首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Oncogenic mutations are powerful predictive biomarkers for molecularly targeted cancer therapies. For mutation detection patients have to undergo invasive tumor biopsies. Alternatively, archival samples are used which may no longer reflect the actual tumor status. Circulating tumor cells (CTC) could serve as an alternative platform to detect somatic mutations in cancer patients. We sought to develop a sensitive and specific assay to detect mutations in the EGFR gene in CTC from lung cancer patients.

Methods

We developed a novel assay based on real-time polymerase chain reaction (PCR) and melting curve analysis to detect activating EGFR mutations in blood cell fractions enriched in CTC. Non-small-cell lung cancer (NSCLC) was chosen as disease model with reportedly very low CTC counts. The assay was prospectively validated in samples from patients with EGFR-mutant and EGFR-wild type NSCLC treated within a randomized clinical trial. Sequential analyses were conducted to monitor CTC signals during therapy and correlate mutation detection in CTC with treatment outcome.

Results

Assay sensitivity was optimized to enable detection of a single EGFR-mutant CTC/mL peripheral blood. CTC were detected in pretreatment blood samples from all 8 EGFR-mutant lung cancer patients studied. Loss of EGFR-mutant CTC signals correlated with treatment response, and its reoccurrence preceded relapse.

Conclusions

Despite low abundance of CTC in NSCLC oncogenic mutations can be reproducibly detected by applying an unbiased CTC enrichment strategy and highly sensitive PCR and melting curve analysis. This strategy may enable non-invasive, specific biomarker diagnostics and monitoring in patients undergoing targeted cancer therapies.  相似文献   

2.
Targeted anticancer therapies rely on the identification of patient subgroups most likely to respond to treatment. Predictive biomarkers play a key role in patient selection, while diagnostic and prognostic biomarkers expand our understanding of tumor biology, suggest treatment combinations, and facilitate discovery of novel drug targets. We have developed a high-throughput microfluidics method for mutation detection (MUT-MAP, mutation multi-analyte panel) based on TaqMan or allele-specific PCR (AS-PCR) assays. We analyzed a set of 71 mutations across six genes of therapeutic interest. The six-gene mutation panel was designed to detect the most common mutations in the EGFR, KRAS, PIK3CA, NRAS, BRAF, and AKT1 oncogenes. The DNA was preamplified using custom-designed primer sets before the TaqMan/AS-PCR assays were carried out using the Biomark microfluidics system (Fluidigm; South San Francisco, CA). A cross-reactivity analysis enabled the generation of a robust automated mutation-calling algorithm which was then validated in a series of 51 cell lines and 33 FFPE clinical samples. All detected mutations were confirmed by other means. Sample input titrations confirmed the assay sensitivity with as little as 2 ng gDNA, and demonstrated excellent inter- and intra-chip reproducibility. Parallel analysis of 92 clinical trial samples was carried out using 2–100 ng genomic DNA (gDNA), allowing the simultaneous detection of multiple mutations. DNA prepared from both fresh frozen and formalin-fixed, paraffin-embedded (FFPE) samples were used, and the analysis was routinely completed in 2–3 days: traditional assays require 0.5–1 µg high-quality DNA, and take significantly longer to analyze. This assay can detect a wide range of mutations in therapeutically relevant genes from very small amounts of sample DNA. As such, the mutation assay developed is a valuable tool for high-throughput biomarker discovery and validation in personalized medicine and cancer drug development.  相似文献   

