首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Calcium sparks in cardiac myocytes are brief, localized calcium releases from the sarcoplasmic reticulum (SR) believed to be caused by locally regenerative calcium-induced calcium release (CICR) via couplons, clusters of ryanodine receptors (RyRs). How such regeneration is terminated is uncertain. We performed numerical simulations of an idealized stochastic model of spark production, assuming a RyR gating scheme with only two states (open and closed). Local depletion of calcium in the SR was inevitable during a spark, and this could terminate sparks by interrupting CICR, with or without assumed modulation of RyR gating by SR lumenal calcium. Spark termination by local SR depletion was not robust: under some conditions, sparks could be greatly and variably prolonged, terminating by stochastic attrition–a phenomenon we dub “spark metastability.” Spark fluorescence rise time was not a good surrogate for the duration of calcium release. Using a highly simplified, deterministic model of the dynamics of a couplon, we show that spark metastability depends on the kinetic relationship of RyR gating and junctional SR refilling rates. The conditions for spark metastability resemble those produced by known mutations of RyR2 and CASQ2 that cause life-threatening triggered arrhythmias, and spark metastability may be mitigated by altering the kinetics of the RyR in a manner similar to the effects of drugs known to prevent those arrhythmias. The model was unable to explain the distributions of spark amplitudes and rise times seen in chemically skinned cat atrial myocytes, suggesting that such sparks may be more complex events involving heterogeneity of couplons or local propagation among sub-clusters of RyRs.  相似文献   

2.
In sinoatrial node cells of the heart, beating rate is controlled, in part, by local Ca2(+) releases (LCRs) from the sarcoplasmic reticulum, which couple to the action potential via electrogenic Na(+)/Ca2(+) exchange. We observed persisting, roughly periodic LCRs in depolarized rabbit sinoatrial node cells (SANCs). The features of these LCRs were reproduced by a numerical model consisting of a two-dimensional array of stochastic, diffusively coupled Ca2(+) release units (CRUs) with fixed refractory period. Because previous experimental studies showed that β-adrenergic receptor stimulation increases the rate of Ca2(+) release through each CRU (dubbed I(spark)), we explored the link between LCRs and I(spark) in our model. Increasing the CRU release current I(spark) facilitated Ca2(+)-induced-Ca2(+) release and local recruitment of neighboring CRUs to fire more synchronously. This resulted in a progression in simulated LCR size (from sparks to wavelets to global waves), LCR rhythmicity, and decrease of LCR period that parallels the changes observed experimentally with β-adrenergic receptor stimulation. The transition in LCR characteristics was steeply nonlinear over a narrow range of I(spark), resembling a phase transition. We conclude that the (partial) periodicity and rate regulation of the "Calcium clock" in SANCs are emergent properties of the diffusive coupling of an ensemble of interacting stochastic CRUs. The variation in LCR period and size with I(spark) is sufficient to account for β-adrenergic regulation of SANC beating rate.  相似文献   

3.
Calcium (Ca) sparks are the fundamental sarcoplasmic reticulum (SR) Ca release events in cardiac myocytes, and they have a typical duration of 20–40 ms. However, when a fraction of ryanodine receptors (RyRs) are blocked by tetracaine or ruthenium red, Ca sparks lasting hundreds of milliseconds have been observed experimentally. The fundamental mechanism underlying these extremely prolonged Ca sparks is not understood. In this study, we use a physiologically detailed mathematical model of subcellular Ca cycling to examine how Ca spark duration is influenced by the number of functional RyRs in a junctional cluster (which is reduced by tetracaine or ruthenium red) and other SR Ca handling properties. One RyR cluster contains a few to several hundred RyRs, and we use a four-state Markov RyR gating model. Each RyR opens stochastically and is regulated by cytosolic and luminal Ca. We varied the number of functional RyRs in the single cluster, diffusion within the SR network, diffusion between network and junctional SR, cytosolic Ca diffusion, SERCA uptake activity, and RyR open probability. For long-lasting Ca release events, opening events within the cluster must occur continuously because the typical open time of the RyR is only a few milliseconds. We found the following: 1) if the number of RyRs is too small, it is difficult to maintain consecutive openings and stochastic attrition terminates the release; 2) if the number of RyRs is too large, the depletion of Ca from the junctional SR terminates the release; and 3) very long release events require relatively small-sized RyR clusters (reducing flux as seen experimentally with tetracaine) and sufficiently rapid intra-SR Ca diffusion, such that local junctional intra-SR [Ca] can be maintained by intra-SR diffusion and overall SR Ca reuptake.  相似文献   

