首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Fluid flow back along the outer surface of a needle (backflow) can be a significant problem during the direct infusion of drugs into brain tissues for procedures such as convection-enhanced delivery (CED). This study evaluates the effects of needle insertion speed (0.2 and 1.8 mm/s) as well as needle diameter and flow rate on the extent of backflow and local damage to surrounding tissues. Infusion experiments were conducted on a transparent tissue phantom, 0.6% (w/v) agarose hydrogel, to visualize backflow. Needle insertion experiments were also performed to evaluate local damage at the needle tip and to back out the prestress in the surrounding media for speed conditions where localized damage was not excessive. Prestress values were then used in an analytical model of backflow. At the higher insertion speed (1.8 mm/s), local insertion damage was found to be reduced and backflow was decreased. The compressive prestress at the needle-tissue interface was estimated to be approximately constant (0.812 kPa), and backflow distances were similar regardless of needle gauge (22, 26, and 32 gauge). The analytical model underestimated backflow distances at low infusion flow rates and overestimated backflow at higher flow rates. At the lower insertion speed (0.2 mm/s), significant backflow was measured. This corresponded to an observed accumulation of material at the needle tip which produced a gap between the needle and the surrounding media. Local tissue damage was also evaluated in excised rat brain tissues, and insertion tests show similar rate-dependent accumulation of tissue at the needle tip at the lower insertion speed. These results indicate that local tissue damage and backflow may be avoided by using an appropriate insertion speed.  相似文献   

2.
Convection-enhanced delivery (CED) is a technique to bypass the blood-brain barrier and deliver therapeutic agents into the brain. However, animal studies and preliminary clinical trials have reported reduced efficacy to transport drugs in specific regions, attributed mainly to backflow, in which an annular zone is formed outside the catheter and the fluid preferentially flows toward the surface of the brain rather than through the tissue toward the targeted area. In this study, a finite element model of backflow was updated by implementing the pre-stress generated during needle insertion, which allows considering the effect of needle insertion velocity during CED infusions in agarose gel. The nonlinear mechanical properties of the agarose solutions were obtained by fitting experimental data from stress-relaxation tests. Additional experimental measurements of backflow lengths were used to adjust the pre-stress model. The developed model was able to reproduce changes of backflow length under different insertions velocities and flow rates. These findings reveal the relevance of considering the pre-stress in the tissue located around the needle surface during CED infusions into the brain.  相似文献   

3.
A thorough understanding of needle–tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7–3.2 mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10–85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5–10 mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy.  相似文献   

4.

Background

Despite promising early results, clinical trials involving the continuous delivery of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHuGDNF) into the putamen for the treatment of Parkinson''s disease have shown evidence of poor distribution and toxicity due to point-source accumulation. Convection-enhanced delivery (CED) has the potential to facilitate more widespread and clinically effective drug distribution.

Aims

We investigated acute CED of r-metHuGDNF into the striatum of normal rats in order to assess tissue clearance, toxicity (neuron loss, gliosis, microglial activation, and decreases in synaptophysin), synaptogenesis and neurite-outgrowth. We investigated a range of clinically relevant infused concentrations (0.1, 0.2, 0.6 and 1.0 µg/µL) and time points (2 and 4 weeks) in order to rationalise a dosing regimen suitable for clinical translation.

Results

Two weeks after single dose CED, r-metHuGDNF was below the limit of detection by ELISA but detectable by immunohistochemistry when infused at low concentrations (0.1 and 0.2 µg/µL). At these concentrations, there was no associated neuronal loss (neuronal nuclei, NeuN, immunohistochemistry) or synaptic toxicity (synaptophysin ELISA). CED at an infused concentration of 0.2 µg/µL was associated with a significant increase in synaptogenesis (p<0.01). In contrast, high concentrations of r-metHuGDNF (above 0.6 µg/µL) were associated with neuronal and synaptic toxicity (p<0.01). Markers for gliosis (glial fibrillary acidic protein, GFAP) and microglia (ionized calcium-binding adapter molecule 1, Iba1) were restricted to the needle track and the presence of microglia had diminished by 4 weeks post-infusion. No change in neurite outgrowth (Growth associated protein 43, GAP43, mRNA) compared to artificial cerebral spinal fluid (aCSF) control was observed with any infused concentration.