3.
Mutations in epithelial growth factor receptor (EGFR), as well as in the EGFR downstream target KRAS are frequently observed in non-small cell lung cancer (NSCLC). Chronic obstructive pulmonary disease (COPD), an independent risk factor for developing NSCLC, is associated with an increased activation of EGFR. In this study we determined presence of EGFR and KRAS hotspot mutations in 325 consecutive NSCLC patients subjected to EGFR and KRAS mutation analysis in the diagnostic setting and for whom the pulmonary function has been determined at time of NSCLC diagnosis. Information about age at diagnosis, sex, smoking status, forced vital capacity (FVC) and forced expiratory volume in 1 sec (FEV1) was collected. Chronic obstructive pulmonary disease(COPD) was defined according to 2013 GOLD criteria. Chi-Square, student t-test and multivariate logistic regression were used to analyze the data. A total of 325 NSCLC patients were included, 193 with COPD and 132 without COPD. COPD was not associated with presence of KRAS hotspot mutations, while EGFR mutations were significantly higher in non-COPD NSCLC patients. Both female gender (HR 2.61; 95% CI: 1.56–4.39; p<0.001) and smoking (HR 4.10; 95% CI: 1.14–14.79; p = 0.03) were associated with KRAS mutational status. In contrast, only smoking (HR 0.11; 95% CI: 0.04–0.32; p<0.001) was inversely associated with EGFR mutational status. Smoking related G>T and G>C transversions were significantly more frequent in females (86.2%) than in males (61.5%) (p = 0.008). The exon 19del mutation was more frequent in non-smokers (90%) compared to current or past smokers (36.8%). In conclusion, KRAS mutations are more common in females and smokers, but are not associated with COPD-status in NSCLC patients. EGFR mutations are more common in non-smoking NSCLC patients.  相似文献   

4.
In the era of targeted therapy, mutation profiling of cancer is a crucial aspect of making therapeutic decisions. To characterize cancer at a molecular level, the use of formalin-fixed paraffin-embedded tissue is important. We tested the Ion AmpliSeq Cancer Hotspot Panel v2 and nCounter Copy Number Variation Assay in 89 formalin-fixed paraffin-embedded gastric cancer samples to determine whether they are applicable in archival clinical samples for personalized targeted therapies. We validated the results with Sanger sequencing, real-time quantitative PCR, fluorescence in situ hybridization and immunohistochemistry. Frequently detected somatic mutations included TP53 (28.17%), APC (10.1%), PIK3CA (5.6%), KRAS (4.5%), SMO (3.4%), STK11 (3.4%), CDKN2A (3.4%) and SMAD4 (3.4%). Amplifications of HER2, CCNE1, MYC, KRAS and EGFR genes were observed in 8 (8.9%), 4 (4.5%), 2 (2.2%), 1 (1.1%) and 1 (1.1%) cases, respectively. In the cases with amplification, fluorescence in situ hybridization for HER2 verified gene amplification and immunohistochemistry for HER2, EGFR and CCNE1 verified the overexpression of proteins in tumor cells. In conclusion, we successfully performed semiconductor-based sequencing and nCounter copy number variation analyses in formalin-fixed paraffin-embedded gastric cancer samples. High-throughput screening in archival clinical samples enables faster, more accurate and cost-effective detection of hotspot mutations or amplification in genes.  相似文献   

5.
Somatic mutations in KRAS, NRAS, and BRAF genes are related to resistance to anti-EGFR antibodies in colorectal cancer. We have established an extended RAS and BRAF mutation assay using a next-generation sequencer to analyze these mutations. Multiplexed deep sequencing was performed to detect somatic mutations within KRAS, NRAS, and BRAF, including minor mutated components. We first validated the technical performance of the multiplexed deep sequencing using 10 normal DNA and 20 formalin-fixed, paraffin-embedded (FFPE) tumor samples. To demonstrate the potential clinical utility of our assay, we profiled 100 FFPE tumor samples and 15 plasma samples obtained from colorectal cancer patients. We used a variant calling approach based on a Poisson distribution. The distribution of the mutation-positive population was hypothesized to follow a Poisson distribution, and a mutation-positive status was defined as a value greater than the significance level of the error rate (α = 2 x 10-5). The cut-off value was determined to be the average error rate plus 7 standard deviations. Mutation analysis of 100 clinical FFPE tumor specimens was performed without any invalid cases. Mutations were detected at a frequency of 59% (59/100). KRAS mutation concordance between this assay and Scorpion-ARMS was 92% (92/100). DNA obtained from 15 plasma samples was also analyzed. KRAS and BRAF mutations were identified in both the plasma and tissue samples of 6 patients. The genetic screening assay using next-generation sequencer was validated for the detection of clinically relevant RAS and BRAF mutations using FFPE and liquid samples.  相似文献   

6.