4.
Frog myocardium depends almost entirely on calcium entry from extracellular spaces for its beat-to-beat activation. Atrial myocardium additionally shows internal calcium release under certain conditions, but internal release in the ventricle is absent or very low. We have examined the content and distribution of the sarcoplasmic reticulum (SR) calcium release channels (ryanodine receptors, RyRs) and the surface membrane calcium channels (dihydropyridine receptors, DHPRs) in myocardium from the two atria and the ventricle of the frog heart using binding of radioactive ryanodine, immunolabeling of RyR and DHPR, and thin section and freeze-fracture electron microscopy. In cells from both types of chambers, the SR forms peripheral couplings and in both chambers peripheral couplings colocalize with clusters of DHPRs. However, although a low level of high affinity binding of ryanodine is detectable and RyRs are present in peripheral couplings of the atrium, the ventricle shows essentially no ryanodine binding and RyRs are not detectable either by electron microscopy or immunolabeling. The results are consistent with the lack of internal calcium release in the ventricle, and raise questions regarding the significance of DHPR at peripheral couplings in the absence of RyR. Interestingly, the free SR membrane in both heart chambers shows a low but equal density of intramembrane particles representing the Ca2+ ATPase.  相似文献   

5.
Abstract. In muscle cells, excitation–contraction (e–c) coupling is mediated by “calcium release units,” junctions between the sarcoplasmic reticulum (SR) and exterior membranes. Two proteins, which face each other, are known to functionally interact in those structures: the ryanodine receptors (RyRs), or SR calcium release channels, and the dihydropyridine receptors (DHPRs), or L-type calcium channels of exterior membranes. In skeletal muscle, DHPRs form tetrads, groups of four receptors, and tetrads are organized in arrays that face arrays of feet (or RyRs). Triadin is a protein of the SR located at the SR–exterior membrane junctions, whose role is not known. We have structurally characterized calcium release units in a skeletal muscle cell line (1B5) lacking Ry1R. Using immunohistochemistry and freeze-fracture electron microscopy, we find that DHPR and triadin are clustered in foci in differentiating 1B5 cells. Thin section electron microscopy reveals numerous SR–exterior membrane junctions lacking foot structures (dyspedic). These results suggest that components other than Ry1Rs are responsible for targeting DHPRs and triadin to junctional regions. However, DHPRs in 1B5 cells are not grouped into tetrads as in normal skeletal muscle cells suggesting that anchoring to Ry1Rs is necessary for positioning DHPRs into ordered arrays of tetrads. This hypothesis is confirmed by finding a “restoration of tetrads” in junctional domains of surface membranes after transfection of 1B5 cells with cDNA encoding for Ry1R.  相似文献   

6.
In sinoatrial node cells of the heart, beating rate is controlled, in part, by local Ca2+ releases (LCRs) from the sarcoplasmic reticulum, which couple to the action potential via electrogenic Na+/Ca2+ exchange. We observed persisting, roughly periodic LCRs in depolarized rabbit sinoatrial node cells (SANCs). The features of these LCRs were reproduced by a numerical model consisting of a two-dimensional array of stochastic, diffusively coupled Ca2+ release units (CRUs) with fixed refractory period. Because previous experimental studies showed that β-adrenergic receptor stimulation increases the rate of Ca2+ release through each CRU (dubbed Ispark), we explored the link between LCRs and Ispark in our model. Increasing the CRU release current Ispark facilitated Ca2+-induced-Ca2+ release and local recruitment of neighboring CRUs to fire more synchronously. This resulted in a progression in simulated LCR size (from sparks to wavelets to global waves), LCR rhythmicity, and decrease of LCR period that parallels the changes observed experimentally with β-adrenergic receptor stimulation. The transition in LCR characteristics was steeply nonlinear over a narrow range of Ispark, resembling a phase transition. We conclude that the (partial) periodicity and rate regulation of the “Calcium clock” in SANCs are emergent properties of the diffusive coupling of an ensemble of interacting stochastic CRUs. The variation in LCR period and size with Ispark is sufficient to account for β-adrenergic regulation of SANC beating rate.  相似文献   