Conclusion

The results of this study suggest that acute CED of low concentrations of GDNF, with dosing intervals determined by tissue clearance, has most potential for effective clinical translation by optimising distribution and minimising the risk of toxic accumulation.  相似文献   

5.
Convection-enhanced delivery (CED) is a drug delivery technique used to target specific regions of the central nervous system (CNS) for the treatment of neurodegenerative diseases and cancer while bypassing the blood-brain barrier (BBB). The application of CED is limited by low volumetric flow rate infusions in order to prevent the possibility of backflow. Consequently, a small convective flow produces poor drug distribution inside the treatment region, which can render CED treatment ineffective. Novel catheter designs and CED protocols are needed in order to improve the drug distribution inside the treatment region and prevent backflow. In order to develop novel backflow-free catheter designs, the impact of the micro-fluid injection into deformable porous media was investigated experimentally as well as numerically. Fluid injection into the porous media has a considerable effect on local transport properties such as porosity and hydraulic conductivity because of the local media deformation. These phenomena not only alter the bulk flow velocity distribution of the micro-fluid flow due to the changing porosity, but significantly modify the flow direction, and even the volumetric flow distribution, due to induced local hydraulic conductivity anisotropy. These findings help us to design backflow-free catheters with safe volumetric flow rates up to 10 μl/min. A first catheter design reduces porous media deformation in order to improve catheter performance and control an agent volumetric distribution. A second design prevents the backflow by reducing the porosity and hydraulic conductivity along a catheter's shaft. A third synergistic catheter design is a combination of two previous designs. Novel channel-inducing and dual-action catheters, as well as a synergistic catheter, were successfully tested without the occurrence of backflow and are recommended for future animal experiments.  相似文献   

6.
BackgroundWe investigated the change of dose distributions in volumetric modulated arc therapy (VMAT) under baseline drift (BD) during breath holding.Materials and methodsTen VMAT plans recalculated to a static field at a gantry angle of 0° were prepared for measurement with a 2D array device and five original VMAT plans were prepared for measurement with gafchromic films. These measurement approaches were driven by a waveform reproducing breath holding with BD. We considered breath holding times of 15 and 10 s, and BD at four speeds; specifically, BD0 (0 mm/s), BD0.2 (0.2 mm/s), BD0.3 (0.3 mm/s), and BD0.4 (0.4 mm/s). The BD was periodically reproduced from the isocenter along the craniocaudal direction and the shift during breath holding (ShiftBH) ranged 0–6 mm.The dose distribution of BD0.2, BD0.3 and BD0.4 were compared to that of BD0 using gamma analysis with the criterion of 2%/2 mm.ResultsThe mean pass rates of each ShiftBH were 99.8% and 98.9% at 0 mm, 96.8% and 99.4% at 2 mm, 94.9% and 98.6% at 3 mm, 91.5% and 98.4% at 4 mm, 70.8% and 94.1% at 4.5 mm, and 55.0% and 83.6% at 6 mm for the array and film measurements, respectively.ConclusionWe found significant differences in ShiftBH above 4 mm (ρ < 0.05). Hence, it is recommended that breath holding time should be shortened for patients to preserve the reproducibility of dose distributions.  相似文献   