Background

Epithelial ovarian cancer is the most lethal of all gynecologic malignancies, and high grade serous ovarian cancer (HGSC) is the most common subtype of ovarian cancer. The objective of this study was to determine the frequency and types of point somatic mutations in HGSC using a mutation detection protocol called OncoMap that employs mass spectrometric-based genotyping technology.

Methodology/Principal Findings

The Center for Cancer Genome Discovery (CCGD) Program at the Dana-Farber Cancer Institute (DFCI) has adapted a high-throughput genotyping platform to determine the mutation status of a large panel of known cancer genes. The mutation detection protocol, termed OncoMap has been expanded to detect more than 1000 mutations in 112 oncogenes in formalin-fixed paraffin-embedded (FFPE) tissue samples. We performed OncoMap on a set of 203 FFPE advanced staged HGSC specimens. We isolated genomic DNA from these samples, and after a battery of quality assurance tests, ran each of these samples on the OncoMap v3 platform. 56% (113/203) tumor samples harbored candidate mutations. Sixty-five samples had single mutations (32%) while the remaining samples had ≥2 mutations (24%). 196 candidate mutation calls were made in 50 genes. The most common somatic oncogene mutations were found in EGFR, KRAS, PDGRFα, KIT, and PIK3CA. Other mutations found in additional genes were found at lower frequencies (<3%).

Conclusions/Significance

Sequenom analysis using OncoMap on DNA extracted from FFPE ovarian cancer samples is feasible and leads to the detection of potentially druggable mutations. Screening HGSC for somatic mutations in oncogenes may lead to additional therapies for this patient population.  相似文献   

7.
Measuring total cell-free DNA (cfDNA) or cancer-specific mutations herein has presented as new tools in aiding the treatment of cancer patients. Studies show that total cfDNA bears prognostic value in metastatic colorectal cancer (mCRC) and that measuring cancer-specific mutations could supplement biopsies. However, limited information is available on the performance of different methods. Blood samples from 28 patients with mCRC and known KRAS mutation status were included. cfDNA was extracted and quantified with droplet digital polymerase chain reaction (ddPCR) measuring Beta-2 Microglobulin. KRAS mutation detection was performed using ddPCR (Bio-Rad) and next-generation sequencing (NGS, Ion Torrent PGM). Comparing KRAS mutation status in plasma and tissue revealed concordance rates of 79% and 89% for NGS and ddPCR. Strong correlation between the methods was observed. Most KRAS mutations were also detectable in 10-fold diluted samples using the ddPCR. We find that for detection of KRAS mutations in ctDNA ddPCR was superior to NGS both in analysis success rate and concordance to tissue. We further present results indicating that lower amount of plasma may be used for detection of KRAS mutations in mCRC.  相似文献   

8.
Anti-epidermal growth factor receptor (EGFR) therapy has been tried in triple negative breast cancer (TNBC) patients without evaluation of molecular and clinical predictors in several randomized clinical studies. Only fewer than 20% of metastatic TNBCs showed response to anti-EGFR therapy. In order to increase the overall response rate, first step would be to classify TNBC into good or poor responders according to oncogenic mutation profiles. This study provides the molecular characteristics of TNBCs including EGFR gene copy number changes and mutation status of EGFR and KRAS gene in Korean TNBC patients. Mutation analysis for EGFR, KRAS, BRAF and TP53 from a total of 105 TNBC tissue samples was performed by direct sequencing, peptide nucleic acid-mediated PCR clamping method and real-time PCR. Copy number changes of EGFR gene were evaluated using multiplex ligation-dependent probe amplification. Out of all 105 TNBCs, 15.2% (16/105) showed EGFR copy number changes. Among them, increased or decreased EGFR copy number was detected in 13 (5 single copy gain, 2 amplification and 4 high-copy number amplification) and 3 cases (3 hemizygous deletion), respectively. The mutation frequencies of KRAS, EGFR and TP53 gene were 1.9% (G12V and G12D), 1.0% (exon 19 del) and 31.4%, respectively. There was no BRAF V600E mutation found. Future studies are needed to evaluate the clinical outcomes of TNBC patients who undergo anti-EGFR therapy according to the genetic status of EGFR.  相似文献   

