首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The majority of overwintering insects avoid lethal freezing by lowering the temperature at which ice spontaneously nucleates within their body fluids. We examined the effect of ice-nucleating-active bacteria on the cold-hardiness of the lady beetle, Hippodamia convergens, a freeze-intolerant species that overwinters by supercooling to ca. −16°C. Topical application of the ice-nucleating-active bacteria Pseudomonas syringae increased the supercooling point to temperatures as high as −3°C. This decrease in cold tolerance was maintained for at least 3 days after treatment. Various treatment doses (108, 106, and 104 bacteria per ml) and modes of action (bacterial ingestion and topical application) were also compared. At the highest concentration of topically applied P. syringae, 50% of the beetles froze between −2 and −4°C. After topical application at the lowest concentration, 50% of the individuals froze by −11°C. In contrast, beetles fed bacteria at this concentration did not begin to freeze until −10°C, and 50% were frozen only at temperatures of −13°C or less. In addition to reducing the supercooling capacity in H. convergens, ice-nucleating-active bacteria also significantly reduced the cold-hardiness of four additional insects. These data demonstrate that ice-nucleating-active bacteria can be used to elevate the supercooling point and thereby decrease insect cold tolerance. The results of this study support the proposition that ice-nucleating-active bacteria may be used as a biological insecticide for the control of insect pests during the winter.  相似文献   

2.
The Formation and Distribution of Ice within Forsythia Flower Buds   总被引:1,自引:0,他引:1       下载免费PDF全文
Differential thermal analysis detected two freezing events when dormant forsythia (Forsythia viridissima Lindl.) flower buds were cooled. The first occurred just below 0°C, and was coincident with the freezing of adjacent woody tissues. The second exotherm appeared as a spike between −10 and −25°C and was correlated with the lethal low temperature. Although this pattern of freezing was similar to that observed in other woody species, differences were noted. Both direct observations of frozen buds and examination of buds freeze-fixed at −5°C demonstrated that ice formed within the developing flowers at temperatures above the second exotherm and lethal temperature. Ice crystals had formed within the peduncle and in the lower portions of the developing flower. Ice also formed within the scales. In forsythia buds, the developing floral organ did not freeze as a unit as noted in other species. Instead the low temperature exotherm appeared to correspond to the lethal freezing of supercooled water within the anthers and portions of the pistil.  相似文献   

3.
The interactions between freezing kinetics and subsequent storage temperatures and their effects on the biological activity of lactic acid bacteria have not been examined in studies to date. This paper investigates the effects of three freezing protocols and two storage temperatures on the viability and acidification activity of Lactobacillus delbrueckii subsp. bulgaricus CFL1 in the presence of glycerol. Samples were examined at −196°C and −20°C by freeze fracture and freeze substitution electron microscopy. Differential scanning calorimetry was used to measure proportions of ice and glass transition temperatures for each freezing condition tested. Following storage at low temperatures (−196°C and −80°C), the viability and acidification activity of L. delbrueckii subsp. bulgaricus decreased after freezing and were strongly dependent on freezing kinetics. High cooling rates obtained by direct immersion in liquid nitrogen resulted in the minimum loss of acidification activity and viability. The amount of ice formed in the freeze-concentrated matrix was determined by the freezing protocol, but no intracellular ice was observed in cells suspended in glycerol at any cooling rate. For samples stored at −20°C, the maximum loss of viability and acidification activity was observed with rapidly cooled cells. By scanning electron microscopy, these cells were not observed to contain intracellular ice, and they were observed to be plasmolyzed. It is suggested that the cell damage which occurs in rapidly cooled cells during storage at high subzero temperatures is caused by an osmotic imbalance during warming, not the formation of intracellular ice.  相似文献   