7.
Resistance forces acting on suture needles   总被引:2,自引:0,他引:2  
Understanding the resistance forces encountered by a suture needle during tissue penetration is important for the development of robotic surgical devices and virtual reality surgical simulators. Tensile forces applied to skin and tendon during suturing were measured. Fresh sheep achilles tendons were tensioned with a static load 4.9 N, 9.8 N or 19.6 N and sheepskin with 0.98 N, 2.9 N or 4.9 N static load. A straight 2/0 cutting suture needle in series with a load cell on a materials testing machine penetrated the tissue at 90 degrees with a velocity of 1, 5 or 10mm/s for each tissue tension (n=5). Continuous load versus displacement data was obtained and penetration load and stiffness were noted. The load versus displacement curve for skin during needle penetration demonstrated two characteristic peaks, corresponding to initial penetration and emergence of needle from the undersurface of the tissue. Increasing the tension within the tissue (skin and tendon) increased the amount of force required to penetrate the tissue with a suture needle (p<0.05). Needle displacement rate did not affect the resistance to needle penetration (p<0.05). This study provides a simple model for measuring force-feedback during needle penetration of soft tissues and is a good starting point for future studies of the penetration resistance properties of human tissues.  相似文献   

8.
Minimally invasive biopsies are a cornerstone of breast cancer management with ultrasound being the preferred guidance modality. New developments in breast cancer management and advances in imaging technologies bring new challenges to current biopsy methodologies. A new biopsy device (NeoNavia® biopsy system, 14 G) was developed. It incorporates a pneumatic needle insertion mechanism that is intended to provide better control of needle progression and enable stepwise insertion without noticeable deformation or displacement of surrounding tissue as visualized under ultrasound. A new method of tissue acquisition was designed to achieve a sampling yield higher than standard methodologies. Needle dynamics was assessed on a specifically designed test bed and sampling performance was compared to a Magnum® biopsy instrument (Bard, Covington, GA, USA) in representative tissue models. The histological quality of samples obtained ex-vivo was evaluated. A pneumatic pulse was measured to accelerate the needle to a maximum velocity of 21.2 ± 2.5 m/s on a stroke length of 2.5 mm, achieving significantly higher acceleration, maximum velocity and power than current biopsy devices. Mean weight of samples obtained by the NeoNavia device were 3.5, 4.6, and 4.3 times higher when sampling was performed in turkey breast, calf thymus and swine pancreas, respectively, as compared to samples obtained with the Magnum instrument. Ex-vivo analysis indicates that the method of tissue acquisition has no apparent negative impact on the histopathologic quality of obtained samples.  相似文献   

9.
Sustained swimming performance of juvenile sprat, S. sprattus (29–48 mm s.l.), and herring, C. harengus (46–58 mm) was measured in a laboratory flume over a range of salinities from 18 to 33%0 at water temperatures of 16–19°C. Critical swimming speeds (CSS) of both species, relative to body length, were similar, averaging 10–12 body lengths per second (bl s−1). There was no apparent relationship with salinity.
These swimming speeds are higher than values generally quoted in the literature for sustained swimming of sprat and herring (2–7 bl s−1) and it is concluded that the better performance found in this study was a function of improved fish handling techniques, and of the size of fish used since most other studies have dealt with larger, commercial sized fish.  相似文献   

10.
The rotational cutting method has been used in needle biopsy technologies to sample tough tissues, such as calcifications in the breast. The rotational motion of the needle introduces shear forces to the cutting surface such that the cutting force in the axial direction is reduced. As a result, tissue samples with large volume and better quality can be obtained. In order to comprehensively understand the effect of the needle rotation to the axial cutting force under a wide range of the needle insertion speed, this paper demonstrates a computational approach that incorporates the surface-based cohesive behavior to simulate a rotating needle cutting soft tissue. The computational model is validated by comparing with a cutting test dataset reported in the literature. The validated model is then used to generate response surfaces of the axial cutting force and torque in a large parameter space of needle rotation and insertion speeds. The results provide guidelines for selecting optimal speed configurations under different design situations.  相似文献   

