首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Genomic imprinting, an epigenetic form of gene regulation, determines the parent-dependent gene expression of marked or imprinted genes during gametogenesis and embryonic development. Imprinting involves differential allele DNA methylation in one sex cell lineage but not in the other. Egg and sperm each contributes the same DNA sequences to the zygote but epigenetic imprinting of a subset of genes determines that only one of the parent alleles are expressed relative to the parental origin. Primordial germ cells inherit biallelically imprinted genes from maternal and paternal origin and erase their imprints to start de novo monoallelic imprinting during gametogenesis. Epigenetic paternalization is an ongoing process in the mitotically-dividing spermatogonial stem cell and derived meiotically-dividing spermatocyte progeny to endow sperm with imprinted alleles. Epigenetic maternalization is restricted to the oocyte growth phase of folliculogenesis and is unrelated to DNA replication since it takes place while the oocyte remains in the diplotene stage of meiotic prophase I. Sperm and oocyte genomic methylation patterns depend on the activity of DNA methyltransferases (Dnmt). A variant of Dnmt1, designated Dnmt1o, accumulates in oocyte nuclei during the follicular growth phase. Dnmt3L, an isoform of Dnmt3a and Dnmt3b, but lacking enzymatic activity, interacts with Dnmt2a and Dnmt3b and is required for spermatogenesis. In the mouse early zygote, the male pronucleus is demethylated within 4 h of fertilization. Global demethylation takes place gradually up to the morula stage. In the blastocyst, de novo methylation is reestablished in the inner cell mass but not in the trophectoderm. Both the significance of genomic imprinting and the severe developmental defects caused by disrupted Dnmt activity, point to a need for a better understanding of the causes of low cloning efficiency by somatic nuclear transfer to enucleated ovulated oocyte.  相似文献   

5.
X inactivation is the process of a chromosome-wide silencing of the majority of genes on the X chromosome during early mammalian development. This process may be aberrant in cloned animals. Here we show that repressive modifications, such as methylation of DNA, and the presence of methylated histones, H3K9me2 and H3K27me3, exhibit distinct aberrance on the inactive X chromosome in live clones. In contrast, H3K4me3, an active gene marker, is obviously missing from the inactive X chromosome in all cattle studied. This suggests that the disappearance of active histone modifications (H3K4me3) seems to be more important for X inactivation than deposition of marks associated with heterochromatin (DNA methylation, H3K27me3 and H3K9me2). It also implies that even apparently normal clones may have subtle abnormalities in repressive, but not activating epigenetic modifications on the inactive X when they survive to term. We also found that the histone H3 methylations were enriched and co-localized at q21-31 of the active X chromosome, which may be associated with an abundance of LINE1 repeat elements.  相似文献   

6.
表观遗传学与人类疾病的研究进展   总被引:22,自引:0,他引:22  
张永彪  褚嘉祐 《遗传》2005,27(3):466-472
在过去的几年里,人们对表观遗传疾病的机理有了新的认识,这些疾病与染色质重塑、基因组印记、X染色体失活以及非编码RNA调控这4个表观遗传过程相关。这4个过程通过调节染色质结构,在染色体或基因簇水平上对基因表达进行调控;异常调控导致复杂的突变且表现为出生前后生长发育和神经功能的异常。对这些疾病的探讨为表观遗传机制的研究提供了很好的模型,进而有助于生物医学的研究。文章就表观遗传学和表观遗传疾病机制的研究进展做一综述。  相似文献   

7.
This review covers data on changing patterns of DNA methylation and the regulation of gene expression in mouse embryonic development. Global demethylation occurs from the eight-cell stage to the blastocyst stage in pre-implantation embryos, and global de novo methylation begins at implantation. We have used X-chromosome inactivation in female embryos as a model system to study specific CpG sites in the X-linked Pgk-1 and Gópd housekeeping genes and in the imprinted regulatory Xist gene to elucidate the role of methylation in the initiation and maintenance of differential gene activity. Methyl-ation of the X-linked housekeeping genes occurs very close in time to their inactivation, thus raising the question as to whether methylation could be causal to inactivation, as well as being involved in its maintenance. A methylation difference between sperm and eggs in the promoter region of the Xist gene, located at the X-chromosome inactivation centre, is correlated with imprinted preferential inactivation of the paternal X chromosome in extra-embryonic tissues. Based on our data, a picture of the inheritance of methylation imprints and speculation on the significance of the Xist imprint in development is presented. On a more general level, an hypothesis of evolution by “adaptive epige-netic/genetic inheritance” is considered. This proposes modification of germ line DNA in response to a change in environment and mutation at the site of modification (e.g., of methylated cytosine to thymine). Epigenetic inheritance could function to shift patterns of gene expression to buffer the evolving system against changes in environment. If the altered patterns of gene activity and inactivity persist, the modifications may become “fixed” as mutations; alternatively, previously silenced gene networks might be recruited into function, thus appearing as if they are “acquired characteristics.” An extension of this hypothesis is “foreign gene acquisition and sorting” (selection or silencing of gene function according to use). “Kidnapping” and sorting of foreign genes in this way could explain the observation that increased complexity in evolution is associated with more “junk” DNA. Adaptive epigenetic/genetic inheritance challenges the “central dogma” that information is unidirectional from the DNA to protein and the idea that Darwinian random mutation and selection are the sole mechanisms of evolution. © 1995 Wiley-Liss, Inc.  相似文献   