7.
Lakatta EG 《Cell calcium》2004,35(6):629-642
The ability of the heart to acutely beat faster and stronger is central to the vertebrate survival instinct. Released neurotransmitters, norepinephrine and epinephrine, bind to beta-adrenergic receptors (beta-AR) on pacemaker cells comprising the sinoatrial node, and to beta-AR on ventricular myocytes to modulate cellular mechanisms that govern the frequency and amplitude, respectively, of the duty cycles of these cells. While a role for sarcoplasmic reticulum Ca(2+) cycling via SERCA2 and ryanodine receptors (RyR) has long been appreciated with respect to cardiac inotropy, recent evidence also implicates Ca(2+) cycling with respect to chronotropy. In spontaneously beating primary sinoatrial nodal pacemaker cells, RyR Ca(2+) releases occurring during diastolic depolarization activate the Na(+)-Ca(2+) exchanger (NCX) to produce an inward current that enhances their diastolic depolarization rate, and thus increases their beating rate. beta-AR stimulation synchronizes RyR activation and Ca(2+) release to effect an increased beating rate in pacemaker cells and contraction amplitude in myocytes: in pacemaker cells, the beta-AR stimulation synchronization of RyR activation occurs during the diastolic depolarization, and augments the NCX inward current; in ventricular myocytes, beta-AR stimulation synchronizes the openings of unitary L-type Ca(2+) channel activation following the action potential, and also synchronizes RyR Ca(2+) releases following depolarization, and in the absence of depolarization, both leading to the generation of a global cytosolic Ca(i) transient of increased amplitude and accelerated kinetics. Thus, beta-AR stimulation induced synchronization of RyR activation (recruitment of additional RyRs to fire) and of the ensuing Ca(2+) release cause the heart to beat both stronger and faster, and is thus, a common mechanism that links both the maximum achievable cardiac inotropy and chronotropy.  相似文献   

8.
The question of the extent to which cytosolic Ca(2+) affects sinoatrial node pacemaker activity has been discussed for decades. We examined this issue by analyzing two mathematical pacemaker models, based on the "Ca(2+) clock" (C) and "membrane clock" (M) hypotheses, together with patch-clamp experiments in isolated guinea pig sinoatrial node cells. By applying lead potential analysis to the models, the C mechanism, which is dependent on potentiation of Na(+)/Ca(2+) exchange current via spontaneous Ca(2+) release from the sarcoplasmic reticulum (SR) during diastole, was found to overlap M mechanisms in the C model. Rapid suppression of pacemaker rhythm was observed in the C model by chelating intracellular Ca(2+), whereas the M model was unaffected. Experimental rupturing of the perforated-patch membrane to allow rapid equilibration of the cytosol with 10 mM BAPTA pipette solution, however, failed to decrease the rate of spontaneous action potential within ~30 s, whereas contraction ceased within ~3 s. The spontaneous rhythm also remained intact within a few minutes when SR Ca(2+) dynamics were acutely disrupted using high doses of SR blockers. These experimental results suggested that rapid disruption of normal Ca(2+) dynamics would not markedly affect spontaneous activity. Experimental prolongation of the action potentials, as well as slowing of the Ca(2+)-mediated inactivation of the L-type Ca(2+) currents induced by BAPTA, were well explained by assuming Ca(2+) chelation, even in the proximity of the channel pore in addition to the bulk cytosol in the M model. Taken together, the experimental and model findings strongly suggest that the C mechanism explicitly described by the C model can hardly be applied to guinea pig sinoatrial node cells. The possible involvement of L-type Ca(2+) current rundown induced secondarily through inhibition of Ca(2+)/calmodulin kinase II and/or Ca(2+)-stimulated adenylyl cyclase was discussed as underlying the disruption of spontaneous activity after prolonged intracellular Ca(2+) concentration reduction for >5 min.  相似文献   