11.
Autoimmune phenomena occur in healthy individuals, but when self-tolerance fails, the autoimmune response may result in specific pathology. According to Witebsky''s postulates, one of the criteria in diagnosing a disease as autoimmune is the reproduction of the disease in experimental animals by the passive transfer of autoantibodies. For epidermolysis bullosa acquisita (EBA), a prototypic organ-specific autoimmune disease of skin and mucous membranes, several experimental models were recently established. In the animal model described in our present work, purified IgG antibodies against a stretch of 200 amino acids (aa 757-967) of collagen VII are injected repeatedly into mice reproducing the blistering phenotype as well as the histo- and immunopathological features characteristic to human EBA 1. Full-blown widespread disease is usually seen 5-6 days after the first injection and the extent of the disease correlates with the dose of the administered collagen VII-specific IgG. The tissue damage (blister formation) in the experimental EBA is depending on the recruitment and activation of granulocytes by tissue-bound autoantibodies 2,-4. Therefore, this model allows for the dissection of the granulocyte-dependent inflammatory pathway involved in the autoimmune tissue damage, as the model reproduces only the T cell-independent phase of the efferent autoimmune response. Furthermore, its value is underlined by a number of studies demonstrating the blister-inducing potential of autoantibodies in vivo and investigating the mechanism of the blister formation in EBA 1,3,-6. Finally, this model will greatly facilitate the development of new anti-inflammatory therapies in autoantibody-induced diseases. Overall, the passive transfer animal model of EBA is an accessible and instructive disease model and will help researchers to analyze not only EBA pathogenesis but to answer fundamental biologically and clinically essential autoimmunity questions.  相似文献   

12.
In vivo electroporation is increasingly being used to deliver small molecules as well as DNA to tissues. The aim of this study was to quantitatively investigate in vivo electroporation of skeletal muscle, and to determine the threshold for permeabilization. We designed a quantitative method to study in vivo electroporation, by measuring uptake of (51)Cr-EDTA. As electrode configuration influences electric field (E-field) distribution, we developed a method to calculate this. Electroporation of mouse muscle tissue was investigated using either external plate electrodes or internal needle electrodes placed 4 mm apart, and eight pulses of 99 micros duration at a frequency of 1 Hz. The applied voltage to electrode distance ratio was varied from 0 to 2.0 kV/cm. We found that: (1) the threshold for permeabilization of skeletal muscle tissue using short duration pulses was at an applied voltage to electrode distance ratio of 0.53 kV/cm (+/-0.03 kV/cm), corresponding to an E-field of 0.45 kV/cm; (2) there were two phases in the uptake of (51)Cr-EDTA, the first indicating increasing permeabilization and the second indicating beginning irreversible membrane damage; and (3) the calculated E-field distribution was more homogeneous for plate than for needle electrodes, which was reflected in the experimental results.  相似文献   

13.
This study focuses on the impact of natural levels of UVBR (ultraviolet-B radiation: 280 to 315 nm) on bacterio- and phytoplankton (<10 mm) from the Gulf of Aqaba, Red Sea. Incident biologically effective doses (BEDs) and attenuation of biologically effective radiation in the water column were measured using a DNA biodosimeter. UVBR-induced DNA damage was measured as cyclobutane pyrimidine dimers (CPDs), using an antibody directed to CPDs followed by chemiluminescent detection. Depth profiles of DNA damage were determined in two plankton size fractions (0.2 to 0.8 mm and 0.8 to 10 mm) collected down to 50 m depth. Furthermore, accumulation and removal of CPDs were monitored in surface plankton samples during several daily cycles. Small plankton (plankton <10 mm) composition was determined by flow cytometry. The plankton community in the Gulf of Aqaba was dominated by nonphototrophic bacteria and the free-living prochlorophyte Prochlorococcus spp. (<0.8 mm). In general, no DNA damage could be detected in dosimeter DNA below 15 m. In contrast, DNA damage (up to 124 CPD Mnucl-1) could be detected in all bacterio- and phytoplankton samples. DNA damage accumulated throughout the day, indicating that plankton in the Gulf of Aqaba undergo UVBR stress via CPD induction. Although the numbers of CPDs decreased during darkness, both size fractions showed some residual DNA damage at the end of the night. This suggests that dark repair processes did not remove all CPDs, or that part of the plankton community was incapable of repair at all. CPD levels in the two size fractions showed no significant differences in situ. During full solar radiation exposures (samples incubated in bags), more CPDs were detected in the smaller (0.2 to 0.8 mm) size fraction as compared to the larger (0.8 to 10 mm) size fraction. In these experiments, initial plankton composition was significantly different from the field samples. This implies that a shift in the population structure or irradiance conditions can lead to a significant change in UVBR sensitivity. In conclusion, the results show that the picoplankton-dominated phyto- and bacterioplankton communities in the clear surface waters from the Gulf of Aqaba undergo UVBR stress. Repair pathways are not sufficient to eliminate damage during or after UVBR exposure hours, suggesting photomortality as a potential loss parameter of the plankton community.  相似文献   

14.

