in all samples. However, the LAMP assay was found to be much more rapid than the culture method and as sensitive in detecting Salmonella from liquid eggs. In all of the egg-breaking plants studied, Salmonella was isolated on most tested days. The positive samples showed that more than 75% of the Salmonella strains had identical genetic patterns when analyzed by pulsed-field gel electrophoresis. This suggests that the same Salmonella strains having survived long periods of time in the plants were contaminating the production line. The LAMP assay is rapid, specific, and sensitive for Salmonella detection in liquid eggs and is able to monitor Salmonella contamination in egg-handling plants more reliably.  相似文献   

4.
We investigated the genetic diversity, extent of recombination, natural selection, and population divergence of Ralstonia solanacearum samples obtained from sources worldwide. This plant pathogen causes bacterial wilt in many crops and constitutes a serious threat to agricultural production due to its very wide host range and aggressiveness. Five housekeeping genes, dispersed around the chromosome, and three virulence-related genes, located on the megaplasmid, were sequenced from 58 strains belonging to the four major phylogenetic clusters (phylotypes). Whereas genetic variation is high and consistent for all housekeeping loci studied, virulence-related gene sequences are more diverse. Phylogenetic and statistical analyses suggest that this organism is a highly diverse bacterial species containing four major, deeply separated evolutionary lineages (phylotypes I to IV) and a weaker subdivision of phylotype II into two subgroups. Analysis of molecular variations showed that the geographic isolation and spatial distance have been the significant determinants of genetic variation between phylotypes. R. solanacearum displays high clonality for housekeeping genes in all phylotypes (except phylotype III) and significant levels of recombination for the virulence-related egl and hrpB genes, which are limited mainly to phylotype strains III and IV. Finally, genes essential for species survival are under purifying selection, and those directly involved in pathogenesis might be under diversifying selection.  相似文献   

5.
A loop-mediated isothermal amplification (LAMP) assay for rapid and sensitive detection of the L. ivanovii strains had been developed and evaluated in this study. Oligonucleotide primers specific for L. ivanovii species were designed corresponding to smcL gene sequences. The primers set comprise six primers targeting eight regions on the species-specific gene smcL. The LAMP assay could be completed within 1 h at 64°C in a water bath. Amplification products were directly observed by the Loopamp Fluorescent Detection Reagent (FD) or detected by agarose gel electrophoresis. Moreover, the LAMP reactions were also detected by real-time measurement of turbidity. The exclusivity of 77 non-L. ivanovii and the inclusivity of 17 L. ivanovii were both 100% in the assay. Sensitivity of the LAMP assay was 250 fg DNA and 16 CFU per reaction for detection of L. ivanovii in pure cultures and simulated human stool. The LAMP assay was 10 and 100-fold more sensitive than quantitative PCR (qPCR) and conventional PCR assays,respectively. When applied to human stool samples spiked with low level (8 CFU/0.5 g) of L. ivanovii strains, the new LAMP assay described here achieved positive detection after 6 hours enrichment. In conclusion, the new LAMP assay in this study can be used as a valuable, rapid and sensitive detection tool for the detection of L. ivanovii in field, medical and veterinary laboratories.  相似文献   

6.
A novel in situ loop-mediated isothermal amplification (in situ LAMP) technique for rapid detection of the food-borne Vibrio parahaemolyticus strains had been developed and evaluated in this study. The sensitivity of the in situ LAMP assay was detected to be 10 CFU/reaction via test in serial 10-fold dilutions of V. parahaemolyticus cells, and high specificity had also been obtained through confirmation with 14 reference gram-positive and -negative strains. Application of the established in situ LAMP assay had been performed on 58 strains previously isolated from seafood samples, including 48 V. parahaemolyticus and 10 non-V. parahaemolyticus strains. Of 48 V. parahaemolyticus strains, 48, 45 and 34 strains were detected as positive by in situ LAMP, regular LAMP and PCR, respectively, with the detection rate and negative predictive value (NPV) found to be 100% vs 93.8% vs 70.8% and 100% vs 76.9% vs 41.7%. In addition, none of the tested non-V. parahaemolyticus strains showed positive result, indicating a 100% positive predictive value (PPV) for all of 3 assays. Compared with regular LAMP methods and PCR-based methods, the in situ LAMP assay is advantageous on rapidity, high specificity, less time consumption and ease in operation, and may provide a novel, useful and practical detection platform for pathogens in food safety laboratories.  相似文献   

