首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synaptic transmission relies on effective and accurate compensatory endocytosis. F-BAR proteins may serve as membrane curvature sensors and/or inducers and thereby support membrane remodelling processes; yet, their in vivo functions urgently await disclosure. We demonstrate that the F-BAR protein syndapin I is crucial for proper brain function. Syndapin I knockout (KO) mice suffer from seizures, a phenotype consistent with excessive hippocampal network activity. Loss of syndapin I causes defects in presynaptic membrane trafficking processes, which are especially evident under high-capacity retrieval conditions, accumulation of endocytic intermediates, loss of synaptic vesicle (SV) size control, impaired activity-dependent SV retrieval and defective synaptic activity. Detailed molecular analyses demonstrate that syndapin I plays an important role in the recruitment of all dynamin isoforms, central players in vesicle fission reactions, to the membrane. Consistently, syndapin I KO mice share phenotypes with dynamin I KO mice, whereas their seizure phenotype is very reminiscent of fitful mice expressing a mutant dynamin. Thus, syndapin I acts as pivotal membrane anchoring factor for dynamins during regeneration of SVs.  相似文献   

2.
Synapses are specialized contact sites mediating communication between neurons. Synaptogenesis requires the specific assembly of protein clusters at both sides of the synaptic contact by mechanisms that are barely understood. We studied the synaptic targeting of multi-domain proteins of the ProSAP/Shank family thought to serve as master scaffolding molecules of the postsynaptic density. In contrast to Shank1, expression of green-fluorescent protein (GFP)-tagged ProSAP1/Shank2 and ProSAP2/Shank3 deletion constructs in hippocampal neurons revealed that their postsynaptic localization relies on the integrity of the C-termini. The shortest construct that was perfectly targeted to synaptic sites included the last 417 amino acids of ProSAP1/Shank2 and included the C-terminal sterile alpha motif (SAM) domain. Removal of 54 residues from the N-terminus of this construct resulted in a diffuse distribution in the cytoplasm. Altogether, our data delineate a hitherto unknown targeting signal in both ProSAP1/Shank2 and ProSAP2/Shank3 and provide evidence for an implication of these proteins and their close homologue, Shank1, in distinct molecular pathways.  相似文献   

3.
4.
GS32/SNAP-29 is a SNAP-25-like SNARE and has been shown to interact with syntaxin 6. Using immobilized recombinant GS32, we have recovered EHD1 as a major GS32-interacting protein from total HeLa cell extracts. This interaction is mediated by the EH domain of EHD1 and the N-terminal NPF-containing 17-residue region of GS32. Co-immunoprecipitation suggests that GS32 could also interact with EHD1 in intact cells. When immobilized GST-EHD1 was used to fish out interacting proteins from total brain extracts, syndapin II was identified as a major interacting partner. Similar to the GS32-EHD1 interaction, syndapin II also interacts with the EH domain of EHD1 via its NPF repeat region. Interaction of endogenous EHD1 and syndapin II was also established by co-immunoprecipitation. Furthermore, interaction of GS32 and syndapin II with EHD1 was shown to be mutually exclusive, suggesting that EHD1 may regulate/participate in the functional pathways of both GS32 and syndapin II in a mutual exclusive manner. Opposing roles of GS32 and syndapin II in regulating the surface level of transferrin receptor (TfR) were observed.  相似文献   

5.
F J Keith  N J Gay 《The EMBO journal》1990,9(13):4299-4306
The product of the Toll gene is a membrane protein required for the formation of dorso-ventral polarity during early embryogenesis in Drosophila melanogaster. It acts together with the other dorsal group gene products to specify a nuclear gradient of dorsal morphogen in the syncytial blastoderm stage embryo. Here we report the presence in Toll protein of additional sequences held in common with the human membrane receptor platelet glycoprotein 1b (Gp1b). We propose that these sequences in Toll form disulphide linked extracellular domains that are important for the binding of ligands in the perivitelline space of the embryo. In addition, we show that expression of Toll protein induced in a non-adhesive cell line promotes cellular adhesion, a property held in common with the related Drosophila glycoprotein chaoptin. Toll protein in such aggregates accumulates at sites of cell-cell interaction, a characteristic displayed by other cellular adhesion molecules. Taken together these findings suggest that the biochemical function of Toll protein is more closely analogous to that of Gp1b than previously thought.  相似文献   

