首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major determinant of the rate at which drug‐resistant malaria parasites spread through a population is the ecology of resistant and sensitive parasites sharing the same host. Drug treatment can significantly alter this ecology by removing the drug‐sensitive parasites, leading to competitive release of resistant parasites. Here, we test the hypothesis that the spread of resistance can be slowed by reducing drug treatment and hence restricting competitive release. Using the rodent malaria model Plasmodium chabaudi, we found that low‐dose chemotherapy did reduce competitive release. A higher drug dose regimen exerted stronger positive selection on resistant parasites for no detectable clinical gain. We estimated instantaneous selection coefficients throughout the course of replicate infections to analyze the temporal pattern of the strength and direction of within‐host selection. The strength of selection on resistance varied through the course of infections, even in untreated infections, but increased immediately following drug treatment, particularly in the high‐dose groups. Resistance remained under positive selection for much longer than expected from the half life of the drug. Although there are many differences between mice and people, our data do raise the question whether the aggressive treatment regimens aimed at complete parasite clearance are the best resistance‐management strategies for humans.  相似文献   

2.
In endemic areas with high transmission intensities, malaria infections are very often composed of multiple genetically distinct strains of malaria parasites. It has been hypothesised that this leads to intra-host competition, in which parasite strains compete for resources such as space and nutrients. This competition may have repercussions for the host, the parasite, and the vector in terms of disease severity, vector fitness, and parasite transmission potential and fitness. It has also been argued that within-host competition could lead to selection for more virulent parasites. Here we use the rodent malaria parasite Plasmodium yoelii to assess the consequences of mixed strain infections on disease severity and parasite fitness. Three isogenic strains with dramatically different growth rates (and hence virulence) were maintained in mice in single infections or in mixed strain infections with a genetically distinct strain. We compared the virulence (defined as harm to the mammalian host) of mixed strain infections with that of single infections, and assessed whether competition impacted on parasite fitness, assessed by transmission potential. We found that mixed infections were associated with a higher degree of disease severity and a prolonged infection time. In the mixed infections, the strain with the slower growth rate was often responsible for the competitive exclusion of the faster growing strain, presumably through host immune-mediated mechanisms. Importantly, and in contrast to previous work conducted with Plasmodium chabaudi, we found no correlation between parasite virulence and transmission potential to mosquitoes, suggesting that within-host competition would not drive the evolution of parasite virulence in P. yoelii.  相似文献   

3.
ABSTRACT: BACKGROUND: Human malaria infections caused by the parasite Plasmodium falciparum often contain more than one genetically distinct parasite. Despite this fact, nearly all studies of multiple strain P. falciparum infections have been limited to determining relative densities of each parasite within an infection. In light of this, new methods are needed that can quantify the absolute number of parasites within a single infection. METHODS: A quantitative PCR (qPCR) method was developed to track the dynamic interaction of P. falciparum infections containing genetically distinct parasite clones in cultured red blood cells. Allele-specific primers were used to generate a standard curve and to quantify the absolute concentration of parasite DNA within multi-clonal infections. Effects on dynamic growth relationships between parasites under drug pressure were examined by treating mixed cultures of drug sensitive and drug resistant parasites with the anti-malarial drug chloroquine at different dosing schedules. RESULTS: An absolute quantification method was developed to monitor the dynamics of P. falciparum cultures in vitro. This method allowed for the observation of competitive suppression, the reduction of parasites numbers due to the presence of another parasite, and competitive release, the improved performance of a parasite after the removal of a competitor. These studies demonstrated that the presence of two parasites led to the reduction in density of at least one parasite. containing both a drug resistant and drug sensitive parasites resulted in an increased proportion of the drug resistant parasite. Moreover, following drug treatment, the resistant parasite experienced competitive release by exhibiting a fitness benefit greater than simply surviving drug treatment, due to the removal of competitive suppression by the sensitive parasite. CONCLUSIONS: The newly developed assay allowed for the examination of the dynamics of two distinct clones in vitro; both competitive suppression and release were observed. A deeper understanding of the dynamic growth responses of multiple strain P. falciparum infections, with and without drug pressure, can improve the understanding of the role of parasite interactions in the spread of drug resistant parasites, perhaps suggesting different treatment strategies.  相似文献   