7.
A fluorogenic (TaqMan) PCR assay was developed to detect Ralstonia solanacearum strains. Two fluorogenic probes were utilized in a multiplex reaction; one broad-range probe (RS) detected all biovars of R. solanacearum, and a second more specific probe (B2) detected only biovar 2A. Amplification of the target was measured by the 5′ nuclease activity of Taq DNA polymerase on each probe, resulting in emission of fluorescence. TaqMan PCR was performed with DNA extracted from 42 R. solanacearum and genetically or serologically related strains to demonstrate the specificity of the assay. In pure cultures, detection of R. solanacearum to ≥102 cells ml−1 was achieved. Sensitivity decreased when TaqMan PCR was performed with inoculated potato tissue extracts, prepared by currently recommended extraction procedures. A third fluorogenic probe (COX), designed with the potato cytochrome oxidase gene sequence, was also developed for use as an internal PCR control and was shown to detect potato DNA in an RS-COX multiplex TaqMan PCR with infected potato tissue. The specificity and sensitivity of the assay, combined with high speed, robustness, reliability, and the possibility of automating the technique, offer potential advantages in routine indexing of potato tubers and other plant material for the presence of R. solanacearum.  相似文献   

8.
A new insertion sequence (IS), IS1405, was isolated and characterized from a Ralstonia solanacearum race 1 strain by the method of insertional inactivation of the sacB gene. Sequence analysis indicated that the IS is closely related to the members of IS5 family, but the extent of nucleotide sequence identity in 5′ and 3′ noncoding regions between IS1405 and other members of IS5 family is only 23 to 31%. Nucleotide sequences of these regions were used to design specific oligonucleotide primers for detection of race 1 strains by PCR. The PCR amplified a specific DNA fragment for all R. solanacearum race 1 strains tested, and no amplification was observed with some other plant-pathogenic bacteria. Analysis of nucleotide sequences flanking IS1405 and additional five endogenous IS1405s that reside in the chromosome of R. solanacearum race 1 strains indicated that IS1405 prefers a target site of CTAR and has two different insertional orientations with respect to this target site. Restriction fragment length polymorphism (RFLP) pattern analysis using IS1405 as a probe revealed extensive genetic variation among strains of R. solanacearum race 1 isolated from eight different host plants in Taiwan. The RFLP patterns were then used to subdivide the race 1 strains into two groups and several subgroups, which allowed for tracking different subgroup strains of R. solanacearum through a host plant community. Furthermore, specific insertion sites of IS1405 in certain subgroups were used as a genetic marker to develop subgroup-specific primers for detection of R. solanacearum, and thus, the subgroup strains can be easily identified through a rapid PCR assay rather than RFLP analysis.  相似文献   

9.
Bacterial wilt, caused by Ralstonia solanacearum species complex is a key yield‐limiting factor on crops in Guangdong province, China. The genetic diversity of 110 R. solanacearum strains collected from 16 host plants in different areas of Guangdong province was analysed using biovar and phylotype classification schemes. Of 110 strains, fifty‐five strains belong to biovar 3, fifty‐two strains belong to biovar 4, two strains belong to biovar 2 and one strain belonged to biovar 1. Phylotype‐specific multiplex PCR showed that 108 strains belonged to phylotype I (biovars 1, 3, 4) and two strains belonged to phylotype II (biovar 2). The result of phylogenetic relationships analysis based on egl gene sequences demonstrated that 108 strains of phylotype I were grouped into nine previously described sequevars and a new sequevar 57, and two strains of phylotype II were grouped into sequevar 1. Sequevars 15, 34 and 44 widely distributed in Guangdong were predominant sequevars. Sequevar 45 was first reported on potato and pumpkin in China. These results revealed the genetic structure and phylogenetic relationships of R. solanacearum population in Guangdong and will be helpful in bacterial wilt‐resistance breeding.  相似文献   