9.
We studied the effects of intracellular calcium dynamics on the spontaneous activity of the pacemaker cells using mathematical modeling. We compared the responses to the suppression of L-type calcium currents in several models of the electrical activity of cells of the sinoatrial node. All models showed a decrease in the maximum depolarization rate, the amplitude of action potentials, and the duration of the action potential. The model of the calcium clock showed an increase in the oscillation period by 12%. Models with the spontaneous activity, which is determined by the current activated by hyperpolarization, showed a decrease of the oscillation period by 15%. The comparison of the theoretic results with the experimental data showed that intracellular mechanisms had a different input in the spontaneous activity of pacemakers in the center and periphery of the sinoatrial node.  相似文献   

10.
Ca(2+) release from internal stores (sarcoplasmic reticulum or SR) in smooth muscles is initiated either via pharmaco-mechanical coupling due to the action of an agonist and involving IP3 receptors, or via excitation-contraction coupling, mostly involving L-type calcium channels in the plasmalemma (DHPRs), and ryanodine receptors (RyRs), or Ca(2+) release channels of the SR. This work focuses attention on the structural basis for the coupling between DHPRs and RyRs in phasic smooth muscle cells of the guinea-pig urinary bladder. Immunolabeling shows that two proteins of the SR: calsequestrin and the RyR, and one protein the plasmalemma, the L-type channel or DHPR, are colocalized with each other within numerous, peripherally located sites located within the caveolar domains. Electron microscopy images from thin sections and freeze-fracture replicas identify feet in small peripherally located SR vesicles containing calsequestrin and distinctive large particles clustered within small membrane areas. Both feet and particle clusters are located within caveolar domains. Correspondence between the location of feet and particle clusters and of RyR- and DHPR-positive foci allows the conclusion that calsequestrin, RyRs, and L-type Ca(2+) channels are associated with peripheral couplings, or Ca(2+) release units, constituting the key machinery involved in excitation-contraction coupling. Structural analogies between smooth and cardiac muscle excitation-contraction coupling complexes suggest a common basic mechanism of action.  相似文献   

11.
Excitation contraction (e-c) coupling in skeletal and cardiac muscles involves an interaction between specialized junctional domains of the sarcoplasmic reticulum (SR) and of exterior membranes (either surface membrane or transverse (T) tubules). This interaction occurs at special structures named calcium release units (CRUs). CRUs contain two proteins essential to e-c coupling: dihydropyridine receptors (DHPRs), L-type Ca(2+) channels of exterior membranes; and ryanodine receptors (RyRs), the Ca(2+) release channels of the SR. Special CRUs in cardiac muscle are constituted by SR domains bearing RyRs that are not associated with exterior membranes (the corbular and extended junctional SR or EjSR). Functional groupings of RyRs and DHPRs within calcium release units have been named couplons, and the term is also loosely applied to the EjSR of cardiac muscle. Knowledge of the structure, geometry, and disposition of couplons is essential to understand the mechanism of Ca(2+) release during muscle activation. This paper presents a compilation of quantitative data on couplons in a variety of skeletal and cardiac muscles, which is useful in modeling calcium release events, both macroscopic and microscopic ("sparks").  相似文献   

12.
The ryanodine receptors form the calcium release channel in the membrane of the sarcoplasmic reticulum (SR, the main intracellular Ca2+ store). The importance of ryanodine receptors (RyRs) to cardiac pacemaking and rhythmicity is highlighted by more than 69 mutations, RyR mutations, which underlie arrhythmias and sudden cardiac death. Although most of these mutations lie in cytoplasmic domains, they all cause increased RyR activation by Ca2+ in the SR lumen. Presented here is a review of the mechanisms by which cytoplasmic domains of the RyR can determine luminal activation.  相似文献   