9.
Somatic activating GNAS mutations cause McCune-Albright syndrome (MAS). Owing to low mutation abundance, mutant-specific enrichment procedures, such as the peptide nucleic acid (PNA) method, are required to detect mutations in peripheral blood. Next generation sequencing (NGS) can analyze millions of PCR amplicons independently, thus it is expected to detect low-abundance GNAS mutations quantitatively. In the present study, we aimed to develop an NGS-based method to detect low-abundance somatic GNAS mutations. PCR amplicons encompassing exons 8 and 9 of GNAS, in which most activating mutations occur, were sequenced on the MiSeq instrument. As expected, our NGS-based method could sequence the GNAS locus with very high read depth (approximately 100,000) and low error rate. A serial dilution study with use of cloned mutant and wildtype DNA samples showed a linear correlation between dilution and measured mutation abundance, indicating the reliability of quantification of the mutation. Using the serially diluted samples, the detection limits of three mutation detection methods (the PNA method, NGS, and combinatory use of PNA and NGS [PNA-NGS]) were determined. The lowest detectable mutation abundance was 1% for the PNA method, 0.03% for NGS and 0.01% for PNA-NGS. Finally, we analyzed 16 MAS patient-derived leukocytic DNA samples with the three methods, and compared the mutation detection rate of them. Mutation detection rate of the PNA method, NGS and PNA-NGS in 16 patient-derived peripheral blood samples were 56%, 63% and 75%, respectively. In conclusion, NGS can detect somatic activating GNAS mutations quantitatively and sensitively from peripheral blood samples. At present, the PNA-NGS method is likely the most sensitive method to detect low-abundance GNAS mutation.  相似文献   

10.

Background

Patients with KRAS mutations do not respond to epidermal growth factor receptor (EGFR) inhibitors and fail to benefit from adjuvant chemotherapy. Mutation analysis of KRAS is needed before starting treatment with monoclonal anti-EGFR antibodies in patients with metastatic colorectal cancer (mCRC). The objective of this study is to develop a multiplex allele-specific PCR (MAS-PCR) assay to detect KRAS mutations.

Methods

We developed a single-tube MAS-PCR assay for the detection of seven KRAS mutations (G12D, G12A, G12R, G12C, G12S, G12V, and G13D). We performed MAS-PCR assay analysis for KRAS on DNA isolated from 270 formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissues. Sequences of all 270 samples were determined by pyrosequencing. Seven known point-mutation DNA samples diluted with wild-type DNA were assayed to determine the limitation of detection and reproducibility of the MAS-PCR assay.

Results

Overall, the results of MAS-PCR assay were in good concordance with pyrosequencing, and only seven discordant samples were found. The MAS-PCR assay reproducibly detected 1 to 2% mutant alleles. The most common mutations were G13D in codon 13 (49.17%), G12D (25.83%) and G12V (12.50%) in codon 12.

Conclusion

The MAS-PCR assay provides a rapid, cost-effective, and reliable diagnostic tool for accurate detection of KRAS mutations in routine FFPE colorectal cancer tissues.  相似文献   