10.
In order to develop a new molecular technique that has the potential to assist with monitoring and management of water bodies for potential microcystin producing cyanobacterial species that occur in mixed populations in many regions of the world, we designed a new loop-mediated isothermal amplification (LAMP) assay based on microcystin biosynthesis genes. Four sets of primers were designed to recognize six distinct sequences on target the mcyE gene that encodes a protein (McyE) being responsible to catalyze the addition of d-glutamate to Adda. One set (MCYE2) was selected as the most appropriate set of primers for its rapid detection. The specificity and sensitivity of the primers in the LAMP reactions for mcyE detection were determined. Two methods, namely, monitoring of turbidity and addition of calcein to the reaction tube, were used to determine negative and positive results. The results showed that target DNA was amplified and visualized by the two detection methods within 40 min at an isothermal temperature of 61 °C. For the sensitivity of LAMP, the detection limit was 8.5 pg/μl (approximately 17 pg) DNA. The eleven microcystin producing and four non-toxic cyanobacterial strains were selected for testing of specificity. The results of the amplification were positive with all microcystin-producing strains tested and not with four non-toxic strains, which showed that the primers had good levels of specificity. For testing the application of LAMP assay in the aquatic ecosystem, seven environmental samples from ponds and lakes in Ningbo City were also analyzed using the LAMP targeting the mcyE gene as well as an ELISA assay. Compared with these results of ELISA assay, LAMP assay is satisfied. All of these validated LAMP method being fast, simple and low in cost is a potentially valuable means for potential toxic of cyanobacterial blooms detection, especially for routine monitoring purposes in future.  相似文献   

11.
DW Kim  PE Kilgore  EJ Kim  SA Kim  DD Anh  BQ Dong  JS Kim  M Seki 《PloS one》2012,7(8):e42954

Background

Streptococcus pneumoniae is a leading cause of invasive bacterial disease in developed and developing countries. We studied the loop-mediated isothermal amplification (LAMP) technique to assess its suitability for detecting S. pneumoniae nucleic acid in cerebrospinal fluid (CSF).

Methodology/Principal Findings

We established an improved LAMP assay targeting the lytA gene (Streptococcus pneumoniae [Sp] LAMP). The analytical specificity of the primers was validated by using 32 reference strains (10 Streptococcus and seven non-Streptococcus species) plus 25 clinical alpha-hemolytic streptococcal strains, including four S. pneumoniae strains and 21 other strains (3 S. oralis, 17 S. mitis, and one Streptococcus species) harboring virulence factor-encoding genes (lytA or ply). Within 30 minutes, the assay could detect as few as 10 copies of both purified DNA and spiked CSF specimens with greater sensitivity than conventional polymerase chain reaction (PCR). The linear determination range for this assay is 10 to 1,000,000 microorganisms per reaction mixture using real-time turbidimetry. We evaluated the clinical sensitivity and specificity of the Sp LAMP assay using 106 randomly selected CSF specimens from children with suspected meningitis in Korea, China and Vietnam. For comparison, CSF specimens were also tested against conventional PCR and culture tests. The detection rate of the LAMP method was substantially higher than the rates of PCR and culture tests. In this small sample, relative to the LAMP assay, the clinical sensitivity of PCR and culture tests was 54.5% and 33.3%, respectively, while clinical specificity of the two tests was 100%.

Conclusions/Significance

Compared to PCR, Sp LAMP detected S. pneumoniae with higher analytical and clinical sensitivity. This specific and sensitive LAMP method offers significant advantages for screening patients on a population basis and for diagnosis in clinical settings.  相似文献   

12.
In this study, we designed a simple and rapid colorimetric detection method, a one-tube loop-mediated isothermal amplification (LAMP)-PCR-hybridization-restriction endonuclease-ELISA [one-tube LAMP-PCR-HY-RE-ELISA] system, to detect resistance to isoniazid, ethambutol and streptomycin in strains of Mycobacterium tuberculosis isolated from clinical specimens. The clinical performance of this method for detecting isoniazid-resistant, ethambutol-resistant and streptomycin-resistant isolates of M. tuberculosis showed 98.9%, 94.3% and 93.8%, respectively. This assay is rapid and convenient that can be performed within one working day. One-tube LAMP-PCR-HY-RE-ELISA system was designed based on hot spot point mutations in target drug-resistant genes, using LAMP-PCR, hybridization, digestion with restriction endonuclease and colorimetric method of ELISA. In this study, LAMP assay was used to amplify DNA from drug-resistant M. tuberculosis, and ELISA was used for colorimetrical determination. This assay will be a useful tool for rapid diagnosis of mutant codons in strains of M. tuberculosis for isoniazid at katG 315 and katG 463, ethambutol at embB 306 and embB 497, and streptomycin at rpsL 43.  相似文献   

