首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcus enterotoxins and toxic shock syndrome toxin 1 are members of a family of exoproteins that are produced by staphylococci and bind specifically to MHC class II molecules. Upon binding to MHC class II molecules, these exoproteins are potent stimulators of T cell proliferation via interaction with specific TCR V-beta segments of both CD4+ and CD8+ T cells. These exoproteins also directly stimulate monocytes to secrete IL-1 and TNF-alpha. Furthermore, these exoproteins have a profound inhibitory effect on Ig production by PBMC. We examined the effects of Staphylococcus enterotoxin A (SEA) on proliferation and Ig production of highly purified human B cells. Our results demonstrated that the binding of SEA to MHC class II molecules on B cells does not alter their ability to proliferate in response to Staphylococcus aureus Cowan strain I (SAC) or to produce Ig in response to SAC plus rIL-2. In contrast, the anti-DR mAb L243 inhibited both B cell proliferation and Ig production. Unable to determine a direct effect of SEA on B cell function, we investigated whether the capacity of SEA to inhibit SAC-induced Ig production by PBMC was T cell-dependent. Our results demonstrated that in the presence of T cells, under appropriate conditions, SEA can either function as a nominal Ag for stimulation of B cell proliferation and Ig production or induce T cell-mediated suppression of Ig production. SEA-induced Ig production required T cell help, which was dependent on pretreatment of the T cells with irradiation or mitomycin C; Ig production was not induced by SEA in the absence of T cells or in the presence of untreated T cells. Furthermore, SEA inhibited Ig production in SAC-stimulated cultures of autologous B cells and untreated T cells; pretreatment of the T cells with irradiation or mitomycin C abrogated SEA-induced inhibition of Ig production. Thus, T cell suppression of SAC-induced Ig production was dependent on T cell proliferation. Similar results were observed with both SEA and toxic shock syndrome toxin 1.  相似文献   

2.
Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7+ satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration.  相似文献   

3.
A supernatant derived from the Th2 clone D10.G4.1 (D10 supernatant) stimulated high numbers of Ig-secreting cells when added to dextran-conjugated anti-delta-antibody (anti-delta-dextran)-activated B cells but stimulated only marginal Ag-specific responses when added to B cells cultured with TNP-Ficoll. When anti-IL-10 antibody was added to cultures containing D10 supernatant, IL-5, and TNP-Ficoll, there was a significant increase in the numbers of anti-TNP-antibody producing cells, suggesting that at least a part of the inhibitory activity of D10 supernatant is mediated by IL-10. Addition of rIL-10 inhibited both TNP-Ficoll- and anti-delta-dextran-mediated Ig secretion that was stimulated in the presence of IL-5 but had no suppressive effect on IL-2-stimulated responses, indicating that its inhibitory effect was selective for a specific mode of B cell activation. Addition of IL-10 did not, however, inhibit anti-delta-dextran-stimulated B cell proliferation. The IL-10-induced-inhibition of Ig secretion was not due to suppression of IFN-gamma production, because the addition of IFN-gamma did not reverse the inhibition, nor did the addition of anti-IFN-gamma mimic the IL-10-mediated inhibition. These data suggest that a composite of lymphokines secreted by Th cells may contain both inhibitory and stimulatory activities. Sorting out the conditions under which stimulation or inhibition is seen may reveal additional diversity in Ag-stimulated pathways of B cell activation.  相似文献   