4.
Steinernema feltiae is a moderately freeze-tolerant entomopathogenic nematode which survives intracellular freezing. We have detected by gas chromatography that infective juveniles of S. feltiae produce cryoprotectants in response to cold acclimation and to freezing. Since the survival of this nematode varies with temperature, we analyzed their cryoprotectant profiles under different acclimation and freezing regimes. The principal cryoprotectants detected were trehalose and glycerol with glucose being the minor component. The amount of cryoprotectants varied with the temperature and duration of exposure. Trehalose was accumulated in higher concentrations when nematodes were acclimated at 5°C for two weeks whereas glycerol level decreased from that of the non-acclimated controls. Nematodes were seeded with a small ice crystal and held at -1°C, a regime that does not produce freezing of the nematodes but their bodies lose water to the surrounding ice (cryoprotective dehydration). This increased the levels of both trehalose and glycerol, with glycerol reaching a higher concentration than trehalose. Nematodes frozen at -3°C, a regime that produces freezing of the nematodes and results in intracellular ice formation, had elevated glycerol levels while trehalose levels did not change. Steinernema feltiae thus has two strategies of cryoprotectant accumulation: one is an acclimation response to low temperature when the body fluids are in a cooled or supercooled state and the infective juveniles produce trehalose before freezing. During this process a portion of the glycerol is converted to trehalose. The second strategy is a rapid response to freezing which induces the production of glycerol but trehalose levels do not change. These low molecular weight compounds are surmised to act as cryoprotectants for this species and to play an important role in its freezing tolerance.  相似文献   

5.
The heterogeneous ice nucleation characteristics and frost injury in supercooled leaves upon ice formation were studied in nonhardened and cold-hardened species and crosses of tuber-bearing Solanum. The ice nucleation activity of the leaves was low at temperatures just below 0°C and further decreased as a result of cold acclimation. In the absence of supercooling, the nonhardened and cold-hardened leaves tolerated extracellular freezing between −3.5° and −8.5°C. However, if ice initiation in the supercooled leaves occurred at any temperature below −2.6°C, the leaves were lethally injured.

To prevent supercooling in these leaves, various nucleants were tested for their ice nucleating ability. One% aqueous suspensions of fluorophlogopite and acetoacetanilide were found to be effective in ice nucleation of the Solanum leaves above −1°C. They had threshold temperatures of −0.7° and −0.8°C, respectively, for freezing in distilled H2O. Although freezing could be initiated in the Solanum leaves above −1°C with both the nucleants, 1% aqueous fluorophlogopite suspension showed overall higher ice nucleation activity than acetoacetanilide and was nontoxic to the leaves. The cold-hardened leaves survived between −2.5° and −6.5° using 1% aqueous fluorophlogopite suspension as a nucleant. The killing temperatures in the cold-hardened leaves were similar to those determined using ice as a nucleant. However, in the nonhardened leaves, use of fluorophlogopite as a nucleant resulted in lethal injury at higher temperatures than those estimated using ice as a nucleant.

  相似文献   

6.
The survival after freezing of ice nucleation-active (INA) and genetically engineered non-INA strains of Pseudomonas syringae was compared. Each strain was applied to oat seedlings and allowed to colonize for 3 days, and the plants were subjected to various freezing temperatures. Plant leaves were harvested before and after freezing on two consecutive days, and bacterial populations were determined. Populations of the INA wild-type strain increased 15-fold in the 18 h after the oat plants incurred frost damage at −5 and −12°C. Plants colonized by the non-INA strain were undamaged at −5°C and exhibited no changes in population size after two freeze trials. As freezing temperatures were lowered (−7, −9, and −12°C), oat plants colonized by the non-INA strain suffered increased frost damage concomitant with bacterial population increases following 18 h. At −12°C, both strains behaved identically. The data show a relationship between frost damage to plants and increased bacterial population size during the following 18 h, indicating a potential competitive advantage of INA strains of P. syringae over non-INA strains in mild freezing environments.  相似文献   