4.
Controlling the spread of antimalarial drug resistance, especially resistance of Plasmodium falciparum to artemisinin‐based combination therapies, is a high priority. Available data indicate that, as with other microorganisms, the spread of drug‐resistant malaria parasites is limited by fitness costs that frequently accompany resistance. Resistance‐mediating polymorphisms in malaria parasites have been identified in putative drug transporters and in target enzymes. The impacts of these polymorphisms on parasite fitness have been characterized in vitro and in animal models. Additional insights have come from analyses of samples from clinical studies, both evaluating parasites under different selective pressures and determining the clinical consequences of infection with different parasites. With some exceptions, resistance‐mediating polymorphisms lead to malaria parasites that, compared with wild type, grow less well in culture and in animals, and are replaced by wild type when drug pressure diminishes in the clinical setting. In some cases, the fitness costs of resistance may be offset by compensatory mutations that increase virulence or changes that enhance malaria transmission. However, not enough is known about effects of resistance mediators on parasite fitness. A better appreciation of the costs of fitness‐mediating mutations will facilitate the development of optimal guidelines for the treatment and prevention of malaria.  相似文献   

5.
Avian malaria parasites (Plasmodium) occur commonly in wild birds and are an increasingly popular model system for understanding host–parasite co‐evolution. However, whether these parasites have fitness consequences for hosts in endemic areas is much debated, particularly since wild‐caught individuals almost always harbour chronic infections of very low parasite density. We used the anti‐malarial drug MalaroneTM to test experimentally for fitness effects of chronic malaria infection in a wild population of breeding blue tits (Cyanistes caeruleus). Medication caused a pronounced reduction in Plasmodium infection intensity, usually resulting in complete clearance of these parasites from the blood, as revealed by quantitative PCR. Positive effects of medication on malaria‐infected birds were found at multiple stages during breeding, with medicated females showing higher hatching success, provisioning rates and fledging success compared to controls. Most strikingly, we found that treatment of maternal malaria infections strongly altered within‐family differences, with reduced inequality in hatching probability and fledging mass within broods reared by medicated females. These within‐brood effects appear to explain higher fledging success among medicated females and are consistent with a model of parental optimism in which smaller (marginal) offspring can be successfully raised to independence if additional resources become available during the breeding attempt. Overall, these results demonstrate that chronic avian malaria infections, far from being benign, can have significant effects on host fitness and may thus constitute an important selection pressure in wild bird populations.  相似文献   

6.
To develop public-health policies that extend the lifespan of affordable anti-malarial drugs as effective treatment options, it is necessary to understand the evolutionary processes leading to the origin and spread of mutations conferring drug resistance in malarial parasites. We built a population-genetic model for the emergence of resistance under combination drug therapy. Reproductive cycles of parasites are specified by their absolute fitness determined by clinical parameters, thus coupling the evolutionary-genetic with population-dynamic processes. Initial mutations confer only partial drug-resistance. Therefore, mutant parasites rarely survive combination therapy and within-host competition is very weak among parasites. The model focuses on the early phase of such unsuccessful recurrent mutations. This ends in the rare event of mutants enriching in an infected individual from which the successful spread of resistance over the entire population is initiated. By computer simulations, the waiting time until the establishment of resistant parasites is analysed. Resistance spreads quickly following the first appearance of a host infected predominantly by mutant parasites. This occurs either through a rare transmission of a resistant parasite to an uninfected host or through a rare failure of drugs in removing “transient” mutant alleles. The emergence of resistance is delayed with lower mutation rate, earlier treatment, higher metabolic cost of resistance, longer duration of high drug dose, and higher drug efficacy causing a stronger reduction in the sensitive and resistant parasites’ fitnesses. Overall, contrary to other studies’ proposition, the current model based on absolute fitness suggests that aggressive drug treatment delays the emergence of drug resistance.  相似文献   

7.
Antimalarial drug resistance and combination chemotherapy.   总被引:22,自引:0,他引:22  
Antimarial drug resistance develops when spontaneously occurring parasite mutants with reduced susceptibility are selected, and are then transmitted. Drugs for which a single point mutation confers a marked reduction in susceptibility are particularly vulnerable. Low clearance and a shallow concentration-effect relationship increase the chance of selection. Use of combinations of antimalarials that do not share the same resistance mechanisms will reduce the chance of selection because the chance of a resistant mutant surviving is the product of the per parasite mutation rates for the individual drugs, multiplied by the number of parasites in an infection that are exposed to the drugs. Artemisinin derivatives are particularly effective combination partners because (i) they are very active antimalarials, producing up to 10,000-fold reductions in parasite biomass per asexual cycle; (ii) they reduce malaria transmissibility; and (iii) no resistance to these drugs has been reported yet. There are good arguments for no longer using antimalarial drugs alone in treatment, and instead always using a combination with artemisinin or one of its derivatives.  相似文献   