4.
Immunomodulatory role of IL-4 on the secretion of Ig by human B cells   总被引:9,自引:0,他引:9  
The effect of IL-4 on the production of Ig by human B cells was examined. Highly purified B cells were stimulated with Staphylococcus aureus (SA) and IL-4 alone or in combination with various other cytokines and the supernatants assayed for Ig by isotype-specific ELISA. IL-4 (10 to 100 U/ml) did not support Ig secretion by SA-stimulated blood, spleen, or lymph node B cells, whereas IL-2 supported the production of all isotypes including IgE. Moreover, IL-4 suppressed the production of all isotypes of Ig by B cells stimulated with SA and IL-2 including IgG1, IgG2, and IgE. IL-4-mediated suppression was partially reversed by IFN-gamma or -alpha and low m.w. B cell growth factor. TNF-alpha and IL-6 did not reverse the IL-4-induced suppression of Ig production. The inhibitory action of IL-4 on Ig production appeared to depend on the polyclonal activator used to stimulate the B cells. Thus, Ig secretion by B cells activated by LPS and supported by IL-2 was not inhibited by IL-4. Whereas IL-4 alone supported minimal Ig production by LPS-activated B cells, it augmented production of all Ig isotypes in cultures stimulated with LPS and supported by IL-2. IFN-gamma further enhanced production of Ig in these cultures. When the effect of IL-4 on the responsiveness of B cells preactivated with SA and IL-2 was examined, it was found not to inhibit but rather to promote Ig production modestly. A direct effect of IL-4 on the terminal differentiation of B cells was demonstrated using B lymphoblastoid cell lines. IL-4 was able to enhance the Ig secreted by an IgA-secreting hybridoma, 219 and by SKW6-CL-4, an IL-6-responsive IgM-secreting EBV transformed B cell line. These results indicate that IL-4 exerts a number of immunoregulatory actions on human B cell differentiation. It interferes with the activation of B cells by SA and IL-2, but promotes the differentiation of preactivated B cells, B cell lines, and B cells activated by LPS without apparent isotype specificity.  相似文献   

5.
《Cytotherapy》2014,16(12):1679-1691
Background aimsMesenchymal stromal cells (MSCs) have immunomodulatory properties that are mediated by cell-to-cell interactions and paracrine effects through soluble factors, among which tryptophan (Trp) conversion into kynurenine (Kyn) through the enzymatic activity of indoleamine 2,3-dioxygenase has been proven to be of special relevance. However, the respective role of Trp depletion and/or Kyn accumulation on the inhibition of T-cell proliferation by MSCs remains unclear.MethodsThe effect of supplementation with increasing concentrations of Trp on the capacity of MSCs to inhibit T-lymphocyte proliferation in vitro was investigated.ResultsWe report that Trp supplementation impairs the capacity of adipose mesenchymal stromal cells (ASCs) to inhibit T-cell proliferation, despite the accumulation of very high concentrations of Kyn in the medium (>200 μmol/L). Moreover, Trp supplementation after 72 h of peripheral blood mononuclear cell:ASC co-culture, once the inhibitory effect of ASCs was established, reverted ASC inhibition and restored T-cell proliferation. Addition to stimulated lymphocytes of Kyn inhibited T proliferation in 3 of 10 peripheral blood mononuclear cell donors, but at different concentrations, suggesting that sensitivity of lymphocytes to Kyn might be donor-dependent.ConclusionsOur results confirm the relevance of Trp metabolism as a key mediator of the immunomodulatory properties of ASCs and clarify the respective roles of the Trp/Kyn balance.  相似文献   

6.
The affinity of MoAb CO 17-1A and expression of its antigenic target were studied on uninfected and mycoplasma-infected colorectal cancer cell lines SW 1116 and SW 948. Binding of 125I-labeled CO 17-1A to SW 1116 cells was quantified at 37 degrees C by determination of the affinity constant (Ka) and the number of antigenic receptor sites (r) per cell using Scatchard plots. When mycoplasma-free SW 1116 cells were used as targets, Ka was 0.92 +/- 0.06 x 10(8) M-1 and r = 1.32 +/- 0.14 x 10(6) at 37 degrees C. One batch of unspeciated, mycoplasma-infected SW 116 cells had reduced affinity and a decreased number of antigenic receptor sites per cell for 125I-labeled 17-1A, while another batch of infected SW 1116 cells had a 4- to 5-fold increase in r and diminished Ka for the antibody compared with uninfected cells. When unspeciated, mycoplasma-infected SW 948 cells were exposed to 125I-labeled 17-1A and the data subjected to Scatchard analysis, the affinity of the antibody deviated markedly from linearity and rendered analysis for Ka and r meaningless. These data indicate that mycoplasma infection can produce variable effects on the cellular expression of antigenic receptor sites and the affinity of antibody for its target, and emphasize the importance of using mycoplasma-free cell lines in studies of these parameters.  相似文献   

