首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee  Suyeon  Ha  Ji-Hye  Moon  Duk-Soo  Youn  Soyoung  Kim  Changnam  Park  Boram  Kim  Myong-Jae  Kim  Hyo-Won  Chung  Seockhoon 《Sleep and biological rhythms》2019,17(3):277-285
Sleep and Biological Rhythms - We evaluated the sleep environment factors that influence children’s sleep, and the relationship between co-sleeping and parenting stress and parents’...  相似文献   

2.
Sleep disturbances are common in neurodegenerative diseases such as Alzheimer disease (AD). Unfortunately, how AD is mechanistically linked with interference of the body’s natural sleep rhythms remains unclear. Our recent findings provide insight into this question by demonstrating that sleep disruption associated with AD is driven by epigenetic changes mediated by the histone acetyltransferase (HAT) Tip60. In this study, we show that Tip60 functionally interacts with the AD associated amyloid precursor protein (APP) to regulate axonal growth of Drosophila small ventrolateral neuronal (sLNv) pacemaker cells, and their production of neuropeptide pigment dispersing factor (PDF) that stabilizes appropriate sleep-wake patterns in the fly. Loss of Tip60 HAT activity under APP neurodegenerative conditions causes decreased PDF production, retraction of the sLNv synaptic arbor required for PDF release and disruption of sleep-wake cycles in these flies. Remarkably, excess Tip60 in conjunction with APP fully rescues these sleep-wake disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a neuroprotective role for Tip60 in these processes. Our studies highlight the importance of epigenetic based mechanisms underlying sleep disturbances in neurodegenerative diseases like AD.  相似文献   

3.
The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5-4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium--a primary visual processing region--neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds.  相似文献   

4.
Sleep and Biological Rhythms - Investigation of sleep spindles’ oscillations is increasingly considered as a major avenue of inquiry in analyzing the microarchitecture of sleep. Previous...  相似文献   

5.
Together with some aquatic mammals, birds exhibit a unique behavioral and electrophysiological state called "unihemispheric sleep," in which one cerebral hemisphere is awake and the other is sleeping. Slow-wave sleep in one hemisphere is associated with closure of the contralateral eye, while the eye contralateral to the awake hemisphere is open; closure of both eyes, in contrast, is associated with bihemispheric slow-wave sleep or with REM sleep. During the last few days of incubation, the chick's embryo is turned in the egg so that it occludes its left eye, whereas light entering through the shell can stimulate the right eye. Here we show that in the first two days after hatching, chicks coming from eggs incubated in the light prevalently slept with their right eye open, whereas those coming from eggs incubated in the dark prevalently slept with their left eye open. Thus, asymmetric light stimulation in the embryo can modulate the left-right direction of eye opening during post-hatching monocular sleep.  相似文献   

6.
The effects of a prolonged cognitive task prior to sleep onset on subsequent sleep patterns were examined in 14 healthy subjects who were randomly assigned to two conditions. Those assigned to a working condition were asked to engage in a prolonged cognitive task until close to bedtime (0200 hours), whereas those assigned to a relaxing condition were instructed to perform the same task during the daytime and then to stay awake in a relaxed state until the same bedtime as the work group. Visual scoring of sleep stages showed no significant differences in the amounts of stage 4 and slow wave sleep (stage 3+4) between the two conditions. Power spectrum analysis of sleep electroencephalogram (EEG) revealed that the EEG (0.5–4.0 Hz) power density in the first non-rapid eye movement (REM)-REM sleep cycle was significantly lower following the prolonged cognitive task prior to sleep onset than following the relaxed wakefulness and that the decreased EEG power density in the first sleep cycle was not compensated for during the later part of the sleep. These findings would indicate that the prolonged cognitive task prior to sleep onset may suppress EEG power density during subsequent sleep, suggesting that such a task may interfere with the development of deep non-REM sleep.  相似文献   

7.
Why sleep?     
All living organisms show a regular, daily period of reduced activity. But to what extent could this be sleep, and what is it for? Whatever the functions of sleep are, they probably shift in emphasis across the animal kingdom. There are fundamental differences between rodents and us. On the other hand, even human sleep has some similarities with that of the bee.  相似文献   

8.
This study aimed to examine prospectively whether individual nighttime sleep characteristics at baseline (prior to shift-work exposure) are related to parameters of daytime sleep after commencing shift work. A longitudinal field study was carried out with novice police officers of the Dutch Police Force. A total of 26 subjects were examined at baseline before they entered shift work and re-examined during follow-up sessions after four and twelve months of shift-work exposure. Wrist actigraphy and sleep diaries were used to study nocturnal sleep at baseline and daytime sleep after night shifts during follow-up sessions. As outcome variables, estimated total sleep time, sleep efficiency, and subjective sleep quality were analyzed. Daytime total sleep time showed a 66 min decline during the first year of shift-work exposure. Systematic inter-individual differences were observed for daytime total sleep time and subjective sleep quality (explaining 53% and 38% of the variance, respectively), suggesting potential predictability of these sleep parameters. Although no predictors were found for daytime total sleep time, the subjective quality of nighttime sleep before the onset of shift work predicted 40% of the variance in the subjective quality of daytime sleep after commencing shift work. Follow-up studies may reveal whether the subjective quality of baseline nighttime sleep also predicts long-term overall tolerance for shift work.  相似文献   