8.
Antimalarial drug resistance emerges de novo predominantly in areas of low malaria transmission. Because of the logarithmic distribution of parasite numbers in human malaria infections, inadequately treated high biomass infections are a major source of de novo antimalarial resistance, whereas use of antimalarial prophylaxis provides a low resistance selection risk. Slowly eliminated antimalarials encourage resistance largely by providing a selective filter for resistant parasites acquired from others, and not by selecting resistance de novo. The de novo emergence of resistance can be prevented by use of antimalarial combinations. Artemisinin derivative combinations are particularly effective. Ensuring adequate treatment of the relatively few heavily infected patients would slow the emergence of resistance.  相似文献   

9.
Drug resistance represents one of the main problems for the use of chemotherapy to treat leishmaniasis. Additionally, it could provide some advantages to Leishmania parasites, such as a higher capacity to survive in stress conditions. In this work, in mixed populations of Leishmania donovani parasites, we have analyzed whether experimentally resistant lines to one or two combined anti-leishmanial drugs better support the stress conditions than a susceptible line expressing luciferase (Luc line). In the absence of stress, none of the Leishmania lines showed growth advantage relative to the other when mixed at a 1:1 parasite ratio. However, when promastigotes from resistant lines and the Luc line were mixed and exposed to different stresses, we observed that the resistant lines are more tolerant of different stress conditions: nutrient starvation and heat shock-pH stress. Further to this, we observed that intracellular amastigotes from resistant lines present a higher capacity to survive inside the macrophages than those of the control line. These results suggest that resistant parasites acquire an overall fitness increase and that resistance to drug combinations presents significant differences in their fitness capacity versus single-drug resistant parasites, particularly in intracellular amastigotes. These results contribute to the assessment of the possible impact of drug resistance on leishmaniasis control programs.  相似文献   

10.
Four Plasmodium species cause malaria in humans. Most malaria-endemic regions feature mixed infections involving two or more of these species. Factors contributing to heterogeneous parasite species and disease distribution include differences in genetic polymorphisms underlying parasite drug resistance and host susceptibility, mosquito vector ecology and transmission seasonality. It is suggested that unknown factors limit mixed Plasmodium species infections, and that mixed-species infections protect against severe Plasmodium falciparum malaria. Careful examination of methods used to detect these parasites and interpretation of individual- and population-based data are necessary to understand the influence of mixed Plasmodium species infections on malarial disease. This should ensure that deployment of future antimalarial vaccines and drugs will be conducted in a safe and timely manner.  相似文献   

11.
The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.  相似文献   

12.
Chloroquine has been the mainstay of malaria chemotherapy for the past five decades, but resistance is now widespread. Pyrimethamine or proguanil form an important component of some alternate drug combinations being used for treatment of uncomplicated Plasmodium falciparum infections in areas of chloroquine resistance. Both pyrimethamine and proguanil are dihydrofolate reductase (DHFR) inhibitors, the proguanil acting primarily through its major metabolite cycloguanil. Resistance to these drugs arises due to specific point mutations in the dhfr gene. Cross resistance between cycloguanil and pyrimethamine is not absolute. It is, therefore, important to investigate mutation rates in P. falciparum for pyrimethamine and proguanil so that DHFR inhibitor with less mutation rate is favored in drug combinations. Hence, we have compared mutation rates in P. falciparum genome for pyrimethamine and cycloguanil. Using erythrocytic stages of P. falciparum cultures, progressively drug resistant lines were selected in vitro and comparing their RFLP profile with a repeat sequence. Our finding suggests that pyrimethamine has higher mutation rate compared to cycloguanil. It enhances the degree of genomic polymorphism leading to diversity of natural parasite population which in turn is predisposes the parasites for faster selection of resistance to some other antimalarial drugs.  相似文献   

13.
Delaying antimalarial drug resistance with combination chemotherapy   总被引:12,自引:0,他引:12  
White NJ 《Parassitologia》1999,41(1-3):301-308
Resistance to antimalarial drugs arises when spontaneously occurring mutants with gene mutations or amplifications which confer reduced drug susceptibility are selected, and are then transmitted. Simultaneous use of two or more antimalarials with different modes of action and which therefore do not share the same resistance mechanisms will reduce the chance of selection, because the chance of a resistant mutant surviving is the product of the parasite mutation rates for the individual drugs, multiplied by the number of parasites in an infection that are exposed to the drugs. The artemisinin derivatives are very active antimalarials, which produce large reductions in parasite biomass per asexual cycle, and reduce malaria transmissibility. To date no resistance to these drugs has been reported. These drugs therefore make particularly effective combination partners. This suggests that antimalarial drugs should not be used alone in treatment, but always in combination, as in the treatment of tuberculosis or HIV, and that the combination should include artemisinin or one of its derivatives.  相似文献   