7.
The serum-free supernatant of a cloned murine T cell hybridoma supports the proliferation and maturation to Ig secretion of purified B cells (mu+ cells) from BALB/c nu/nu mice, but has no effect on the proliferation of nylon wool-selected BALB/c nu/+ splenic T cells. Although the supernatant activates B cells without co-stimulation, it synergizes with anti-mu for the proliferative response. The induction of B cell proliferation and maturation to Ig secretion is directly related to contamination of the hybridoma by Mycoplasma hyorhinis. Hybridoma cells freed of mycoplasma by detergent treatment fail to produce active supernatant, and reinfection of the treated cells reconstitutes the activity. Furthermore, deliberate infection of a mycoplasma-free unrelated T cell hybridoma, as well as the monocytic cell line P388D1, results in the production of supernatants with B cell proliferating activity. Mycoplasma organisms isolated from the supernatant induce B cell proliferation without subsequent maturation to Ig secretion. Gel filtration chromatography of the supernatant from mycoplasma-contaminated hybridoma cells yields two peaks of activity. The first peak, found at the exclusion limit of the gel, results in B cell proliferation without maturation and may be attributed to mycoplasma organisms. The second peak (average m.w. 90,000) results in B cell proliferation as well as differentiation to Ig secretion. A "lymphokine-like" soluble product released by Mycoplasma hyorhinis is most likely responsible for this B cell activation, because fractionation of the supernatant from deliberately contaminated P388D1 cells gives essentially the same results, and gel filtration of mycoplasma-free supernatants does not generate any active fractions. The possibility should be considered that mycoplasma-derived soluble products may be among the many factors controlling in vitro B cell growth and maturation.  相似文献   

8.
The current study investigated the immunomodulatory potential of ethyl acetate soluble supernatant of Lactobacillus casei (LC-EAS) in vitro. The effect of LC-EAS on nitric oxide release was analyzed in RAW 264.7 cells, wherein, an inhibition in nitric oxide production through suppression of inducible nitric oxide synthase mRNA expression was observed. Evaluation of LC-EAS on LPS-induced peripheral blood mononuclear cells showed a down-regulation in TNF-α and IL-6 genes and an upregulation of IL-10. An inhibition in the protein expression of NF-κB, ERK1/2 and STAT3 phosphorylation confirms the immunomodulatory potential of LC-EAS. The effect of LC-EAS on in vitro intestinal epithelial cells was investigated using HT-29 human colon adenocarcinoma cancer cells. LC-EAS exhibited an inhibition of NF-κB and ERK1/2 phosphorylation, whereas STAT3 phosphorylation was unregulated. To evaluate the downstream target of STAT3 upregulation, expression of the intestinal trefoil factor TFF3 which is a NF-κB regulator and STAT3 downstream target was studied. LC-EAS was observed to elevate TFF3 mRNA expression. Overall the study shows that the anti-inflammatory potential of LC-EAS is through inhibition of NF-κB in different cell types.  相似文献   

9.
Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.  相似文献   

10.
Idiotype-specific spleen cells from appropriately primed BALB/c mice cause a marked and irreversible suppression of the membrane and secreted forms of idiotype-positive immunoglobulin (Ig) of an antigen-specific B cell hybrid clone (2C3E1). The suppression of this BALB/c B cell line has been observed in vitro and in vivo, and appears to require intimate contact between effector spleen cells and target 2C3E1 cells. The observed suppression in the 2C3E1 cell line is due to an induced mutation or a selection of pre-existing mutants within the 2C3E1 cell population, because the resultant light and heavy chain-loss variants are phenotypically stable in vitro and in vivo in the absence of any further active suppression. Biochemical analysis of the 2C3E1 cells after this suppression indicates that all of the variants are negative for the production of idiotype-positive Ig. Heavy chain synthesis by the variants is almost totally eliminated, and light chain synthesis is decreased by 10 to 90%. Spleen cells from identically primed nude mice do not induce any alteration in the 2C3E1 cell line, suggesting that induction or selection of the heavy and light chain-loss mutants requires the presence of mature T lymphocytes. The generation of idiotype-negative 2C3E1 variants during the period of tumor growth in the spleen (but not elsewhere) may represent one mechanism by which this tumor escapes the host's immune recognition.  相似文献   