7.
Although the biochemical correlates of freeze tolerance in insects are becoming well-known, the process of ice formation in vivo is subject to speculation. We used synchrotron x-rays to directly visualise real-time ice formation at 3.3 Hz in intact insects. We observed freezing in diapausing 3rd instar larvae of Chymomyza amoena (Diptera: Drosophilidae), which survive freezing if it occurs above −14°C, and non-diapausing 3rd instar larvae of C. amoena and Drosophila melanogaster (Diptera: Drosophilidae), neither of which survive freezing. Freezing was readily observed in all larvae, and on one occasion the gut was seen to freeze separately from the haemocoel. There were no apparent qualitative differences in ice formation between freeze tolerant and non-freeze tolerant larvae. The time to complete freezing was positively related to temperature of nucleation (supercooling point, SCP), and SCP declined with decreasing body size, although this relationship was less strong in diapausing C. amoena. Nucleation generally occurred at a contact point with the thermocouple or chamber wall in non-diapausing larvae, but at random in diapausing larvae, suggesting that the latter have some control over ice nucleation. There were no apparent differences between freeze tolerant and non-freeze tolerant larvae in tracheal displacement or distension of the body during freezing, although there was markedly more distension in D. melanogaster than in C. amoena regardless of diapause state. We conclude that although control of ice nucleation appears to be important in freeze tolerant individuals, the physical ice formation process itself does not differ among larvae that can and cannot survive freezing. This suggests that a focus on cellular and biochemical mechanisms is appropriate and may reveal the primary adaptations allowing freeze tolerance in insects.  相似文献   

8.
Juveniles of five species of nematodes, Caenorhabditis elegans, Panagrellus redivivus, Pratylenchus agilis, Pristionchus pacificus, and Distolabrellus veechi, were added to solutions with (treatment) and without (control) a commercial ice-nucleating activity (INA) agent. Ten-microliter droplets of the solutions containing the juveniles were placed on glass microscope slides and transferred to a temperaturecontrolled freeze plate where the temperature was reduced to -6 to -8 °C. At this temperature, the droplets containing the INA agent froze while those without the agent remained liquid. After 2 minutes, the temperature of the plate was raised to 24 °C, and the slides were examined with a light microscope to determine the viability of the juveniles. The results showed that usually most juveniles (43% to 88%, depending on species) in solutions that did not contain the INA agent (controls) were active, indicating that the juveniles were capable of supercooling and were thereby protected from the subzero temperatures. Alternatively, less than 10% of the juveniles that had frozen for 2 minutes in solutions containing the INA agent remained viable, indicating that inoculative freezing of the solution was lethal to the supercooled juveniles. Our results suggest that, in geographical areas where winter temperatures may not be sufficiently low or sustained to freeze soil, the addition of an INA agent may help induce ice nucleation and thereby reduce the populations of nematode species that are unable to survive when the soil solution is frozen.  相似文献   

9.
Freezing injury and root development in winter cereals   总被引:7,自引:5,他引:2       下载免费PDF全文
Upon exposure to 2°C, the leaves and crowns of rye (Secale cereale L. cv `Puma') and wheat (Triticum aestivum L. cv `Norstar' and `Cappelle') increased in cold hardiness, whereas little change in root cold hardiness was observed. Both root and shoot growth were severely reduced in cold-hardened Norstar wheat plants frozen to −11°C or lower and transplanted to soil. In contrast, shoot growth of plants grown in a nutrient agar medium and subjected to the same hardening and freezing conditions was not affected by freezing temperatures of −20°C while root growth was reduced at −15°C. Thus, it was apparent that lack of root development limited the ability of plants to survive freezing under natural conditions.

Generally, the temperatures at which 50% of the plants were killed as determined by the conductivity method were lower than those obtained by regrowth. A simple explanation for this difference is that the majority of cells in the crown are still alive while a small portion of the cells which are critical for regrowth are injured or killed.

Suspension cultures of Norstar wheat grown in B-5 liquid medium supplemented with 3 milligrams per liter of 2,4-dichlorophenoxyacetic acid could be cold hardened to the same levels as soil growth plants. These cultures produce roots when transferred to the same growth medium supplemented with a low rate of 2,4-dichlorophenoxyacetic acid (<1 milligram per liter). When frozen to −15°C regrowth of cultures was 50% of the control, whereas the percentage of calli with root development was reduced 50% in cultures frozen to −11°C. These results suggest that freezing affects root morphogenesis rather than just killing the cells responsible for root regeneration.