13.
心肌细胞的兴奋 收缩偶联 (ECC)本质上是胞膜上的电压门控L 型钙通道 (LCCs)和胞内ryanodine受体 (RyRs)之间通过钙诱导钙释放 (CICR)机制进行沟通进而引发肌细胞收缩的过程。最近的研究进一步揭示了微观水平上LCCs和RyRs之间的信息联系。在钙偶联位点 (couplons)上 ,LCCs因膜去极化而随机开放 ,在局部产生高强度的钙脉冲 (即钙小星 ,Ca2 sparklet) ,作用于邻近肌质网终末池上的RyRs。钙偶联位点通过由钙小星随机激活的RyRs(即钙释放通道 )以钙火花 (Ca2 spark)的形式释放钙。这些钙在全细胞水平上总和即形成钙瞬变 (Ca2 transient)。因此 ,钙小星触发钙火花就构成了ECC中的基本事件。本文重点阐述LCCs和RyRs分子间的信号转导机制 ,也即从微观水平上探讨CICR及ECC的形成机制。  相似文献   

14.
We investigated the mechanisms of excitation-contraction (EC) coupling in human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and fetal ventricular myocytes (hFVMs) using patch-clamp electrophysiology and confocal microscopy. We tested the hypothesis that Ca2+ influx via voltage-gated L-type Ca2+ channels activates Ca2+ release from the sarcoplasmic reticulum (SR) via a local control mechanism in hESC-CMs and hFVMs. Field-stimulated, whole-cell [Ca2+]i transients in hESC-CMs required Ca2+ entry through L-type Ca2+ channels, as evidenced by the elimination of such transients by either removal of extracellular Ca2+ or treatment with diltiazem, an L-type channel inhibitor. Ca2+ release from the SR also contributes to the [Ca2+]i transient in these cells, as evidenced by studies with drugs interfering with either SR Ca2+ release (i.e. ryanodine and caffeine) or reuptake (i.e. thapsigargin and cyclopiazonic acid). As in adult ventricular myocytes, membrane depolarization evoked large L-type Ca2+ currents (I Ca) and corresponding whole-cell [Ca2+]i transients in hESC-CMs and hFVMs, and the amplitude of both I Ca and the [Ca2+]i transients were finely graded by the magnitude of the depolarization. hESC-CMs exhibit a decreasing EC coupling gain with depolarization to more positive test potentials, “tail” [Ca2+]i transients upon repolarization from extremely positive test potentials, and co-localized ryanodine and sarcolemmal L-type Ca2+ channels, all findings that are consistent with the local control hypothesis. Finally, we recorded Ca2+ sparks in hESC-CMs and hFVMs. Collectively, these data support a model in which tight, local control of SR Ca2+ release by the I Ca during EC coupling develops early in human cardiomyocytes.  相似文献   

15.
Ryanodine receptors (RyRs) mediate calcium (Ca)-induced Ca release and intracellular Ca homeostasis. In a cardiac myocyte, RyRs group into clusters of variable size from a few to several hundred RyRs, creating a spatially nonuniform intracellular distribution. It is unclear how heterogeneity of RyR cluster size alters spontaneous sarcoplasmic reticulum (SR) Ca releases (Ca sparks) and arrhythmogenic Ca waves. Here, we tested the impact of heterogeneous RyR cluster size on the initiation of Ca waves. Experimentally, we measured RyR cluster sizes at Ca spark sites in rat ventricular myocytes and further tested functional impacts using a physiologically detailed computational model with spatial and stochastic intracellular Ca dynamics. We found that the spark frequency and amplitude increase nonlinearly with the size of RyR clusters. Larger RyR clusters have lower SR Ca release threshold for local Ca spark initiation and exhibit steeper SR Ca release versus SR Ca load relationship. However, larger RyR clusters tend to lower SR Ca load because of the higher Ca leak rate. Conversely, smaller clusters have a higher threshold and a lower leak, which tends to increase SR Ca load. At the myocyte level, homogeneously large or small RyR clusters limit Ca waves (because of low load for large clusters but low excitability for small clusters). Mixtures of large and small RyR clusters potentiates Ca waves because the enhanced SR Ca load driven by smaller clusters enables Ca wave initiation and propagation from larger RyR clusters. Our study suggests that a spatially heterogeneous distribution of RyR cluster size under pathological conditions may potentiate Ca waves and thus afterdepolarizations and triggered arrhythmias.  相似文献   