11.
The effect of conditioned medium from cultured mesenchymal stem cells (MSC-CM) on periodontal regeneration was evaluated. In vitro, MSC-CM stimulated migration and proliferation of dog MSCs (dMSCs) and dog periodontal ligament cells (dPDLCs). Cytokines such as insulin-like growth factor, vascular endothelial growth factor, transforming growth factor-β1, and hepatocyte growth factor were detected in MSC-CM. In vivo, one-wall critical-size, intrabony periodontal defects were surgically created in the mandible of dogs. Dogs with these defects were divided into three groups that received MSC-CM, PBS, or no implants. Absorbable atelo-collagen sponges (TERUPLUG®) were used as a scaffold material. Based on radiographic and histological observation 4 weeks after transplantation, the defect sites in the MSC-CM group displayed significantly greater alveolar bone and cementum regeneration than the other groups. These findings suggest that MSC-CM enhanced periodontal regeneration due to multiple cytokines contained in MSC-CM.  相似文献   

12.
Adipose tissue‐derived mesenchymal stem cells (AD‐MSCs) have been shown to be capable of differentiating into multiple cell type and exert immunomodulatory effects. Since the selection of ideal stem cell is apparently crucial for the outcome of experimental stem cell therapies, therefore, in this study we compared AD‐MSCs conditioned media (CM) from BALB/c, C57BL/6, and DBA mouse strains. No significant difference was found in the morphology, cell surface markers, in vitro differentiation and proliferation potentials of AD‐MSCs isolated from C57BL/6, BALB/c, and DBA mice. The immunological assays showed some variation among the strains in the cytokines, nitric oxide (NO), and indoleamine 2,3‐dioxygenase (IDO) production and immunomodulatory effects on splenocytes functions. Our results indicated a suppression of splenocytes proliferation in the presence of AD‐MSC CM from the three inbred mouse strains. However, BALB/c CM exerted a higher suppression of splenocytes proliferation. AD‐MSCs isolated from C57BL/6 and BALB/c mice produced higher levels of TGF‐β than those from DBA mice. Furthermore, IL‐17 and IDO production was higher in AD‐MSCs isolated from BALB/c mice. Our results indicated an increased production of TGF‐β, IL‐4, IL‐10, NO, and IDO by splenocytes in response to CM from BALB/c AD‐MSCs. In conclusion, our results showed that the immunomodulatory properties of mouse AD‐MSCs is strain‐dependent and this variation should be considered during selection of appropriate stem cell source for in vivo experiments and stem cell therapy strategies. J. Cell. Biochem. 114: 955–965, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
《Cytotherapy》2014,16(2):191-202
Background aimsMesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α–pretreated human bone marrow–derived MSCs on resting or activated T cells.MethodsMSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed.ResultsUnprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions.ConclusionsUnprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo.  相似文献   

14.
Mesenchymal stem cells (MSCs) are a group of multipotent cells with key properties of multi-lineage differentiation, expressing a set of relatively specific surface markers and unique immunomodulatory functions. IDO1, a catabolic enzyme of tryptophan, represents a critical molecule mediating immunomodulatory functions of MSCs. However, the signaling pathways involved in regulating these key properties still remain elusive. To investigate the involvement of Notch signaling as well as other potential signaling pathway(s) in regulating these critical properties of MSCs, we treated human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) with γ-secreatase inhibitor I (GSI-I), which inhibits both Notch signaling and ubiquitin-proteasome activities. It was shown that the GSI-I treatment resulted in apoptosis, reduced expression of surface markers CD73, CD90 and CD105, reduced osteogenic differentiation, and reduction of the hUC-MSCs-mediated suppression of Th1 lymphocyte proliferation and the IFN-γ-induced IDO1 expression. Through distinguishing the effects of GSI-I between Notch inhibition and proteasome inhibition, it was further observed that, whereas both Notch inhibition and proteasome inhibition were attributable to the reduced CD105 expression and osteogenic differentiation, but not to the induced apoptosis. However, Notch inhibition, but not proteasome inhibition, only contributed to the significant effect of GSI-I on Th1 proliferation probably through reducing IDO1 promoter activity. In conclusion, the Notch signaling may represent a very important cell signaling capable of regulating multiple critical properties, especially the immunomodulatory functions of MSCs.  相似文献   