6.
EHD proteins were shown to function in the exit of receptors and other membrane proteins from the endosomal recycling compartment. Here, we identify syndapins, accessory proteins in vesicle formation at the plasma membrane, as differential binding partners for EHD proteins. These complexes are formed by direct eps15-homology (EH) domain/asparagine proline phenylalanine (NPF) motif interactions. Heterologous and endogenous coimmunoprecipitations as well as reconstitutions of syndapin/EHD protein complexes at intracellular membranes of living cells demonstrate the in vivo relevance of the interaction. The combination of mutational analysis and coimmunoprecipitations performed under different nucleotide conditions strongly suggest that nucleotide binding by EHD proteins modulates the association with syndapins. Colocalization studies and subcellular fractionation experiments support a role for syndapin/EHD protein complexes in membrane trafficking. Specific interferences with syndapin-EHD protein interactions by either overexpression of the isolated EHD-binding interface of syndapin II or of the EHD1 EH domain inhibited the recycling of transferrin to the plasma membrane, suggesting that EH domain/NPF interactions are critical for EHD protein function in recycling. Consistently, both inhibitions were rescued by co-overexpression of the attacked protein component. Our data thus reveal that, in addition to a crucial role in endocytic internalization, syndapin protein complexes play an important role in endocytic receptor recycling.  相似文献   

7.
Neurotransmitter release requires the direct coupling of the calcium sensor with the machinery for membrane fusion. SNARE proteins comprise the minimal fusion machinery, and synaptotagmin I, a synaptic vesicle protein, is the primary candidate for the main neuronal calcium sensor. To test the effect of synaptotagmin I on membrane fusion, we incorporated it into a SNARE-mediated liposome fusion assay. Synaptotagmin I dramatically stimulated membrane fusion by facilitating SNAREpin zippering. This stimulatory effect was topologically restricted to v-SNARE vesicles (containing VAMP 2) and only occurred in trans to t-SNARE vesicles (containing syntaxin 1A and SNAP-25). Interestingly, calcium did not affect the overall fusion reaction. These results indicate that synaptotagmin I can directly accelerate SNARE-mediated membrane fusion and raise the possibility that additional components might be required to ensure tight calcium coupling.  相似文献   

8.
9.
Substance P as a member of tachykinin family plays an important role in angiogenesis. Hemokinins (HKs) have been identified as new members of substance P-like peptides of tachykinin family. However, the effects of HKs on endothelial cells and angiogenesis have not been studied. For the first time, here we demonstrated that r/mHK-1, hHK-1 and hHK(4-11) dose-dependently stimulated the proliferation, migration, adhesion and tube formation of freshly isolated human umbilical vein endothelial cells (HUVECs), and further exhibited in vivo angiogenic effects in chick embryo chorioallantoic membrane model. The angiogenic effects of HKs were inhibited by the selective antagonist of neurokinin-1 rather than neurokinin-2 receptor. Mechanistically, HKs activated ERK1/2 phosphorylation, stimulated nitric oxide production, and upregulated the expression of endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) in HUVECs. Taken together, our data suggest that HKs emerge as pivotal endogenous regulators of angiogenesis and represent potential targets for the intervention of angiogenesis in different pathological conditions given their specific peripheral distribution.  相似文献   

10.
Formation of coated vesicles requires two striking manipulations of the lipid bilayer. First, membrane curvature is induced to drive bud formation. Second, a scission reaction at the bud neck releases the vesicle. Using a reconstituted system for COPI vesicle formation from purified components, we find that a dimerization-deficient Arf1 mutant, which does not display the ability to modulate membrane curvature in vitro or to drive formation of coated vesicles, is able to recruit coatomer to allow formation of COPI-coated buds but does not support scission. Chemical cross-linking of this Arf1 mutant restores vesicle release. These experiments show that initial curvature of the bud is defined primarily by coatomer, whereas the membrane curvature modulating activity of dimeric Arf1 is required for membrane scission.  相似文献   