Background

The computation of arterial wall deformation and stresses under physiologic conditions requires a coupled compliant arterial wall-blood flow interaction model. The in-vivo arterial wall motion is constrained by tethering from the surrounding tissues. This tethering, together with the average in-vivo pressure, results in wall pre-stress. For an accurate simulation of the physiologic conditions, it is important to incorporate the wall pre-stress in the computational model. The computation of wall pre-stress is complex, as the un-loaded and un-tethered arterial shape with residual stress is unknown. In this study, the arterial wall deformation and stresses in a canine femoral artery under pulsatile pressure was computed after incorporating the wall pre-stresses. A nonlinear least square optimization based inverse algorithm was developed to compute the in-vivo wall pre-stress.

Methods

First, the proposed inverse algorithm was used to obtain the un-loaded and un-tethered arterial geometry from the unstressed in-vivo geometry. Then, the un-loaded, and un-tethered arterial geometry was pre-stressed by applying a mean in-vivo pressure of 104.5 mmHg and an axial stretch of 48% from the un-tethered length. Finally, the physiologic pressure pulse was applied at the inlet and the outlet of the pre-stressed configuration to calculate the in-vivo deformation and stresses. The wall material properties were modeled with an incompressible, Mooney-Rivlin model derived from previously published experimental stress-strain data (Attinger et al., 1968).

Results

The un-loaded and un-tethered artery geometry computed by the inverse algorithm had a length, inner diameter and thickness of 35.14 mm, 3.10 mm and 0.435 mm, respectively. The pre-stressed arterial wall geometry was obtained by applying the in-vivo axial-stretch and average in-vivo pressure to the un-loaded and un-tethered geometry. The length of the pre-stressed artery, 51.99 mm, was within 0.01 mm (0.019%) of the in-vivo length of 52.0 mm; the inner diameter of 3.603 mm was within 0.003 mm (0.08%) of the corresponding in-vivo diameter of 3.6 mm, and the thickness of 0.269 mm was within 0.0015 mm (0.55%) of the in-vivo thickness of 0.27 mm. Under physiologic pulsatile pressure applied to the pre-stressed artery, the time averaged longitudinal stress was found to be 42.5% higher than the circumferential stresses. The results of this study are similar to the results reported by Zhang et al., (2005) for the left anterior descending coronary artery.

Conclusions

An inverse method was adopted to compute physiologic pre-stress in the arterial wall before conducting pulsatile hemodynamic calculations. The wall stresses were higher in magnitude in the longitudinal direction, under physiologic pressure after incorporating the effect of in-vivo axial stretch and pressure loading.
  相似文献   

15.
Inflammatory cytokines released from adipose tissue play an important role in different pathological processes. In the present study, we investigated the inflammatory cytokine response of human subcutaneous adipose tissue (SAT) by applying the open-flow microperfusion technique. Four standard 18-gauge microperfusion catheters were inserted into periumbilical SAT of eight healthy male volunteers [29 +/- 3 yr, BMI 24.3 +/- 1.9 (mean +/- SD)]. SAT probe effluents were collected at 60-min intervals for 8 h after catheter insertion. Different perfusion fluids were used to measure the local effect of insulin and/or glucose on the cytokine response. SAT probe effluents were analyzed for IL-1beta, IL-6, CXCL8 (IL-8), and TNF-alpha. SAT concentrations of IL-1beta increased 100-fold from 1.0 +/- 0.2 pg/ml (mean +/- SE) to 101.5 +/- 23.2 pg/ml (P < 0.001) after 8 h. A 130-fold increase was observed for CXCL8, from 49 +/- 29 to 6,554 +/- 1,713 pg/ml (P < 0.001). Furthermore, a 20-fold increase of IL-6 was observed within the first 5 h (from 159 +/- 123 to 3,554 +/- 394 pg/ml; P < 0.001), and a significant decline to 2,154 +/- 216 pg/ml (P < 0.01) was seen thereafter. Finally, TNF-alpha increased from 1.4 +/- 0.6 to 2.5 +/- 0.5 pg/ml (P < 0.05) in hour 2 and remained stable thereafter. Local administration of insulin exerted a stimulatory effect on the inflammatory response of IL-6. In conclusion, SAT exerts a highly reproducible and consistent proinflammatory cytokine response after minimally invasive trauma caused by the insertion of a catheter in humans.  相似文献   