8.
9.
The completely embryonic stem (ES) cell-derived mice (ES mice) produced by tetraploid embryo complementation provide us with a rapid and powerful approach for functional genome analysis. However, inbred ES cell lines often fail to generate ES mice. The genome of mouse ES cells is extremely unstable during in vitro culture and passage, and the expression of the imprinted genes is most likely to be affected. Whether the ES mice retain or repair the abnormalities of the donor ES cells has still to be determined. Here we report that the inbred ES mice were efficiently produced with the inbred ES cell line (SCR012). The ES fetuses grew more slowly before day 17.5 after mating, but had an excessive growth from day 17.5 to birth. Five imprinted genes examined (H19, Igf2, Igf2r, Peg1, Peg3) were expressed abnormally in ES fetuses. Most remarkably, the expression of H19 was dramatically repressed in the ES fetuses through the embryo developmental stage, and this repression was associated with abnormal biallelic methylation of the H19 upstream region. The altered methylation pattern of H19 was further demonstrated to have arisen in the donor ES cells and persisted on in vivo differentiation to the fetal stage. These results indicate that the ES fetuses did retain the epigenetic alterations in imprinted genes from the donor ES cells.  相似文献   

10.
马馨  张胜  杨树宝  王晓晨  朱屹然  李子义  栾维民 《遗传》2014,36(10):959-964
基因组印记是指生殖细胞发生过程中双亲基因组发生差异表观修饰,使带有亲代印记的等位基因出现父源或母源单等位基因表达。在配子发生和早期胚胎发育过程中,基因组印记甲基化经历一个去除、重建和维持的复杂过程。这个过程中的任何环节被干扰都将导致印记紊乱,造成胚胎发生、胎盘形成及出生后发育异常。近来研究表明,早期胚胎发育过程中一些母源效应蛋白在印记基因表观调控中起重要作用。为了更好地理解这些母源因子对印记基因建立及维持的作用与机制,文章综述了DPPA3、ZFP57、TRIM28和DNMT1等母源效应因子近年来的相关研究进展,并探讨了这些因子对基因组印记的表观调控机制。  相似文献   

11.
12.
13.
Parental effects are a major source of phenotypic plasticity and may influence offspring phenotype in concert with environmental demands. Studies of “environmental epigenetics” suggest that (1) DNA methylation states are variable and that both demethylation and remethylation occur in post‐mitotic cells, and (2) that remodeling of DNA methylation can occur in response to environmentally driven intracellular signaling pathways. Studies of mother‐offspring interactions in rodents suggest that parental signals influence the DNA methylation, leading to stable changes in gene expression. If parental effects do indeed enhance the “match” between prevailing environmental demands and offspring phenotype, then the potential for variation in environmental conditions over time would suggest a mechanism that requires active maintenance across generations through parental signaling. We suggest that parental regulation of DNA methylation states is thus an ideal candidate mechanism for parental effects on phenotypic variation.  相似文献   

14.
15.
16.
In female mouse embryos, the paternal X chromosome (Xp) is preferentially inactivated during preimplantation development and trophoblast differentiation. This imprinted X-chromosome inactivation (XCI) is partly due to an activating imprint on the maternal X chromosome (Xm), which is set during oocyte growth. However, the nature of this imprint is unknown. DNA methylation is one candidate, and therefore we examined whether disruptions of the two de novo DNA methyltransferases in growing oocytes affect imprinted XCI. We found that accumulation of histone H3 lysine-27 trimethylation, a hallmark of XCI, occurs normally on the Xp, and not on the Xm, in female blastocysts developed from the mutant oocytes. Furthermore, the allelic expression patterns of X-linked genes including Xist and Tsix were unchanged in preimplantation embryos and also in the trophoblast. These results show that a maternal disruption of the DNA methyltransferases has no effect on imprinted XCI and argue that de novo DNA methylation is dispensable for Xm imprinting. This underscores the difference between imprinted XCI and autosomal imprinting.  相似文献   