  相似文献   

10.
Background and Aims Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than −180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues.Methods Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g−1 dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s−1 or programmed cooling at 3·3 °C s−1. Samples were thawed rapidly (177 °C s−1) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination.Key Results Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth.Conclusions Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small (0·2–0·4 µm) intracellular ice crystals challenges current ideas that ice causes immediate physical damage to cells. Instead, freezing stress may induce a signal for programmed cell death (PCD). Cells that form more ice crystals during cooling have faster PCD responses.  相似文献   

11.
The objective of the current research was to examine the response of woody plant tissues to freezing stress by using scanning electron microscopy (SEM). Nonsupercooling species red osier dogwood (Cornus stolonifera Michx.), weeping willow (Salix babylonica L.), and corkscrew willow (Salix matsudana Koidz. f. tortuosa Rehd.) survived freezing stress as low as −60°C. Cell collapse of ray parenchyma cells of these species was expected but did not occur. It was concluded that ray parenchyma cells of these species do not fit into either the supercooling or extracellular freezing classifications. Tissues from flowering dogwood (Cornus florida L.), apple (Malus domestica Borkh. cv “Starking III”), red oak (Quercus rubra L.), scarlet oak (Quercus coccinea Muench.), and red ash (Fraxinus pennsylvanica Marsh) were confirmed as supercooling species, and did not survive exposures below −40°C. Ray parenchyma cells of these species did not collapse in response to freezing stress, as was expected. Cell collapse along the margins of voids were observed in bark of all seven species. Voids were the result of extracellular ice crystals formed in the bark during exposure to freezing stress. Tissues prepared by freeze substitution techniques were found to be adequately preserved when compared to those prepared by conventional fixation and low temperature SEM techniques. A freezing protocol for imposing freezing stress at temperatures lower than experienced naturally in the area where the study was conducted was developed that produced responses comparable to those observed in specimens collected in the field during natural freezing events.  相似文献   

12.
Ice Nucleation Activity in Lichens   总被引:7,自引:0,他引:7       下载免费PDF全文
A newly discovered form of biological ice nucleus associated with lichens is described. Ice nucleation spectra of a variety of lichens from the southwestern United States were measured by the drop-freezing method. Several epilithic lichen samples of the genera Rhizoplaca, Xanthoparmelia, and Xanthoria had nuclei active at temperatures as warm as −2.3°C and had densities of 2.3 × 106 to more than 1 × 108 nuclei g−1 at −5°C (2 to 4 orders of magnitude higher than any plants infected with ice nucleation-active bacteria). Most lichens tested had nucleation activity above −8°C. Lichen substrates (rocks, plants, and soil) showed negligible activity above −8°C. Ice nucleation-active bacteria were not isolated from the lichens, and activity was not destroyed by heat (70°C) or sonication, indicating that lichen-associated ice nuclei are nonbacterial in origin and differ chemically from previously described biological ice nuclei. An axenic culture of the lichen fungus Rhizoplaca chrysoleuca showed detectable ice nucleation activity at −1.9°C and an ice nucleation density of 4.5 × 106 nuclei g−1 at −5°C. It is hypothesized that these lichens, which are both frost tolerant and dependent on atmospheric moisture, derive benefit in the form of increased moisture deposition as a result of ice nucleation.  相似文献   

13.
It is widely considered that most organisms cannot survive prolonged exposure to temperatures below 0°C, primarily because of the damage caused by the water in cells as it freezes. However, some organisms are capable of surviving extreme variations in environmental conditions. In the case of temperature, the ability to survive subzero temperatures is referred to as cryobiosis. We show that the ozobranchid leech, Ozobranchus jantseanus, a parasite of freshwater turtles, has a surprisingly high tolerance to freezing and thawing. This finding is particularly interesting because the leach can survive these temperatures without any acclimation period or pretreatment. Specifically, the leech survived exposure to super-low temperatures by storage in liquid nitrogen (−196°C) for 24 hours, as well as long-term storage at temperatures as low as −90°C for up to 32 months. The leech was also capable of enduring repeated freeze-thaw cycles in the temperature range 20°C to −100°C and then back to 20°C. The results demonstrated that the novel cryotolerance mechanisms employed by O. jantseanus enable the leech to withstand a wider range of temperatures than those reported previously for cryobiotic organisms. We anticipate that the mechanism for the observed tolerance to freezing and thawing in O. jantseanus will prove useful for future studies of cryopreservation.  相似文献   