11.
Activating mutations in the EGFR gene influence cell proliferation, angiogenesis, and increases metastatic ability of non-small cell lung cancer (NSCLC) cells; they have a significant impact on the choice of medical therapy of NSCLC. The use of targeted therapy with tyrosine kinase inhibitors requires performance of appropriate genetic tests in NSCLC patients. The aim of this study was to develop a real-time PCRbased diagnostic test-system for rapid and cost-effective analysis of EGFR mutations in paraffin blocks and plasma and to perform comparative estimation of diagnostic characteristics features of real-time wild type blocking PCR and digital PCR. The study included 156 patients with different degrees of lung adenocarcinoma differentiation. A simple and efficient real-time PCR-based method for detection of L858R activating mutation and del19 deletion in the EGFR gene in DNA isolated from paraffin blocks or blood has been developed. The test system for EGFR mutations has been validated using 411 samples of paraffin blocks. The proposed system demonstrated high efficiency for DNA testing from paraffin blocks: a concordance with results of testing by means a Therascreen® EGFR RGQ PCR Kit (Qiagen, Germany) was 100%. Applicability of this test system has been also demonstrated for detection of mutations in plasma.  相似文献   

12.
Treatment of EGFR-mutant non-small cell lung cancer patients with the tyrosine kinase inhibitors erlotinib or gefitinib results in high response rates and prolonged progression-free survival. Despite the development of sensitive mutation detection approaches, a thorough validation of these in a clinical setting has so far been lacking. We performed, in a clinical setting, a systematic validation of dideoxy ‘Sanger’ sequencing and pyrosequencing against massively parallel sequencing as one of the most sensitive mutation detection technologies available. Mutational annotation of clinical lung tumor samples revealed that of all patients with a confirmed response to EGFR inhibition, only massively parallel sequencing detected all relevant mutations. By contrast, dideoxy sequencing missed four responders and pyrosequencing missed two responders, indicating a dramatic lack of sensitivity of dideoxy sequencing, which is widely applied for this purpose. Furthermore, precise quantification of mutant alleles revealed a low correlation (r2 = 0.27) of histopathological estimates of tumor content and frequency of mutant alleles, thereby questioning the use of histopathology for stratification of specimens for individual analytical procedures. Our results suggest that enhanced analytical sensitivity is critically required to correctly identify patients responding to EGFR inhibition. More broadly, our results emphasize the need for thorough evaluation of all mutation detection approaches against massively parallel sequencing as a prerequisite for any clinical implementation.  相似文献   

13.

Introduction

Targeting activating oncogenic driver mutations in lung adenocarcinoma has led to prolonged survival in patients harboring these specific genetic alterations. The prognostic value of these mutations has not yet been elucidated. The prevalence of recently uncovered non-coding somatic mutation in promoter region of TERT gene is also to be validated in lung cancer. The purpose of this study is to show the prevalence, association with clinicalpathological features and prognostic value of these factors.

Methods

In a cohort of patients with non-small cell lung cancer (NSCLC) (n = 174, including 107 lung adenocarcinoma and 67 lung squamous cell carcinoma), EGFR, KRAS, HER2 and BRAF were directly sequenced in lung adeoncarcinoma, ALK fusions were screened using FISH (Fluorescence in situ Hybridization).TERT promoter region was sequenced in all of the 174 NSCLC samples. Associations of these somatic mutations and clinicopathological features, as well as prognostic factors were evaluated.

Results

EGFR, KRAS, HER2, BRAF mutation and ALK fusion were mutated in 25.2%, 6.5%, 1.9%, 0.9% and 3.7% of lung adenocarcinomas. No TERT promoter mutation was validated by reverse-sided sequencing. Lung adenocarcinoma with EGFR and KRAS mutations showed no significant difference in Disease-free Survival (DFS) and Overall Survival (OS). Cox Multi-variate analysis revealed that only N stage and HER2 mutation were independent predictors of worse overall survival (HR = 1.653, 95% CI 1.219–2.241, P = 0.001; HR = 12.344, 95% CI 2.615–58.275, P = 0.002).