13.
Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regions of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Furthermore, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.  相似文献   

14.
A colorimetric loop-mediated isothermal amplification (LAMP) assay with hydroxy naphthol blue was designed to amplify a region in the outer membrane lipoprotein (oprL) gene of Pseudomonas aeruginosa. The LAMP assay showed 100% specificity for the serogroup and other bacteria, and the sensitivity was 10-fold higher than that of the PCR assays. The LAMP assay could detect P. aeruginosa inoculated in mouse feces at 130 colony-forming units (CFU)/0.1 g feces (3.25 CFU/reaction). The assay was completed within 2 h from DNA extraction. In a field trial, the LAMP assay revealed that none of the 27 samples was obtained from 2 specific pathogen-free (SPF) mouse facilities that were monitoring infection with P. aeruginosa; 1 out of 12 samples from an SPF mouse facility that was not monitoring infection with P. aeruginosa and 2 out of 7 samples from a conventional mouse facility were positive for P. aeruginosa. In contrast, P. aeruginosa was not detected in any of the samples by a conventional culture assay. Thus, this colorimetric LAMP assay is a simple and rapid method for P. aeruginosa detection.  相似文献   

15.
Bacterial wilt caused by Ralstonia solanacearum is a serious threat for agricultural production in China. Eight soil bacterial isolates with activity against R. solanacearum TM15 (biovar 3) were tested in this study for their in vitro activity towards ten genetically diverse R. solanacearum isolates from China. The results indicated that each antagonist showed remarkable differences in its ability to in vitro antagonize the ten different R. solanacearum strains. Strain XY21 (based on 16S rRNA gene sequencing affiliated to Serratia) was selected for further studies based on its in vitro antagonistic activity and its excellent rhizocompetence on tomato plants. Under greenhouse conditions XY21 mediated biocontrol of tomato wilt caused by seven different R. solanacearum strains ranged from 19 to 70 %. The establishment of XY21 and its effects on the bacterial community in the tomato rhizosphere were monitored by denaturing gradient gel electrophoresis of 16S rRNA gene fragments PCR-amplified from total community DNA. A positive correlation of the in vitro antagonistic activities of XY21 and the actual biocontrol efficacies towards seven genetically different R. solanacearum strains was found and further confirmed by the efficacy of XY21 in controlling bacterial wilt under field conditions.  相似文献   

16.
 Using a PCR-based assay with highly specific primers, we were able to clearly identify all of 28 different Pseudomonas solanacearum strains, whereas none of the other bacteria tested gave a cross reaction. The PCR sensitivity in standard dilution experiments of pure strains was in the range of 10 to 100 cells. The assay was also investigated for its suitability in routine diagnosis of potato tubers and tomato plants inoculated with various amounts of P. solanacearum; it reached a sensitivity of 103 cells per specimen. The region between primers PS96H and PS96I was sequenced for the first time and aligned. A total of 17 P. solanacearum strains have been sequenced, resulting in six different sequence groups. When the variable sequence was analyzed, a high correlation between point mutations and geographical origin of the P. solanacearum strains was revealed. The PCR assay described in this study combined with automatical sequencing of the amplificated region provides a powerful tool for the epidemiology of P. solanacearum. Received: 1 September 1997 / Accepted: 15 October 1997  相似文献   

17.
Amoebic keratitis (AK) caused by Acanthamoeba is one of the most serious corneal infections. AK is frequently misdiagnosed initially as viral, bacterial, or fungal keratitis, thus ensuring treatment delays. Accordingly, the early detection of Acanthamoeba would contribute significantly to disease management and selection of an appropriate anti-amoebic therapy. Recently, the loop-mediated isothermal amplification (LAMP) method has been applied to the clinical diagnosis of a range of infectious diseases. Here, we describe a rapid and efficient LAMP-based method targeting Acanthamoeba 18S rDNA gene for the detection of Acanthamoeba using clinical ocular specimens in the diagnosis of AK. Acanthamoeba LAMP assays detected 11 different strains including all AK-associated species. The copy number detection limit for a positive signal was 10 DNA copies of 18S rDNA per reaction. No cross-reactivity with the DNA of fungi or other protozoa was observed. The sensitivity of LAMP assay was higher than those of Nelson primer PCR and JDP primer PCR. In the present study, LAMP assay based on directly heat-treated samples was found to be as efficient at detecting Acanthamoeba as DNA extracted using a commercial kit, whereas PCR was only effective when commercial kit-extracted DNA was used. This study showed that the devised Acanthamoeba LAMP assay could be used to diagnose AK in a simple, sensitive, and specific manner.  相似文献   