14.
Seasonal variations in freezing tolerance, water content, water and osmotic potential, and levels of soluble sugars of leaves of field-grown Valencia orange (Citrus sinensis) trees were studied to determine the ability of citrus trees to cold acclimate under natural conditions. Controlled environmental studies of young potted citrus trees, spinach (Spinacia pleracea), and petunia (Petunia hybrids) were carried out to study the water relations during cold acclimation under less variable conditions. During the coolest weeks of the winter, leaf water content and osmotic potential of field-grown trees decreased about 20 to 25%, while soluble sugars increased by 100%. At the same time, freezing tolerance increased from lethal temperature for 50% (LT50) of −2.8 to −3.8°C. In contrast, citrus leaves cold acclimated at a constant 10°C in growth chambers were freezing tolerant to about −6°C. The calculated freezing induced cellular dehydration at the LT50 remained relatively constant for field-grown leaves throughout the year, but increased for leaves of plants cold acclimated at 10°C in a controlled environment. Spinach leaves cold acclimated at 5°C tolerated increased cellular dehydration compared to nonacclimated leaves. Cold acclimated petunia leaves increased in freezing tolerance by decreasing osmotic potential, but had no capacity to change cellular dehydration sensitivity. The result suggest that two cold acclimation mechanisms are involved in both citrus and spinach leaves and only one in petunia leaves. The common mechanism in all three species tested was a minor increase in tolerance (about −1°C) resulting from low temperature induced osmotic adjustment, and the second in citrus and spinach was a noncolligative mechanism that increased the cellular resistance to freeze hydration.  相似文献   

15.
The response of cortical microtubules to low temperature and freezing was assessed for root tips of cold-acclimated and non-acclimated winter rye (Secale cereale L. cv Puma) seedlings using indirect immunofluorescence microscopy with antitubulin antibodies. Roots cooled to 0 or −3°C were fixed for immunofluorescence microscopy at these temperatures or after an additional hour at 4°C. Typical arrays of cortical microtubules were present in root-tip cells of seedlings exposed to the cold-acclimation treatment of 4°C for 2 days. Microtubules in these cold-acclimated cells were more easily depolymerized by a 0°C treatment than microtubules in root-tip cells of nonacclimated, 22°C-grown seedlings. Microtubules were still present in some cells of both nonacclimated and cold-acclimated roots at 0 and −3°C; however, the number of microtubules in these cells was lower than in controls. Microtubules remaining during the −3°C freeze were shorter than microtubules in unfrozen control cells. Repolymerization of microtubules after both the 0 and −3°C treatments occurred within 1 h. Root tips of nonacclimated seedlings had an LT-50 of −9°C. Cold acclimation lowered this value to −14°C. Treatment of 22°C-grown seedlings for 24 h with the microtubule-stabilizing drug taxol caused a decrease in the freezing tolerance of root tips, indicated by a LT-50 of −3°C. Treatment with D-secotaxol, an analog of taxol that was less effective in stabilizing microtubules, did not alter the freezing tolerance. We interpret these data to indicate that a degree of depolymerization of microtubules is necessary for realization of maximum freezing tolerance in root-tip cells of rye.  相似文献   

16.
The freezing behavior of dimethylsulfoxide (DMSO) and sorbitol solutions and periwinkle (Catharanthus roseus) cells treated with DMSO and sorbitol alone and in combination was examined by nuclear magnetic resonance and differential thermal analysis. Incorporation of DMSO or sorbitol into the liquid growth medium had a significant effect in the temperature range for initiation to completion of ice crystallization. Compared to the control, less water crystallized at temperatures below −30°C in DMSO-treated cells. Similar results were obtained with sorbitol-treated cells, except sorbitol had less effect on the amount of water crystallized at temperatures below −25°C. There was a close association between the per cent unfrozen water at −40°C and per cent cell survival after freezing for 1 hour in liquid nitrogen. It appears that, in periwinkle suspension cultures, the amount of liquid water at −40°C is critical for a successful cryopreservation. The combination of DMSO and sorbitol was the most effective in preventing water from freezing. The results obtained may explain the cryoprotective properties of DMSO and sorbitol and why DMSO and sorbitol in combination are more effective as cryoprotectants than when used alone.  相似文献   