11.
The Epstein-Barr virus (EBV) proteins latent membrane proteins 1 and 2 (LMP1 and LMP2) are frequently expressed in EBV-associated lymphoid and epithelial cancers and have complex effects on cell signaling and growth. The effects of these proteins on epithelial cell growth were assessed in vivo using transgenic mice driven by the keratin 14 promoter (K14). The development of papillomas and carcinomas was determined in the tumor initiator and promoter model using dimethyl benzanthracene (DMBA), followed by repeated treatments of 12-O-tetradecanoyl phorbol 13-acetate (TPA). In these assays, LMP1 functioned as a weak tumor promoter and increased papilloma formation. In contrast, mice expressing LMP2A did not induce or promote papilloma formation. Transgenic LMP1 mice had slightly increased development of squamous cell carcinoma; however, the development of carcinoma was significantly increased in the doubly transgenic mice expressing both LMP1 and LMP2A. DMBA treatment induces an activating mutation in the Harvey-ras (H-ras(61)) oncogene, and this mutation was identified in most papillomas and carcinomas although several papillomas and carcinomas in K14-LMP1 and K14-LMP1/LMP2A mice lacked the mutation. Analysis of signaling pathways that are known to be activated by LMP1 and/or LMP2 indicated that all genotypes had high levels of activated extracellular signal-regulated kinase (ERK) and Stat3 in carcinomas with significantly higher activation in the doubly transgenic carcinomas. These findings suggest that, in combination, LMP1 and LMP2 contribute to carcinoma progression and that this may reflect the combined effects of the proteins on activation of multiple signaling pathways. This study is the first to characterize the effects of LMP2 on tumor initiation and promotion and to identify an effect of the combined expression of LMP1 and LMP2 on the increase of carcinoma development.  相似文献   

12.
Disk membranes from the bovine retinal rod outer segments (ROS) were found to fuse with vesicles made of lipids extracted from unbleached ROS disk membranes, using a lipid mixing assay for membrane fusion (relief of self-quenching of R18, octadecylrhodamine B chloride). If the retinal chromophore of rhodopsin was reductively linked to opsin before lipid extraction, the vesicles made of the extracted lipids were not suitable targets for fusion of the disk membranes. The addition of retinal and retinol to these vesicles restored their ability to fuse. Therefore, the presence of all-trans retinal was implicated in promoting membrane fusion in this system. To test this possibility, the ability of retinal and retinol to influence the phase behavior and the fusion capability of large unilamellar vesicles (LUV) of N-methyl dioleoylphosphatidylethanolamine (N-methyl-DOPE) was examined. Both retinal and retinol stimulated the fusion of vesicles of N-methyl-DOPE (contents mixing with ANTS, 1-aminonaphthalene-3,6,8-trisulfonic acid; DPX, p-xylylene bis(pyridinium bromide)). Both compounds reduced the onset temperature for isotropic resonances in the 31P-NMR spectra of N-methyl-DOPE dispersions and the onset temperature, TH, for formation of hexagonal II phase. These results were consistent with previous studies in which the onset temperature for the 31P-NMR isotropic resonances were correlated with stimulation of membrane fusion. These data suggested that both retinal and retinol may stimulate membrane fusion by destabilizing the bilayers of membranes.  相似文献   

13.
Pancreatic ductal adenocarcinoma (PDAC) is characterized by pronounced fibrotic reaction composed primarily of type I collagen. Although type I collagen functions as a barrier to invasion, pancreatic cancer cells have been shown to respond to type I collagen by becoming more motile and invasive. Because epithelial-mesenchymal transition is also associated with cancer invasion, we examined the extent to which collagen modulated the expression of Snail, a well known regulator of epithelial-mesenchymal transition. Relative to cells grown on tissue culture plastic, PDAC cells grown in three-dimensional collagen gels induced Snail. Inhibiting the activity or expression of the TGF-β type I receptor abrogated collagen-induced Snail. Downstream of the receptor, we showed that Smad3 and Smad4 were critical for the induction of Snail by collagen. In contrast, Smad2 or ERK1/2 was not involved in collagen-mediated Snail expression. Overexpression of Snail in PDAC cells resulted in a robust membrane type 1-matrix metalloproteinase (MT1-MMP, MMP-14)-dependent invasion through collagen-coated transwell chambers. Snail-expressing PDAC cells also demonstrated MT1-MMP-dependent scattering in three-dimensional collagen gels. Mechanistically, Snail increased the expression of MT1-MMP through activation of ERK-MAPK signaling, and inhibiting ERK signaling in Snail-expressing cells blocked two-dimensional collagen invasion and attenuated scattering in three-dimensional collagen. To provide in vivo support for our findings that Snail can regulate MT1-MMP, we examined the expression of Snail and MT1-MMP in human PDAC tumors and found a statistically significant positive correlation between MT1-MMP and Snail in these tumors. Overall, our data demonstrate that pancreatic cancer cells increase Snail on encountering collagen-rich milieu and suggest that the desmoplastic reaction actively contributes to PDAC progression.  相似文献   