16.
Aerts JM  Oste M  Bols PE 《Theriogenology》2005,64(4):947-957
In response to the increasing research into primordial and preantral follicular dynamics, a device for transvaginal, ultrasound-guided biopsy collection of the bovine ovary was developed and tested. The new device is based upon a commercially available Ovum Pick-up instrument and consists of a modified needle guidance system, which has been equipped with a trocar needle and caries a 60 cm long true-cut biopsy needle. Biopsies are captured in a 20mm long and 2mm wide specimen notch. In the present experiment, 10 cows were subjected to a twice weekly biopsy regime over a four-week period. A total of 208 attempts at biopsy collection were made, and 141 tissue samples collected (success rate of 68%). Through histological and immunological analyses, these tissue samples have been shown to contain primordial and preantral follicles. At the end of the trial period, several of the donor cows were slaughtered at timed intervals, and the ovaries were harvested for assessment of the damage inflicted by the repeated biopsy procedure. Post mortem ovaries were inspected macroscopically and examined by conventional histological staining. In ovaries retrieved 2 days after the last biopsy session, blood clots were macroscopically apparent throughout the ovaries. Histological examination showed increased infiltration of red blood cells in the ovarian stroma. Analysis from ovaries collected at subsequent slaughter points revealed reduced infiltration of blood, and clear indications of resumed antral follicle development were apparent towards the end of the first month after the trial period. We conclude that the biopsy sampling technique is a repeatable procedure which could serve as a renewable source of primordial and preantral follicles for culture, and as an in vitro model for the study of preantral follicular dynamics.  相似文献   

17.
The structural behaviour of the human heel pad has been studied extensively due to its ability to absorb shock, protect against excessive local stress, and reduce plantar pressures. However, the material properties of the tissue have not been adequately measured. These must be known in order to perform a finite element analysis of the effect of factors such as foot geometry and shoe/surface construction on heel pad function. Therefore, the purposes of this study were to (a) measure the viscoelastic behaviour of the fat pad in compression, and (b) to determine an appropriate constitutive equation to model the tissue. A series of unconfined compression tests were performed on 8 mm diameter cylinders of fat pad tissue, consisting of quasi-static, 175, 350 mm/s and stress-relaxation tests to 50% deformation. The tissue exhibited nonlinear, viscoelastic behaviour. No significant difference was found in the quasi-static behaviour between samples from different locations and orientations in the heel. The stress-relaxation tests were used to determine the time constant (τ1=0.5 s), the 175 mm/s test to determine the relaxation coefficient (g1=28), and the 350 mm/s compression test to determine the material constants (C100=C010=0.01, C200=C020=0.1 Pa) of a single-phase, hyperelastic, linear viscoelastic strain energy function (r2=0.98).  相似文献   