Conclusions

We have further confirmed that TERT promoter mutation may only exist in a very small fraction of NSCLCs. These results indicate that dividing lung adenocarcinoma into molecular subtypes according to oncogenic driver mutations doesn''t predict survival difference of the disease.  相似文献   

14.
The inevitable switch from standard molecular methods to next-generation sequencing for the molecular profiling of tumors is challenging for most diagnostic laboratories. However, fixed validation criteria for diagnostic accreditation are not in place because of the great variability in methods and aims. Here, we describe the validation of a custom panel of hotspots in 24 genes for the detection of somatic mutations in non-small cell lung carcinoma, colorectal carcinoma and malignant melanoma starting from FFPE sections, using 14, 36 and 5 cases, respectively. The targeted hotspots were selected for their present or future clinical relevance in solid tumor types. The target regions were enriched with the TruSeq approach starting from limited amounts of DNA. Cost effective sequencing of 12 pooled libraries was done using a micro flow cell on the MiSeq and subsequent data analysis with MiSeqReporter and VariantStudio. The entire workflow was diagnostically validated showing a robust performance with maximal sensitivity and specificity using as thresholds a variant allele frequency >5% and a minimal amplicon coverage of 300. We implemented this method through the analysis of 150 routine diagnostic samples and identified clinically relevant mutations in 16 genes including KRAS (32%), TP53 (32%), BRAF (12%), APC (11%), EGFR (8%) and NRAS (5%). Importantly, the highest success rate was obtained when using also the low quality DNA samples. In conclusion, we provide a workflow for the validation of targeted NGS by a custom-designed pan-solid tumor panel in a molecular diagnostic lab and demonstrate its robustness in a clinical setting.  相似文献   

15.
The high degree of intra-tumor heterogeneity has meant that it is important to develop sensitive and selective assays to detect low-abundance KRAS mutations in metastatic colorectal carcinoma (mCRC) patients. As a major potential source of tumor DNA in the aforementioned genotyping assays, it was necessary to conduct an analysis on both the quality and quantity of DNA extracted from formalin-fixed paraffin-embedded (FFPE). Therefore, four commercial FFPE DNA extraction kits were initially compared with respect to their ability to facilitate extraction of amplifiable DNA. The results showed that TrimGen kits showed the greatest performance in relation to the quality and quantity of extracted FFPE DNA solutions. Using DNA extracted by TrimGen kits as a template for tumor genotyping, a real-time wild-type blocking PCR (WTB-PCR) assay was subsequently developed to detect the aforementioned KRAS mutations in mCRC patients. The results showed that WTB-PCR facilitated the detection of mutated alleles at a ratio of 1:10,000 (i.e. 0.01%) wild-type alleles. When the assay was subsequently used to test 49 mCRC patients, the results showed that the mutation detection levels of the WTB-PCR assay (61.8%; 30/49) were significantly higher than that of traditional PCR (38.8%; 19/49). Following the use of the real-time WTB-PCR assay, the ΔC q method was used to quantitatively analyze the mutation levels associated with KRAS in each FFPE sample. The results showed that the mutant levels ranged from 53.74 to 0.12% in the patients analyzed. In conclusion, the current real-time WTB-PCR is a rapid, simple, and low-cost method that permits the detection of trace amounts of the mutated KRAS gene.  相似文献   

16.
Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.  相似文献   

17.
Molecularly targeted agents for cancer therapy are recognized as being effective and are gaining in popularity. However, the efficacy of the agents depends on the status of the targeted molecule such as the number of molecules expressed, activity, and mutation. Therefore, the use of companion diagnostics for investigating the status of the targeted molecule prior to therapy is highly important. We developed a simple and cost-effective somatic mutation detection method called the fluorescence resonance energy transfer-based preferential homoduplex formation assay (FRET–PHFA). By using double-stranded labeled DNA and fluorescence measurement with thermal control, this method provides higher reproducibility, easier handling, less risk for contamination, shorter assay time (only ∼15 min), and less cost compared with conventional PHFA. Here we report the evaluation of FRET–PHFA on the detection of multiallelic KRAS mutations in codons 12 and 13 compared with the TheraScreen clinical diagnostics kit. We found that FRET–PHFA detected KRAS mutations (1.25–50%) from all cell line DNA titration samples.  相似文献   