9.
《Chronobiology international》2013,30(10):1201-1208
Early shift start time and night shifts are associated with reduced sleep duration and poor sleep quality that often lead to increased fatigue levels, performance decrements and adverse safety and health outcomes. This study investigates the impact of shift starting time on sleep patterns, including the duration and quality of sleep and alertness/sleepiness at the time of injury, in a large epidemiological field study of hospitalized adults with severe work-related hand injury in the People’s Republic of China (PRC) from multiple industries with severe work-related traumatic hand injury were recruited from 11 hospitals in three industrially-developed cities in the PRC: Ningbo, Liuzhou and Wuxi. Analysis of covariance (ANCOVA) was used to compare sleep duration, sleep quality and alertness/sleepiness across 3?h increments of shift start time, while adjusting for age, gender, work hours, shift duration, day of injury and several transient work-related factors. Effect modification by gender was also evaluated. Seven-hundred and three hospitalized adults (96.4%) completed a face-to-face interview within 4 days of injury; 527 (75.0%) were male, with a mean (±SEM) age of 31.8?±?0.4 years. Overall, these adults worked relatively long weekly (55.7?±?0.6?h) and daily hours (8.6?±?0.07?h). Average sleep duration prior to injury was 8.5?h (±0.07), and showed significant variations (p value <0.05) across shift starting time increments. Overall mean prior sleep duration was shortest for individuals starting shifts from “21:00–23:59” (5.6±0.8?h) followed by midnight “00:00–02:59” (6.1?±?0.6?h). However, a statistically significant interaction (p?<?0.05) was observed between gender and shift starting time on mean sleep duration. For males the shortest sleep duration was 5.6?h (“21:00–23:59”) and for females the shortest was 4.3?h (“24:00–02:59” and “15:00–17:59”). Sleep quality (generally quite well) and alertness/sleepiness based on the KSS (generally alert) did not vary significantly across shift starting time. Results suggest that sleep duration is shortest among injured PRC adults starting shifts late night and early morning. However, with more than 8.5?h of sleep on average work days, Chinese slept much longer than typical US day workers (Sleep in America Poll, 2012, 6:44 on workdays, 7:35 on free days), and this may help to explain higher than expected alertness/sleepiness scores at the time of injury.  相似文献   

10.
The genetic basis of rest–activity circadian alternation in animal behavior is considered in the evolutionary range from bacteria to mammals. We scrutinize various concepts of sleep development in the animal world evolution as well as the I.G. Karmanova’s theory of the sleep–wake cycle evolution in vertebrates, beginning from wakefulness–primary sleep (or protosleep) in fish and amphibians through wakefulness–intermediate sleep in reptiles to wakefulness–slow wave sleep (SWS) and paradoxical sleep (PS) in birds and mammals. Primary sleep is represented by the three major sleep-like immobility states: catalepsy, catatonia and cataplexy. The main behavioral, somatovegetative and neurophysiological characteristics of primary sleep and the ancient activation pattern during primary sleep are described. The issues of which of these sleep manifestations are homologous to SWS, PS, hibernation and stress response are discussed. In conclusion, the general diagram of sleep evolution in vertebrates is presented, and the I.G. Karmanova’s contribution to evolutionary somnology is highlighted.  相似文献   

11.
Studies on extended data including 37 electroencephalographic (EEG) records of -sleep, each 103 s long (six subjects; up to seven nights per subject, comprising normal sleep, partial deprivation and recovery), confirmed earlier conclusions that rare episodes of low-dimensional dynamic self-organization, with lifetimes between 10 and 20 s, are present in stage 4 sleep. Particular care was taken of the Theiler correction which, in some -sleep signals, required the deletion of trajectory points covering nearly one pseudo-period. The percentage of segments showing an episode, i.e. the attractor probability, decreased with a change in sleep conditions — either deprivation or recovery prior to the next deprivation. Repetition of deprivation over three nights resulted in an adaptation process, manifested by an increase in attractor probability. After the sharp decrease in probability observed when recovery was established prior to the next deprivation, and on return to normal conditions of sleep at 2200 hours, the probability was immediately close to that observed in normal baseline sleep conditions free of any interference. The observation of a definite effect of sleep deprivation and recovery upon the number of stage 4 attractors observed provides a line of approach to the physiological significance of the probability of such attractors.  相似文献   