18.
A loop-mediated isothermal amplification (LAMP) assay allows rapid diagnosis of Toxoplasma gondii infection. In the present study, the LAMP assay was evaluated using blood from both naturally and experimentally infected pigs. The sensitivity of the LAMP assay was compared with that of Q-PCR. Both assays detected T. gondii in the blood of experimentally infected pigs, with 100% agreement. In infected blood samples, the parasite was detected as early as 2 days post-infection and reached a peak in 3-5 days. In 216 field serum samples, the detection rates of LAMP and Q-PCR assays were 6.9% and 7.8%, respectively. This result indicates that the sensitivity of the LAMP assay was slightly lower than that of the Q-PCR assay. However, the LAMP may be an attractive diagnostic method in conditions where sophisticated and expensive equipment is unavailable. This assay could be a powerful supplement to current diagnostic methods.  相似文献   

19.
Giardia lamblia is recognized as one of the most prevalent parasites in dogs. The present study aimed to establish a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of G. lamblia from dogs. The fecal samples were collected and prepared for microscopic analysis, and then the genomic DNA was extracted directly from purified cysts. The concentration of DNA samples of G. lamblia were diluted by 10-fold serially ranging from 10-1 to 10-5 ng/µl for LAMP and PCR assays. The LAMP assay allows the amplification to be finished within 60 min under isothermal conditions of 63℃ by employing 6 oligonucleotide primers designed based on G. lamblia elongation factor 1 alpha (EF1α) gene sequence. Our tests showed that the specific amplification products were obtained only with G. lamblia, while no amplification products were detected with DNA of other related protozoans. Sensitivity evaluation indicated that the LAMP assay was sensitive 10 times more than PCR. It is concluded that LAMP is a rapid, highly sensitive and specific DNA amplification technique for detection of G. lamblia, which has implications for effective control and prevention of giardiasis.  相似文献   

20.

Background

Methicillin-resistant Staphylococcus aureus (MRSA) has become one of the most prevalent pathogens responsible for nosocomial infections throughout the world. As clinical MRSA diagnosis is concerned, current diagnostic methodologies are restricted by significant drawbacks and novel methods are required for MRSA detection. This study aimed at developing a simple loop-mediated isothermal amplification (LAMP) assay targeting on orfX for the rapid detection of methicillin-resistance Staphylococcus aureus (MRSA).

Results

The protocol was designed by targeting orfX, a highly conserved open reading frame in S. aureus. One hundred and sixteen reference strains, including 52 Gram-positive and 64 Gram-negative isolates, were included for evaluation and optimization of the orfX-LAMP assay. This assay had been further performed on 667 Staphylococcus (566 MRSA, 25 MSSA, 53 MRCNS and 23 MSCNS) strains and were comparatively validated by PCR assay using primers F3 and B3, with rapid template DNA processing, simple equipments (water bath) and direct result determination (both naked eye and under UV light) applied. The indispensability of each primer had been confirmed, and the optimal amplification was obtained under 65°C for 45 min. The 25 μl reactant was found to be the most cost-efficient volume, and the detection limit was determined to be 10 DNA copies and 10 CFU/reaction. High specificity was observed when orfX-LAMP assay was subjected to 116 reference strains. For application, 557 (98.4%, 557/566) and 519 (91.7%, 519/566) tested strains had been detected positive by LAMP and PCR assays. The detection rate, positive predictive value (PPV) and negative predictive value (NPV) of orfX-LAMP were 98.4%, 100% and 92.7% respectively.

Conclusions

The established orfX-LAMP assay had been demonstrated to be a valid and rapid detection method on MRSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号