15.
Mesenchymal stem cells (MSCs) play an important role as immune modulator through interaction with several immune cells, including macrophages. In this study, the immunomodulatory potency of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) was demonstrated in the in vivo middle cerebral artery occlusion (MCAo)-induced brain injury rat model and in vitro THP-1-derived macrophages model. At 24 h after induction of MCAo, hUC-MSCs was administered via tail vein as a single dose. Remarkably, hUC-MSCs could inhibit M1 polarization and promote M2 polarization of microglia in vivo after 14 days induction of MCAo. Compared with THP-1-derived macrophages which had been stimulated by lipopolysaccharide, the secretion of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interferon-γ inducible protein (IP-10), were significantly reduced in the presence of hUC-MSCs. Moreover, the secretion of anti-inflammatory cytokine, interleukin-10 (IL-10), was significantly increased after cocultured with hUC-MSCs. Prostaglandins E2 (PGE2), secreted by hUC-MSCs, is one of the crucial immunomodulatory factors and could be inhibited in the presence of COX2 inhibitor, NS-398. PGE2 inhibition suppressed hUC-MSCs immunomodulatory capability, which was restored after addition of synthetic PGE2, establishing the minimum amount of PGE2 required for immunomodulation. In conclusion, our data suggested that PGE2 is a crucial potency marker involved in the therapeutic activity of hUC-MSCs through macrophages immune response modulation and cytokines regulation. This study provides the model for the development of a surrogate quantitative potency assay of immunomodulation in stem cells production.  相似文献   

16.
Because B cells express receptors for C1q, we have investigated the role of C1q in the stimulation of B cells. When B cells were cultured in the presence of C1q that had been frozen, T cells, and suboptimal concentrations of PWM, there was a dose-dependent enhancement of IgM, IgG, and IgA by the B cells. No significant enhancement of Ig production by B cells was seen in the absence of T cells or PWM. The contribution of T cells or PWM could be replaced by supernatants of PMA and Con A-activated PBMC (T cell growth factor). C1q that had been frozen, in contrast with freshly isolated C1q, was at least 3 times more active in enhancement of the production of Ig by B cells in culture in the presence of suboptimal concentrations of T cell growth factor. The capability of C1q to stimulate B cells could be ascribed to aggregates of C1q. Monomeric C1q was only marginally active to stimulate B cell Ig production, whereas dimeric and tetrameric C1q were able to enhance Ig production by B cells in relation to their size. Furthermore, aggregation of C1q on soluble aggregates of rabbit IgM also increased its potential to enhance B cell Ig production. The interaction of C1q with the B cells occurs via the collagenous tail of C1q, as suggested by inhibition experiments with purified collagenous tails and globular heads of C1q. These results indicate that triggering of C1qR on B cells positively regulates Ig production in vitro.  相似文献   

17.
Large-scale purification of the highly hydrophobic bacteriocin thurincin H was accomplished via a novel and simple two-step method: ammonia sulfate precipitation and C18 solid-phase extraction. The inhibition spectrum and stability of thurincin H as well as its antagonistic activity against Bacillus cereus F4552 spores were further characterized. In the purification method, secreted proteins contained in the supernatant of a 40 h incubated culture of B. thuringiensis SF361 were precipitated by 68 % ammonia sulfate and purified by reverse-phase chromatography, with a yield of 18.53 mg/l of pure thurincin H. Silver-stained SDS–PAGE, high-performance liquid chromatography, and liquid chromatography–mass spectrometry confirmed the high purity of the prepared sample. Thurincin H exhibited a broad antimicrobial activity against 22 tested bacterial strains among six different genera including Bacillus, Carnobacterium, Geobacillus, Enterococcus, Listeria, and Staphylococcus. There was no detectable activity against any of the selected yeast or fungi. The bacteriocin activity was stable for 30 min at 50 °C and decreased to undetectable levels within 10 min at temperatures above 80 °C. Thurincin H is also stable from pH 2–7 for at least 24 h at room temperature. Thurincin H is germicidal against B. cereus spores in brain heart infusion broth, but not in Tris–NaCl buffer. The efficient purification method enables the large-scale production of pure thurincin H. The broad inhibitory spectrum of this bacteriocin may be of interest as a potential natural biopreservative in the food industry, particularly in post-processed and ready-to-eat food.  相似文献   