16.
The calcium release channels/ryanodine receptors (RyRs) are potential/putative targets of cADPR (cyclic ADP-ribose) action in many tissue systems. In striated muscles, where RyRs predominate, cADPR action on these channels is controversial. Here cADPR modulation of cardiac and skeletal muscle RyR channels was tested. We considered factors reported as necessary for cADPR action, such as the presence of calmodulin and/or FK binding proteins (FKBPs). We found: 1) The RyR channel isoforms were insensitive to cADPR (or its metabolite NAADP [nicotinic acid adenine dinucleotide phosphate]) under all conditions examined, as studied by: 1a) single channel recordings in planar lipid bilayers; 1b) macroscopic behavior of the RyRs in sarcoplasmic reticulum (SR) microsomes (including crude microsome preparations likely to retain putative cADPR cofactors) at room temperature and at 37 degrees C (net energized Ca2+ uptake or passive Ca2+ leak); 2) [32P]cADPR did not bind significantly to SR microsomes; 3) cADPR did not affect FKBP association to SR membranes. We conclude that cADPR does not interact directly with RyRs or RyR-associated SR proteins. Our results under in vitro conditions suggest that c ADPR effects on Ca2+ signaling observed in vivo in mammalian striated muscle cells may reflect indirect modulation of RyRs or RyR-independent Ca2+ release systems.  相似文献   

17.
Stern MD  Cheng H 《Cell calcium》2004,35(6):591-601
The majority of contractile calcium in cardiac muscle is released from stores in the sarcoplasmic reticulum (SR), by a process of calcium-induced calcium release (CICR) through ryanodine receptors. Because CICR is intrinsically self-reinforcing, the stability of and graded regulation of cardiac EC coupling appear paradoxical. It is now well established that this gradation results from the stochastic recruitment of varying numbers of elementary local release events, which may themselves be regenerative, and which can be directly observed as calcium sparks. Ryanodine receptors (RyRs) are clustered in dense lattices, and most calcium sparks are now believed to involve activation of multiple RyRs. This implies that local CICR is regenerative, requiring a mechanism to terminate it. It was initially assumed that this mechanism was inactivation of the RyR, but during the decade since the discovery of sparks, no sufficiently strong inactivation mechanism has been demonstrated in vitro and all empirically determined gating schemes for the RyR give unstable EC coupling in Monte Carlo simulations. We consider here possible release termination mechanisms. Stochastic attrition is the spontaneous decay of active clusters due to random channel closure; calculations show that it is much too slow unless assisted by another process. Calcium-dependent RyR inactivation involving third-party proteins remains a viable but speculative mechanism; current candidates include calmodulin and sorcin. Local depletion of SR release terminal calcium could terminate release, however calculations and measurements leave it uncertain whether a sufficient diffusion resistance exists within the SR to sustain such depletion. Depletion could be assisted by dependence of RyR activity on SR lumenal [Ca(2+)]. There is substantial evidence for such lumenal activation, but it is not clear if it is a strong enough effect to account for the robust termination of sparks. The existence of direct interactions among clustered RyRs might account for the discrepancy between the inactivation properties of isolated RyRs and intact clusters. Such coupled gating remains controversial. Determining the mechanism of release termination is the outstanding unsolved problem of cardiac EC coupling, and will probably require extensive genetic manipulation of the EC coupling apparatus in its native environment to unravel the solution.  相似文献   