14.
Here, we test the hypothesis that virulent malaria parasites are less susceptible to drug treatment than less virulent parasites. If true, drug treatment might promote the evolution of more virulent parasites (defined here as those doing more harm to hosts). Drug-resistance mechanisms that protect parasites through interactions with drug molecules at the sub-cellular level are well known. However, parasite phenotypes associated with virulence might also help parasites survive in the presence of drugs. For example, rapidly replicating parasites might be better able to recover in the host if drug treatment fails to eliminate parasites. We quantified the effects of drug treatment on the in-host survival and between-host transmission of rodent malaria (Plasmodium chabaudi) parasites which differed in virulence and had never been previously exposed to drugs. In all our treatment regimens and in single- and mixed-genotype infections, virulent parasites were less sensitive to pyrimethamine and artemisinin, the two antimalarial drugs we tested. Virulent parasites also achieved disproportionately greater transmission when exposed to pyrimethamine. Overall, our data suggest that drug treatment can select for more virulent parasites. Drugs targeting transmission stages (such as artemisinin) may minimize the evolutionary advantage of virulence in drug-treated infections.  相似文献   

15.
Successful control of falciparum malaria depends greatly on treatment with artemisinin combination therapies. Thus, reports that resistance to artemisinins (ARTs) has emerged, and that the prevalence of this resistance is increasing, are alarming. ART resistance has recently been linked to mutations in the K13 propeller protein. We undertook a detailed kinetic analysis of the drug responses of K13 wild-type and mutant isolates of Plasmodium falciparum sourced from a region in Cambodia (Pailin). We demonstrate that ART treatment induces growth retardation and an accumulation of ubiquitinated proteins, indicative of a cellular stress response that engages the ubiquitin/proteasome system. We show that resistant parasites exhibit lower levels of ubiquitinated proteins and delayed onset of cell death, indicating an enhanced cell stress response. We found that the stress response can be targeted by inhibiting the proteasome. Accordingly, clinically used proteasome inhibitors strongly synergize ART activity against both sensitive and resistant parasites, including isogenic lines expressing mutant or wild-type K13. Synergy is also observed against Plasmodium berghei in vivo. We developed a detailed model of parasite responses that enables us to infer, for the first time, in vivo parasite clearance profiles from in vitro assessments of ART sensitivity. We provide evidence that the clinical marker of resistance (delayed parasite clearance) is an indirect measure of drug efficacy because of the persistence of unviable parasites with unchanged morphology in the circulation, and we suggest alternative approaches for the direct measurement of viability. Our model predicts that extending current three-day ART treatment courses to four days, or splitting the doses, will efficiently clear resistant parasite infections. This work provides a rationale for improving the detection of ART resistance in the field and for treatment strategies that can be employed in areas with ART resistance.  相似文献   

16.
Virulence in malaria: an evolutionary viewpoint   总被引:10,自引:0,他引:10  
Malaria parasites cause much morbidity and mortality to their human hosts. From our evolutionary perspective, this is because virulence is positively associated with parasite transmission rate. Natural selection therefore drives virulence upwards, but only to the point where the cost to transmission caused by host death begins to outweigh the transmission benefits. In this review, we summarize data from the laboratory rodent malaria model, Plasmodium chabaudi, and field data on the human malaria parasite, P. falciparum, in relation to this virulence trade-off hypothesis. The data from both species show strong positive correlations between asexual multiplication, transmission rate, infection length, morbidity and mortality, and therefore support the underlying assumptions of the hypothesis. Moreover, the P. falciparum data show that expected total lifetime transmission of the parasite is maximized in young children in whom the fitness cost of host mortality balances the fitness benefits of higher transmission rates and slower clearance rates, thus exhibiting the hypothesized virulence trade-off. This evolutionary explanation of virulence appears to accord well with the clinical and molecular explanations of pathogenesis that involve cytoadherence, red cell invasion and immune evasion, although direct evidence of the fitness advantages of these mechanisms is scarce. One implication of this evolutionary view of virulence is that parasite populations are expected to evolve new levels of virulence in response to medical interventions such as vaccines and drugs.  相似文献   