14.
15.
In this work, the relationship between stability and propensity to misfold was probed for a series of purified variants of the polytopic integral membrane protein diacylglycerol kinase. It was observed that there was a strong correlation between stability and folding efficiency. The most common mutations that promoted misfolding were those which also destabilized the protein. These results imply that by targeting unstable membrane proteins for degradation, cellular protein folding quality control can eliminate proteins that have a high intrinsic propensity to misfold into aberrant structures. Moreover, the more rare class of amino acid mutations that promote misfolding without perturbing stability may be particularly dangerous because the mutant proteins may evade the surveillance of cellular quality control systems.  相似文献   

16.
The interfacial sequence DKWASLWNWFNITNWLWYIK, preceding the transmembrane anchor of gp41 glycoprotein subunit, has been shown to be essential for fusion activity and incorporation into virions. HIV(c), a peptide representing this region, formed lytic pores in liposomes composed of the main lipids occurring in the human immunodeficiency virus, type 1 (HIV-1), envelope, i.e. 1-palmitoyl-2-oleoylphosphatidylcholine (POPC):sphingomyelin (SPM):cholesterol (Chol) (1:1:1 mole ratio), at low (>1:10,000) peptide-to-lipid mole ratio, and promoted the mixing of vesicular lipids at >1:1000 peptide-to-lipid mole ratios. Inclusion of SPM or Chol in POPC membranes had different effects. Whereas SPM sustained pore formation, Chol promoted fusion activity. Even if partitioning into membranes was not affected in the absence of both SPM and Chol, HIV(c) had virtually no effect on POPC vesicles. Conditions described to disturb occurrence of lateral separation of phases in these systems reproduced the high peptide-dose requirements for leakage as found in pure POPC vesicles and inhibited fusion. Surface aggregation assays using rhodamine-labeled peptides demonstrated that SPM and Chol promoted HIV(c) self-aggregation in membranes. Employing head-group fluorescent phospholipid analogs in planar supported lipid layers, we were able to discern HIV(c) clusters associated to ordered domains. Our results support the notion that the pretransmembrane sequence may participate in the clustering of gp41 monomers within the HIV-1 envelope, and in bilayer architecture destabilization at the loci of fusion.  相似文献   

17.
Mitophagy is a highly specialized process to remove dysfunctional or superfluous mitochondria through the macroautophagy/autophagy pathway, aimed at protecting cells from the damage of disordered mitochondrial metabolism and apoptosis induction. PINK1, a neuroprotective protein mutated in autosomal recessive Parkinson disease, has been implicated in the activation of mitophagy by selectively accumulating on depolarized mitochondria, and promoting PARK2/Parkin translocation to them. While these steps have been characterized in depth, less is known about the process and site of autophagosome formation upon mitophagic stimuli. A previous study reported that, in starvation-induced autophagy, the proautophagic protein BECN1/Beclin1 (which we previously showed to interact with PINK1) relocalizes at specific regions of contact between the endoplasmic reticulum (ER) and mitochondria called mitochondria-associated membranes (MAM), from which the autophagosome originates. Here we show that, following mitophagic stimuli, autophagosomes also form at MAM; moreover, endogenous PINK1 and BECN1 were both found to relocalize at MAM, where they promoted the enhancement of ER-mitochondria contact sites and the formation of omegasomes, that represent autophagosome precursors. PARK2 was also enhanced at MAM following mitophagy induction. However, PINK1 silencing impaired BECN1 enrichment at MAM independently of PARK2, suggesting a novel role for PINK1 in regulating mitophagy. MAM have been recently implicated in many key cellular events. In this light, the observed prevalent localization of PINK1 at MAM may well explain other neuroprotective activities of this protein, such as modulation of mitochondrial calcium levels, mitochondrial dynamics, and apoptosis.  相似文献   