17.
Sap flow from excised maple stems collected over the winter (1986/87) was correlated with stem water content. Stem water content was high in the fall (>0.80) and decreased rapidly during 2 weeks of continuous freezing temperatures in late winter (<0.60). Exudation of sap from stem segments subjected to freeze/thaw cycles was small (<10 mL/kg) in the fall, but substantial exudation (45-50 mL/kg) occurred following the decline in water content. These observations are consistent with Milburn's and O'Malley's models (J.A. Milburn, P.E.R. O'Malley [1984] Can J Bot 62: 2101-2106; P.E.R. O'Malley, J.A. Milburn [1983] Can J Bot 61:3100-3106) of sap absorption into gas-filled fibers during freezing. Exudation volume was increased 200 to 300% in maple stems originally at high water content (>0.80) after perfusion with sucrose and dehydration at −12°C. Sap flow was also induced in butternut stem segments after the same treatment. Thus, sap flow may not be unique to maples. Sap flow could not be increased in stem segments dehydrated at 4°C. Migration of water molecules from small ice crystals in fibers to larger crystals in vessels while stems were frozen may account for increase exudation after dehydration at −12°C. This would result in preferential dehydration of fibers and a distribution of gas and sap favorable for stem-based sap flow.  相似文献   

18.
Supercooling characteristics of isolated peach flower bud primordia   总被引:1,自引:1,他引:0       下载免费PDF全文
The amount of unfrozen water in dormant peach (Prunus persica [L.] Batsch, cv Redhaven) flower buds, isolated primordia, and bud axes was determined during freezing using pulse nuclear magnetic resonance methods. Differential thermal analysis studies were conducted on whole buds and isolated primordia in the presence of ice nucleation. The results showed that some of the water in isolated primordia remained supercooled in the presence of ice nucleation. Although most tissue water froze (57.5%) following ice nucleation at −2.5°C, a considerable amount of water was found to supercool. In the presence of ice nucleation, increased hydration of isolated primordia resulted in the elimination of the supercooling characteristic. The structural integrity of isolated primordia appeared to be essential for supercooling.  相似文献   

19.
Fully hydrated lettuce (Lactuca sativa L.) seeds showed dual freezing exotherms (−9 and −18°C), even after 10 hours imbibition. Only the −9°C exotherm was observed in seeds imbibed for 20 hours, but without external nucleation, all water in the embryo supercooled. Results indicate that the endosperm acts as a barrier to ice propagation. Other experiments suggest that the pericarp may also protect the embryo under certain freezing conditions.  相似文献   

20.
Expression of a bacterial ice nucleation gene in plants   总被引:3,自引:0,他引:3       下载免费PDF全文
We have introduced an ice nucleation gene (inaZ) from Pseudomonas syringae pv. syringae into Nicotiana tabacum, a freezing-sensitive species, and Solanum commersonii, a freezing-tolerant species. Transformants of both species showed increased ice nucleation activity over untransformed controls. The concentration of ice nuclei detected at −10.5°C in 15 different primary transformants of S. commersonii varied by over 1000-fold, and the most active transformant contained over 100 ice nuclei/mg of tissue. The temperature of the warmest freezing event in plant samples of small mass was increased from approximately −12°C in the untransformed controls to −4°C in inaZ-expressing transformants. The threshold nucleation temperature of samples from transformed plants did not increase appreciably with the mass of the sample. The most abundant protein detected in transgenic plants using immunological probes specific to the inaZ protein exhibited a higher mobility on sodium dodecyl sulfate polyacrylamide gels than the inaZ protein from bacterial sources. However, some protein with a similar mobility to the inaZ protein could be detected. Although the warmest ice nucleation temperature detected in transgenic plants is lower than that conferred by this gene in P. syringae (−2°C), our results demonstrate that the ice nucleation gene of P. syringae can be expressed in plant cells to produce functional ice nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号