18.
PurposeTo investigate the efficacy of a newly-developed laser-heated core biopsy needle in the thermal ablation of biopsy tract to reduce hemorrhage after biopsy using in vivo rabbit’s liver model.Materials and methodsFive male New Zealand White rabbits weighed between 1.5 and 4.0 kg were anesthetized and their livers were exposed. 18 liver biopsies were performed under control group (without tract ablation, n = 9) and study group (with tract ablation, n = 9) settings. The needle insertion depth (~3 cm) and rate of retraction (~3 mm/s) were fixed in all the experiments. For tract ablation, three different needle temperatures (100, 120 and 150 °C) were compared. The blood loss at each biopsy site was measured by weighing the gauze pads before and after blood absorption. The rabbits were euthanized immediately and the liver specimens were stained with hematoxylin-eosin (H&E) for further histopathological examination (HPE).ResultsThe average blood loss in the study group was reduced significantly (p < 0.05) compared to the control group. The highest percentage of bleeding reduction was observed at the needle temperature of 150 °C (93.8%), followed by 120 °C (85.8%) and 100 °C (84.2%). The HPE results show that the laser-heated core biopsy needle was able to cause lateral coagulative necrosis up to 14 mm diameter along the ablation tract.ConclusionThe laser-heated core biopsy needle reduced hemorrhage up to 93.8% and induced homogenous coagulative necrosis along the ablation tract in the rabbits’ livers. This could potentially reduce the risk of tumor seeding in clinical settings.  相似文献   

19.
Expanded bed adsorption (EBA) is an efficient protein purification process reducing time and steps of downstream processing (DSP) since nonclarified culture media can be processed directly without prior treatments such as filtration or centrifugation. However, cells and debris can interact with the adsorbent and affect bed stability as well as purification performance. To optimize EBA operating conditions these biomass/adsorbent interactions have to be understood and characterized. The adsorption of Human Embryonic Kidney cells (HEK 293) on unprimed and nickel-primed metal affinity adsorbent was studied in a closed loop EBA setup. With the unprimed adsorbent, the overall level of interaction observed was nonsignificant. With the nickel-primed adsorbent and an initial cell concentration ranging from 0.08 x 10(6) to 0.2 x 10(6) cells/mL, biomass/adsorbent interaction was found to be moderate and the adsorption apparent first-order kinetic rate constant was determined to be k = 0.009 to 0.011 min(-1).  相似文献   

20.
Lack of physical activity results in muscle atrophy and bone loss, which can be counteracted by mechanical loading. Similar molecular signaling pathways are involved in the adaptation of muscle and bone mass to mechanical loading. Whether anabolic and metabolic factors regulating muscle mass, i.e., insulin-like growth factor-I isoforms (IGF-I Ea), mechano growth factor (MGF), myostatin, vascular endothelial growth factor (VEGF), or hepatocyte growth factor (HGF), are also produced by osteocytes in bone in response to mechanical loading is largely unknown. Therefore, we investigated whether mechanical loading by pulsating fluid flow (PFF) modulates the mRNA and/or protein levels of muscle anabolic and metabolic factors in MLO-Y4 osteocytes. Unloaded MLO-Y4 osteocytes expressed mRNA of VEGF, HGF, IGF-I Ea, and MGF, but not myostatin. PFF increased mRNA levels of IGF-I Ea (2.1-fold) and MGF (2.0-fold) at a peak shear stress rate of 44Pa/s, but not at 22Pa/s. PFF at 22 Pa/s increased VEGF mRNA levels (1.8- to 2.5-fold) and VEGF protein release (2.0- to 2.9-fold). Inhibition of nitric oxide production decreased (2.0-fold) PFF-induced VEGF protein release. PFF at 22 Pa/s decreased HGF mRNA levels (1.5-fold) but increased HGF protein release (2.3-fold). PFF-induced HGF protein release was nitric oxide dependent. Our data show that mechanically loaded MLO-Y4 osteocytes differentially express anabolic and metabolic factors involved in the adaptive response of muscle to mechanical loading (i.e., IGF-I Ea, MGF, VEGF, and HGF). Similarly to muscle fibers, mechanical loading enhanced expression levels of these growth factors in MLO-Y4 osteocytes. Although in MLO-Y4 osteocytes expression levels of IGF-I Ea and MGF of myostatin were very low or absent, it is known that the activity of osteoblasts and osteoclasts is strongly affected by them. The abundant expression levels of these factors in muscle cells, in combination with low expression in MLO-Y4 osteocytes, provide a possibility that growth factors expressed in muscle could affect signaling in bone cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号