12.
Abstract

The circadian rhythms of blood pressure (BP) and heart rate (HR) were documented in 30 patients for a 24‐hour period before and during the 24 hours that included unilateral surgery for senile cataract or retinal detachment. The patients were premedicated with diazepam. Anaesthesia was induced at a fixed time (09.00) in all patients with thiopentone, and muscle relaxation was with pancuronium. Maintenance was with enflurane in 15 patients and with fentanyl and droperidol in the rest. Though the intraoperative changes in haemodynamic parameters were dissimilar with the two types of maintenance agents, but both types had a similar effect on the circadian rhythms of blood pressure and heart rate. Whereas preoperatively the BP and HR circadian rhythms were nearly in phase, with their peaks in the late morning to early afternoon, the postoperative rhythms underwent a dissociation to a phase shift in the BP 24‐h pattern. The phase effect may be hypothetically attributed to direct pharmacological actions or to masking effects.  相似文献   

13.
14.
《Chronobiology international》2013,30(10):1209-1217
Extended wakefulness, sleep loss, and circadian misalignment are factors associated with an increased accident risk in shiftwork. Splitting shifts into multiple shorter periods per day may mitigate these risks by alleviating prior wake. However, the effect of splitting the sleep–wake schedule on the homeostatic and circadian contributions to neurobehavioural performance and subjective assessments of one’s ability to perform are not known. Twenty-nine male participants lived in a time isolation laboratory for 13?d, assigned to one of two 28-h forced desynchrony (FD) schedules. Depending on the assigned schedule, participants were provided the same total time in bed (TIB) each FD cycle, either consolidated into a single period (9.33?h TIB) or split into two equal halves (2?×?4.67?h TIB). Neurobehavioural performance was regularly assessed with a psychomotor vigilance task (PVT) and subjectively-assessed ability was measured with a prediction of performance on a visual analogue scale. Polysomnography was used to assess sleep, and core body temperature was recorded to assess circadian phase. On average, participants obtained the same amount of sleep in both schedules, but those in the split schedule obtained more slow wave sleep (SWS) on FD days. Mixed-effects ANOVAs indicated no overall difference between the standard and split schedules in neurobehavioural performance or predictions of performance. Main effects of circadian phase and prior wake were present for both schedules, such that performance and subjective ratings of ability were best around the circadian acrophase, worst around the nadir, and declined with increasing prior wake. There was a schedule by circadian phase interaction for all neurobehavioural performance metrics such that performance was better in the split schedule than the standard schedule around the nadir. There was no such interaction for predictions of performance. Performance during the standard schedule was significantly better than the split schedule at 2?h of prior wake, but declined at a steeper rate such that the schedules converged by 4.5–7?h of prior wake. Overall, the results indicate that when the total opportunity for sleep per day is satisfactory, a split sleep–wake schedule is not detrimental to sleep or performance. Indeed, though not reflected in subjective assessments of performance capacity, splitting the schedule may be of some benefit, given its reduction of neurobehavioural impairment at night and its association with increased SWS. Therefore, for some industries that require operations to be sustained around the clock, implementing a split work–rest schedule may be of assistance.  相似文献   

15.
16.
17.
Sleep and Biological Rhythms - Non-24-h sleep–wake rhythm disorder (N24SWD) is one type of circadian rhythm sleep–wake disorder. Once developed, N24SWD causes occupational and social...  相似文献   

18.
19.
The role of orexin in the organization of the sleep–wake cycle (SWC) is well known. The aim of this study was to examine the timing of the orexinergic system formation in rat postnatal ontogenesis and to assess the role of orexin A in the SWC organization under normal conditions and after prenatal hypoxia undergone on days 14 and 19 of embryogenesis. The SWC was investigated in 30-day-old rats with electrodes implanted into the somatosensory and occipital cortex. Immunoreactivity within the orexigenic structures of the lateral hypothalamus was analyzed. It was shown that in control 14-day-old animals the orexinergic structures were in their formative stage, whereas in 30-day-old rats they were already as formed as in adults. In 14-day-old rats, prenatal hypoxia evoked retarded formation of the orexinergic system. In 30-day-old animals, hypoxia undergone in the prenatal period increased the activity of the orexinergic system, which was higher in animals exposed to hypoxia on day 19 than on day 14 of gestation. In 30-day-old rats, these changes were reflected in the SWC formation in the form of shorter slow-wave sleep, more fitful sleep and increased number of transitions from slow- to fast-wave sleep. The results obtained are discussed in the light of the adaptive-compensatory role of the orexigenic system in postnatal ontogenesis after prenatal damage to the central nervous system.  相似文献   

20.
The aim of this study was to investigate the effect of enhancing environmental factors on the duration and quality of sleep among patients in a cardiovascular surgery intensive care unit (CSICU). This quasi-experimental study was conducted upon 100 patients. The experimental group received nursing interventions to control the environmental factors that negatively affect nocturnal sleep. Data also were collected using a form to assess the environmental factors and the Richards–Campbell Sleep Questionnaire in the morning of the second day after the operation. The difference between the groups was statistically significant in favor of the experimental group for eight of the environmental factors. Compared with that in the control group, the duration of sleep was longer (experimental, 6.30 h; control, 3.98 h) and the quality of sleep was higher (experimental, 66.57 units; control, 44.43 units) in the experimental group. We conclude that nursing interventions should be used to control the environmental factors that negatively affect nocturnal sleep in CSICUs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号