18.
In this article, we investigate the contributions of actin filaments and accessory proteins to apical clathrin-mediated endocytosis in primary rabbit lacrimal acini. Confocal fluorescence and electron microscopy revealed that cytochalasin D promoted apical accumulation of clathrin, alpha-adaptin, dynamin, and F-actin and increased the amounts of coated pits and vesicles at the apical plasma membrane. Sorbitol density gradient analysis of membrane compartments showed that cytochalasin D increased [14C]dextran association with apical membranes from stimulated acini, consistent with functional inhibition of apical endocytosis. Recombinant syndapin SH3 domains interacted with lacrimal acinar dynamin, neuronal Wiskott-Aldrich Syndrome protein (N-WASP), and synaptojanin; their introduction by electroporation elicited remarkable accumulation of clathrin, accessory proteins, and coated pits at the apical plasma membrane. These SH3 domains also significantly (p 相似文献   

19.
Mammalian Son-of-sevenless (mSos) functions as a guanine nucleotide exchange factor for Ras and Rac, thus regulating signaling to mitogen-activated protein kinases and actin dynamics. In the current study, we have identified a new mSos-binding protein of 50 kDa (p50) that interacts with the mSos1 proline-rich domain. Mass spectrometry analysis and immunodepletion studies reveal p50 as PACSIN 1/syndapin I, a Src homology 3 domain-containing protein functioning in endocytosis and regulation of actin dynamics. In addition to PACSIN 1, which is neuron-specific, mSos also interacts with PACSIN 2, which is expressed in neuronal and nonneuronal tissues. PACSIN 2 shows enhanced binding to the mSos proline-rich domain in pull-down assays from brain extracts as compared with lung extracts, suggesting a tissue-specific regulation of the interaction. Proline to leucine mutations within the Src homology 3 domains of PACSIN 1 and 2 abolish their binding to mSos, demonstrating the specificity of the interactions. In situ, PACSIN 1 and mSos1 are co-expressed in growth cones and actin-rich filopodia in hippocampal and dorsal root ganglion neurons, and the two proteins co-immunoprecipitate from brain extracts. Moreover, epidermal growth factor treatment of COS-7 cells causes co-localization of PACSIN 1 and mSos1 in actin-rich membrane ruffles, and their interaction is regulated through epidermal growth factor-stimulated mSos1 phosphorylation. These data suggest that PACSINs may function with mSos1 in regulation of actin dynamics.  相似文献   

20.
We examined the role of the actin-capping protein flightless I (FliI) in collagen remodeling by mouse fibroblasts. FliI-overexpressing cells exhibited reduced spreading on collagen but formed elongated protrusions that stained for myosin10 and fascin and penetrated pores of collagen-coated membranes. Inhibition of Cdc42 blocked formation of cell protrusions. In FliI-knockdown cells, transfection with constitutively active Cdc42 did not enable protrusion formation. FliI-overexpressing cells displayed increased uptake and degradation of exogenous collagen and strongly compacted collagen fibrils, which was blocked by blebbistatin. Mass spectrometry analysis of FliI immunoprecipitates showed that FliI associated with nonmuscle myosin IIA (NMMIIA), which was confirmed by immunoprecipitation. GFP-FliI colocalized with NMMIIA at cell protrusions. Purified FliI containing gelsolin-like domains (GLDs) 1–6 capped actin filaments efficiently, whereas FliI GLD 2–6 did not. Binding assays showed strong interaction of purified FliI protein (GLD 1–6) with the rod domain of NMMIIA (kD = 0.146 μM), whereas FliI GLD 2–6 showed lower binding affinity (kD = 0.8584 μM). Cells expressing FliI GLD 2–6 exhibited fewer cell extensions, did not colocalize with NMMIIA, and showed reduced collagen uptake compared with cells expressing FliI GLD 1–6. We conclude that FliI interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling in fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号