17.
The mechanisms by which the placenta adapts to exogenous stimuli to create a stable and healthy environment for the growing fetus are not well known. Low oxygen tension influences placental function, and is associated with preeclampsia, a condition displaying altered development of placental trophoblast. We hypothesized that oxygen tension affects villous trophoblast by modulation of gene expression through DNA methylation. We used the Infinium HumanMethylation450 BeadChip array to compare the DNA methylation profile of primary cultures of human cytotrophoblasts and syncytiotrophoblasts under < 1%, 8% and 20% oxygen levels. We found no effect of oxygen tension on average DNA methylation for either cell phenotype, but a set of loci became hypermethylated in cytotrophoblasts exposed for 24 h to < 1% oxygen, as compared with those exposed to 8% or 20% oxygen. Hypermethylation with low oxygen tension was independently confirmed by bisulfite-pyrosequencing in a subset of functionally relevant genes including CD59, CFB, GRAM3 and ZNF217. Intriguingly, 70 out of the 147 CpGs that became hypermethylated in < 1% oxygen overlapped with CpG sites that became hypomethylated upon differentiation of cytotrophoblasts into syncytiotrophoblasts. Furthermore, the preponderance of altered sites was located at AP-1 binding sites. We suggest that AP-1 expression is triggered by hypoxia and interacts with DNA methyltransferases (DNMTs) to target methylation at specific sites in the genome, thus causing suppression of the associated genes that are responsible for differentiation of villous cytotrophoblast to syncytiotrophoblast.  相似文献   

18.
Organisms can change their physiological/behavioural traits to adapt and survive in changed environments. However, whether these acquired traits can be inherited across generations through non‐genetic alterations has been a topic of debate for over a century. Emerging evidence indicates that both ancestral and parental experiences, including nutrition, environmental toxins, nurturing behaviour, and social stress, can have powerful effects on the physiological, metabolic and cellular functions in an organism. In certain circumstances, these effects can be transmitted across several generations through epigenetic (i.e. non‐DNA sequence‐based rather than mutational) modifications. In this review, we summarize recent evidence on epigenetic inheritance from parental environment‐induced developmental and physiological alterations in nematodes, fruit flies, zebrafish, rodents, and humans. The epigenetic modifications demonstrated to be both susceptible to modulation by environmental cues and heritable, including DNA methylation, histone modification, and small non‐coding RNAs, are also summarized. We particularly focus on evidence that parental environment‐induced epigenetic alterations are transmitted through both the maternal and paternal germlines and exert sex‐specific effects. The thought‐provoking data presented here raise fundamental questions about the mechanisms responsible for these phenomena. In particular, the means that define the specificity of the response to parental experience in the gamete epigenome and that direct the establishment of the specific epigenetic change in the developing embryos, as well as in specific tissues in the descendants, remain obscure and require elucidation. More precise epigenetic assessment at both the genome‐wide level and single‐cell resolution as well as strategies for breeding at relatively sensitive periods of development and manipulation aimed at specific epigenetic modification are imperative for identifying parental environment‐induced epigenetic marks across generations. Considering their diverse epigenetic architectures, the conservation and prevalence of the mechanisms underlying epigenetic inheritance in non‐mammals require further investigation in mammals. Interpretation of the consequences arising from epigenetic inheritance on organisms and a better understanding of the underlying mechanisms will provide insight into how gene–environment interactions shape developmental processes and physiological functions, which in turn may have wide‐ranging implications for human health, and understanding biological adaptation and evolution.  相似文献   

19.
The DNA methyltransferase-like protein Dnmt3L is necessary for the establishment of genomic imprints in oogenesis and for normal spermatogenesis (Bourc'his et al., 2001; Hata et al., 2002). Also, a paternally imprinted gene, H19, loses DNA methylation in Dnmt3L-/- spermatogonia (Bourc'his and Bestor, 2004; Kaneda et al., 2004). To determine the reason for the impaired spermatogenesis in the Dnmt3L-/- testes, we have carried out a series of histological and molecular studies. We show here that Dnmt3L-/- germ cells were arrested and died around the early meiotic stage. A microarray-based gene expression-profiling analysis revealed that various gonad-specific and/or sex-chromosome-linked genes were downregulated in the Dnmt3L-/- testes. In contrast, expression of retrovirus-like intracisternal A-particle (IAP) sequences was upregulated; consistent with this observation, a specific IAP copy showed complete loss of DNA methylation. These findings indicate that Dnmt3L regulates germ cell-specific gene expression and IAP suppression, which are critical for male germ cell proliferation and meiosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号