18.
Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells   总被引:27,自引:0,他引:27  
Regulatory T cells (Tregs) can potentially migrate to the B cell areas of secondary lymphoid tissues and suppress T cell-dependent B cell Ig response. T cell-dependent Ig response requires B cell stimulation by Th cells. It has been unknown whether Tregs can directly suppress B cells or whether they must suppress Th cells to suppress B cell response. We report here that Foxp3+ Tregs are found in T-B area borders and within germinal centers of human lymphoid tissues and can directly suppress B cell Ig response. Although Tregs can effectively suppress T cells, they can also directly suppress B cell response without the need to first suppress Th cells. The direct suppression of B cell Ig production by Tregs is accompanied by inhibition of Ig class switch recombination.  相似文献   

19.
According to the minimal criteria of the International Society of Cellular Therapy, mesenchymal stem cells (MSCs) are a population of undifferentiated cells defined by their ability to adhere to plastic surfaces when cultured under standard conditions, express a certain panel of phenotypic markers and can differentiate into osteogenic, chondrogenic and adipogenic lineages when cultured in specific inducing media. In parallel with their major role as undifferentiated cell reserves, MSCs have immunomodulatory functions which are exerted by direct cell-to-cell contacts, secretion of cytokines and/or by a combination of both mechanisms. There are no convincing data about a principal difference in the profile of cytokines secreted by MSCs isolated from different tissue sources, although some papers report some quantitative but not qualitative differences in cytokine secretion. The present review focuses on the basic cytokines secreted by MSCs as described in the literature by which the MSCs exert immunodulatory effects. It should be pointed out that MSCs themselves are objects of cytokine regulation. Hypothetical mechanisms by which the MSCs exert their immunoregulatory effects are also discussed in this review. These mechanisms may either influence the target immune cells directly or indirectly by affecting the activities of predominantly dendritic cells. Chemokines are also discussed as participants in this process by recruiting cells of the immune systems and thus making them targets of immunosuppression. This review aims to present and discuss the published data and the personal experience of the authors regarding cytokines secreted by MSCs and their effects on the cells of the immune system.  相似文献   

20.
Comprehensive proteome profiling of the factors secreted by mesenchymal stem cells (MSCs), referred to as secretome, revealed that it consists of cytokines, chemokines, growth factors, extracellular matrix proteins, and components of regeneration, vascularization, and hematopoiesis pathways. Harnessing this MSC secretome for therapeutic applications requires the optimization of production of secretary molecules. A variety of preconditioning methods have been introduced, which subject cells to stimulatory molecules to create the preferred response and stimulate persistent effects. Pharmacological preconditioning uses small molecules and drugs to increase survival of MSCs after transplantation or prolong release of effective secretary factors such as cytokines that improve immune system responses. In this study, we investigated the effect of secretome of human embryonic-derived mesenchymal stem cells (hESC-MSCs) preconditioned with Trimetazidine (TMZ) and Diazoxide (DZ) on immunomodulatory efficiency of these cells in LPS-induced peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from human peripheral blood and treated with concentrated hESC-MSC-derived conditioned medium and then, the secreted levels of IL-10, TNFα and IL-1β were assessed by ELISA after induction with LPS. The results showed that TMZ and DZ-conditioned medium significantly enhanced immunomodulatory potential of hESC-MSCs by increasing the secretion of IL-10, TNFα and IL-1β from LPS- induced PBMCs. We also found that hESC-MSCs did not secrete mentioned cytokines prior to or after the preconditioning with TMZ and DZ. In conclusion, our results implied that TMZ and DZ can be used to promote the immunomodulatory effects of hESC-MSC secretome. It is obvious that for applying of these findings in clinical demands, the potency of different pre-conditioned MSCs secretome on immune response needs to be more clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号