18.
Over the past three decades, mortality from lung cancer has sharply and continuously increased in China, ascending to the first cause of death among all types of cancer. The ability to identify the actual sequence of gene mutations may help doctors determine which mutations lead to precancerous lesions and which produce invasive carcinomas, especially using next-generation sequencing (NGS) technology. In this study, we analyzed the latest lung cancer data in the COSMIC database, in order to find genomic “hotspots” that are frequently mutated in human lung cancer genomes. The results revealed that the most frequently mutated lung cancer genes are EGFR, KRAS and TP53. In recent years, EGFR and KRAS lung cancer test kits have been utilized for detecting lung cancer patients, but they presented many disadvantages, as they proved to be of low sensitivity, labor-intensive and time-consuming. In this study, we constructed a more complete catalogue of lung cancer mutation events including 145 mutated genes. With the genes of this list it may be feasible to develop a NGS kit for lung cancer mutation detection.  相似文献   

19.

Background

It is important to select appropriate targeted therapies for subgroups of patients with lung adenocarcinoma who have specific gene alterations.

Methods

This prospective study was a multicenter project conducted in Taiwan for assessment of lung adenocarcinoma genetic tests. Five oncogenic drivers, including EGFR, KRAS, BRAF, HER2 and EML4-ALK fusion mutations, were tested. EGFR, KRAS, BRAF and HER2 mutations were assessed by MALDI-TOF MS (Cohort 1). EML4-ALK translocation was tested by Ventana method in EGFR-wild type patients (Cohort 2).

Results

From August 2011 to November 2013, a total of 1772 patients with lung adenocarcinoma were enrolled. In Cohort 1 analysis, EGFR, KRAS, HER2 and BRAF mutations were identified in 987 (55.7%), 93 (5.2%), 36 (2.0%) and 12 (0.7%) patients, respectively. Most of these mutations were mutually exclusive, except for co-mutations in seven patients (3 with EGFR + KRAS, 3 with EGFR + HER2 and 1 with KRAS + BRAF). In Cohort 2 analysis, 29 of 295 EGFR-wild type patients (9.8%) were positive for EML4-ALK translocation. EGFR mutations were more common in female patients and non-smokers and KRAS mutations were more common in male patients and smokers. Gender and smoking status were not correlated significantly with HER2, BRAF and EML4-ALK mutations. EML4-ALK translocation was more common in patients with younger age.

Conclusion

This was the first study in Taiwan to explore the incidence of five oncogenic drivers in patients with lung adenocarcinoma and the results could be valuable for physicians in consideration of targeted therapy and inclusion of clinical trials.  相似文献   

20.

Introduction

Circulating tumor cells (CTCs) could represent a non-invasive source of cancer cells used for longitudinal monitoring of the tumoral mutation status throughout the course of the disease. The aims of the present study were to investigate the detection of KRAS mutations in CTCs from patients with metastatic colorectal cancer (mCRC) and to compare their mutation status during treatment or disease progression with that of the corresponding primary tumors.

Materials and Methods

Identification of the seven most common KRAS mutations on codons 12 and 13 was performed by Peptide Nucleic Acid (PNA)-based qPCR method. The sensitivity of the assay was determined after isolation of KRAS mutant cancer cells spiked into healthy donors'' blood, using the CellSearch Epithelial Cell kit. Consistent detection of KRAS mutations was achieved in samples containing at least 10 tumor cells/7.5 ml of blood.

Results

The clinical utility of the assay was assessed in 48 blood samples drawn from 31 patients with mCRC. All patients had PIK3CA and BRAF wild type primary tumors and 14 KRAS mutant tumors. CTCs were detected in 65% of specimens obtained from 74% of patients. KRAS mutation analysis in CTC-enriched specimens showed that 45% and 16.7% of patients with mutant and wild type primary tumors, respectively, had detectable mutations in their CTCs. Assessing KRAS mutations in serial blood samples revealed that individual patient''s CTCs exhibited different mutational status of KRAS during treatment.

Conclusions

The current findings support the rationale for using the CTCs as a dynamic source of tumor cells which, by re-evaluating their KRAS mutation status, could predict, perhaps more accurately, the response of mCRC patients to targeted therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号