17.
Plasmodium falciparum malaria is subject to artificial selection from antimalarial drugs that select for drug-resistant parasites. We describe and apply a flexible new approach to investigate how epistasis, inbreeding, selection heterogeneity and multiple simultaneous drug deployments interact to influence the spread of drug-resistant malaria. This framework recognizes that different human 'environments' within which treatment may occur (such as semi- and non-immune humans taking full or partial drug courses) influence the genetic interactions between parasite loci involved in resistance. Our model provides an explanation for how the rate of spread varies according to different malaria transmission intensities, why resistance might stabilize at intermediate frequencies and also identifies several factors that influence the decline of resistance after a drug is removed. Results suggest that studies based on clinical outcomes might overestimate the spread of resistant parasites, especially in high-transmission areas. We show that when transmission decreases, prevalence might decrease without a corresponding change in frequency of resistance and that this relationship is heavily influenced by the extent of linkage disequilibrium between loci. This has important consequences on the interpretation of data from areas where control is being successful and suggests that reducing transmission might have less impact on the spread of resistance than previously expected.  相似文献   

18.
Malaria infections normally consist of more than one clonally replicating lineage. Within-host interactions between sensitive and resistant parasites can have profound effects on the evolution of drug resistance. Here, using the Plasmodium chabaudi mouse malaria model, we ask whether the costs and benefits of resistance are affected by the number of co-infecting strains competing with a resistant clone. We found strong competitive suppression of resistant parasites in untreated infections and marked competitive release following treatment. The magnitude of competitive suppression depended on competitor identity. However, there was no overall effect of the diversity of susceptible parasites on the extent of competitive suppression or release. If these findings generalize, then transmission intensity will impact on resistance evolution because of its effect on the frequency of mixed infections, not because of its effect on the distribution of clones per host. This would greatly simplify the computational problems of adequately capturing within-host ecology in models of drug resistance evolution in malaria.  相似文献   

19.
Malaria is a devastating disease that still claims over half a million lives every year, mostly in sub–Saharan Africa. One of the main barriers to malaria control is the evolution and propagation of drug-resistant mutant parasites. Knowing the genes and respective mutations responsible for drug resistance facilitates the design of drugs with novel modes of action and allows predicting and monitoring drug resistance in natural parasite populations in real-time. The best way to identify these mutations is to experimentally evolve resistance to the drug in question and then comparing the genomes of the drug-resistant mutants to that of the sensitive progenitor parasites. This simple evolutive concept was the starting point for the development of a paradigm over the years, based on the use of the rodent malaria parasite Plasmodium chabaudi to unravel the genetics of drug resistance in malaria. It involves the use of a cloned parasite isolate (P. chabaudi AS) whose genome is well characterized, to artificially select resistance to given drugs through serial passages in mice under slowly increasing drug pressure. The end resulting parasites are cloned and the genetic mutations are then discovered through Linkage Group Selection, a technique conceived by Prof. Richard Carter and his group, and/or Whole Genome Sequencing. The precise role of these mutations can then be interrogated in malaria parasites of humans through allelic replacement experiments and/or genotype-phenotype association studies in natural parasite populations. Using this paradigm, all the mutations underlying resistance to the most important antimalarial drugs were identified, most of which were pioneering and later shown to also play a role in drug resistance in natural infections of human malaria parasites. This supports the use of P. chabaudi a fast-track predictive model to identify candidate genetic markers of resistance to present and future antimalarial drugs and improving our understanding of the biology of resistance.  相似文献   

20.
Evolutionary theory argues that ecological interactions between pathogens within an infection can be a potent source of selection shaping traits such as virulence, drug resistance, and infectiousness. In humans, malaria infections are frequently genetically diverse, with mixed genotype infections the norm. A wide variety of evidence shows that crowding occurs within infections, with the population densities of individual genotypes suppressed by the presence of others. Public health interventions are expected to impact on levels of immunity experienced by pathogens, indirectly by reducing the rate of acquisition of natural immunity by reducing the force of infection, and directly in the case of vaccination programs. Here we ask how enhanced host immunity affects competitive interactions between malaria parasites within hosts and thus the strength of in-host selection on traits such as virulence. We used a model malaria system, Plasmodium chabaudi in laboratory mice, where it has been previously shown that less virulent parasites are competitively suppressed by more virulent strains, generating within-host selection for increased virulence. We found that immunization with either a recombinant antigen or with live parasites suppressed parasite densities, but that there was no evidence that immunization relieved or exacerbated competitive suppression, or affected the relative frequency of clones within infections. There is thus no reason to think that immunization strengthens or alleviates the potentially very potent selection on parasite traits arising from interactions between pathogen genotypes within infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号