18.
Here we investigate how ß-adrenergic stimulation of the heart alters regulation of ryanodine receptors (RyRs) by intracellular Ca2+ and Mg2+ and the role of these changes in SR Ca2+ release. RyRs were isolated from rat hearts, perfused in a Langendorff apparatus for 5 min and subject to 1 min perfusion with 1 µM isoproterenol or without (control) and snap frozen in liquid N2 to capture their phosphorylation state. Western Blots show that RyR2 phosphorylation was increased by isoproterenol, confirming that RyR2 were subject to normal ß-adrenergic signaling. Under basal conditions, S2808 and S2814 had phosphorylation levels of 69% and 15%, respectively. These levels were increased to 83% and 60%, respectively, after 60 s of ß-adrenergic stimulation consistent with other reports that ß-adrenergic stimulation of the heart can phosphorylate RyRs at specific residues including S2808 and S2814 causing an increase in RyR activity. At cytoplasmic [Ca2+] <1 µM, ß-adrenergic stimulation increased luminal Ca2+ activation of single RyR channels, decreased luminal Mg2+ inhibition and decreased inhibition of RyRs by mM cytoplasmic Mg2+. At cytoplasmic [Ca2+] >1 µM, ß-adrenergic stimulation only decreased cytoplasmic Mg2+ and Ca2+ inhibition of RyRs. The Ka and maximum levels of cytoplasmic Ca2+ activation site were not affected by ß-adrenergic stimulation.Our RyR2 gating model was fitted to the single channel data. It predicted that in diastole, ß-adrenergic stimulation is mediated by 1) increasing the activating potency of Ca2+ binding to the luminal Ca2+ site and decreasing its affinity for luminal Mg2+ and 2) decreasing affinity of the low-affinity Ca2+/Mg2+ cytoplasmic inhibition site. However in systole, ß-adrenergic stimulation is mediated mainly by the latter.  相似文献   

19.
It has been reported that protamine (>10 µg/ml) blocks single skeletal RyR1 channels and inhibits RyR1-mediated Ca2+ release from sarcoplasmic reticulum microsomes. We extended these studies to cardiac RyR2 reconstituted into planar lipid bilayers. We found that protamine (0.02–20 µg/ml) added to the cytosolic surface of fully activated RyR2 affected channel activity in a voltage-dependent manner. At membrane voltage (Vm; SR lumen - cytosol) = 0 mV, protamine induced conductance transitions to several intermediate states (substates) as well as full block of RyR2. At Vm>10 mV, the substate with the highest level of conductance was predominant. Increasing Vm from 0 to +80 mV, decreased the number of transitions and residence of the channel in this substate. The drop in current amplitude (full opening to substate) had the same magnitude at 0 and +80 mV despite the ∼3-fold increase in amplitude of the full opening. This is more similar to rectification of channel conductance induced by other polycations than to the action of selective conductance modifiers (ryanoids, imperatoxin). A distinctive effect of protamine (which might be shared with polylysines and histones but not with non-peptidic polycations) is the activation of RyR2 in the presence of nanomolar cytosolic Ca2+ and millimolar Mg2+ levels. Our results suggest that RyRs would be subject to dual modulation (activation and block) by polycationic domains of neighboring proteins via electrostatic interactions. Understanding these interactions could be important as such anomalies may be associated with the increased RyR2-mediated Ca2+ leak observed in cardiac diseases.  相似文献   

20.
The ryanodine receptor/Ca2+-release channels (RyRs) of skeletal and cardiac muscle are essential for Ca2+ release from the sarcoplasmic reticulum that mediates excitation-contraction coupling. It has been shown that RyR activity is regulated by dynamic post-translational modifications of Cys residues, in particular S-nitrosylation and S-oxidation. Here we show that the predominant form of RyR in skeletal muscle, RyR1, is subject to Cys-directed modification by S-palmitoylation. S-Palmitoylation targets 18 Cys within the N-terminal, cytoplasmic region of RyR1, which are clustered in multiple functional domains including those implicated in the activity-governing protein-protein interactions of RyR1 with the L-type Ca2+ channel CaV1.1, calmodulin, and the FK506-binding protein FKBP12, as well as in “hot spot” regions containing sites of mutations implicated in malignant hyperthermia and central core disease. Eight of these Cys have been identified previously as subject to physiological S-nitrosylation or S-oxidation. Diminishing S-palmitoylation directly suppresses RyR1 activity as well as stimulus-coupled Ca2+ release through RyR1. These findings demonstrate functional regulation of RyR1 by a previously unreported post-translational modification and indicate the potential for extensive Cys-based signaling cross-talk. In addition, we identify the sarco/endoplasmic reticular Ca2+-ATPase 1A and the α1S subunit of the L-type Ca2+ channel CaV1.1 as S-palmitoylated proteins, indicating that S-palmitoylation may regulate all principal governors of Ca2+ flux in skeletal muscle that mediates excitation-contraction coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号