首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei (optimal growth temperature, 100 to 103 degrees C) was purified to homogeneity. This enzyme was strictly phosphate dependent, utilized either NAD+ or NADP+, and was insensitive to pentalenolactone like the enzyme from the methanogenic archaebacterium Methanothermus fervidus. The enzyme exhibited a considerable thermostability, with a 44-min half-life at 100 degrees C. The amino acid sequence of the glyceraldehyde-3-phosphate dehydrogenase from P. woesei was deduced from the nucleotide sequence of the coding gene. Compared with the enzyme homologs from mesophilic archaebacteria (Methanobacterium bryantii, Methanobacterium formicicum) and an extremely thermophilic archaebacterium (Methanothermus fervidus), the primary structure of the P. woesei enzyme exhibited a strikingly high proportion of aromatic amino acid residues and a low proportion of sulfur-containing residues. The coding gene of P. woesei was expressed at a high level in Escherichia coli, thus providing an ideal basis for detailed structural and functional studies of that enzyme.  相似文献   

2.
Pyruvate kinase was purified to homogeneity from a moderate thermophile, Bacillus stearothermophilus. The molecular weight of the enzyme was found to be 250,000 on gel filtration and 242,000 on sedimentation analysis. The enzyme consisted of four identical subunits of a molecular weight of 62,000-64,000. There were no remarkable differences between the thermophilic enzyme and mesophilic enzymes in amino acid composition, secondary structure, mono- and di-valent cation requirements for activity or specificity for nucleoside diphosphates. But the thermophilic enzyme was stable at high temperature and for a longer period of storage at lower temperature. Its specific activity was relatively high even at a low temperature (30 degrees C). The enzyme exhibited homotropic positive cooperativity for phosphoenol-pyruvate, but not for ADP. It was allosterically activated by AMP, ribose 5-phosphate and nucleoside monophosphates, but not by fructose 1,6-bisphosphate. Activation by AMP and ribose 5-phosphate, and inhibition by inorganic phosphate were also observed even at the physiological temperature (60 degrees C) for the thermophile.  相似文献   

3.
V Schultes  R Jaenicke 《FEBS letters》1991,290(1-2):235-238
D-Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium, Thermotoga maritima, is extremely thermostable showing a thermal transition beyong 105°C. At low temperature, ‘cold denaturation’ becomes detectable only in the presence of destabilizing agents. Reconstitution after preceding denaturation depends on temperature. At 0°C, no significant recovery of activity is detectable, whereas between 30 and 100°C reactivation reaches up to 85%. Shifting the temperature from low values to the range of optimum reconstitution releases the trapped intermediate in a fast reaction. Evidence from ultra-centrifugal analysis and far-UV circular dichroism proves the intermediate to be partially assembled to the tetramer, with most of its native secondary structure restored in a fast reaction. Fluorescence emission exhibits at least biphasic kinetics with the rate-limiting step(s) reflecting local adjustments of aromatic residues involved in tertiary contacts in the native state of the enzyme.  相似文献   

4.
D-Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Thermotoga maritima, a hyperthermophilic eubacterium, has been isolated in pure crystalline form. The enzyme is a homotetramer with a subunit molecular mass of 37 kDa. The sedimentation coefficient of the native enzyme is 7.3 X 10(-13)s, the isoelectric point is 4.6, and the specific absorption coefficient A1%, 1cm 280nm = 8.4. The enzyme shows extreme thermal stability: differential scanning calorimetry yields a transition temperature (Tm) of 109 degrees C for the NAD-saturated enzyme. Thermal deactivation occurs at T greater than 90 degrees C. The physicochemical characteristics of the enzyme suggest that its gross structure must be very similar to the structure of GAPDHs from mesophilic sources. The amino acid composition does not confirm the known "traffic rules" of thermal adaptation, apart from the Lys----Arg exchange. One reactive and at least two buried SH groups can be titrated with 5,5'-dithiobis(2-nitrobenzoate). The highly reactive SH group is probably the active-site cysteine residue common to all known GAPDHs. The activation energy of the glyceraldehyde 3-phosphate oxidation reaction decreases with increasing temperature. This functional behavior can be correlated with the temperature-dependent changes of both the intrinsic fluorescence and the near-UV circular dichroism; both indicate a temperature-dependent structural reorganization of the enzyme. Hydrogen-deuterium exchange reveals significantly increased rigidity of the thermophilic enzyme if compared to mesophilic GAPDHs at 25 degrees C, thus indicating that the conformational flexibility is similar at the corresponding physiological temperatures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The amino acid sequences of two thermophilic and five mesophilic glyceraldehyde-3-phosphate dehydrogenases have been compared with the known three-dimensional structure of this enzyme to determine the factors responsible for thermal stability. The changes are greatest in the S-loop regions at the center of the tetramer, which show a quantitative increase in hydrophobicity and polarity that can strengthen subunit interactions in a complementary manner. The S-loops also show increases in residue volume and bulk that may indicate a tighter packing at the molecular center. In addition, there are changes in the secondary structural parameters indicating that the helices, in particular, may be more stable in the thermophilic proteins. Increases in the hydrophobicity of domain and subunit contacts for the Thermus aquaticus glyceraldehyde-3-phosphate dehydrogenase may explain why it is the most thermostable protein in this series.  相似文献   

6.
The activity and stability of several enzymes from the facultative thermophile Bacillus flavothermus, grown within the mesophilic and thermophilic region at 34 degrees C, 43 degrees C, 52 degrees C and 70 degrees C, have been examined. While the temperature optima and maxima of all enzymes tested were found to remain unchanged at all growth temperatures, it was demonstrated that the heat stability of the proteins increased with ten perature, however, not uniformly for all enzymes. One exception was acetate kinase and the intrinsic stability of pyruvate kinase was found to increase only slightly. With all other proteins tested (alanine dehydrogenase, isocitric dehydrogenase and glucose-6-phosphate dehydrogenase, glutamate-oxalacetate and glutamate-pyruvate transaminase and myokinase) the intrinsic stability was found to increase to about 55 degrees C, but stayed unaltered at higher growth temperatures. Except for acetate kinase and myokinase, the enzymes could be stabilized by their respective substrates and the heat stability of the ES-complexes was found also to depend on the growth temperature of the cells. These data lead to the conclusion that the enzymes undergo a transition from heat-labile to thermostable within the growth temperature range between 44 degrees C and 51 degrees C while the thermal characteristics are not changed below and beyond this crucial region.  相似文献   

7.
The gsdA gene of the extreme thermophilic bacterium Aquifex aeolicus, encoding glucose-6-phosphate dehydrogenase (G6PDH), was cloned into a high-expression vector and overexpressed as a fusion protein in Escherichia coli. Here we report the characterization of this recombinant thermostable G6PDH. G6PDH was purified to homogeneity by heat precipitation followed by immobilized metal affinity chromatography on a nickel-chelate column. The data obtained indicate that the enzyme is a homodimer with a subunit molecular weight of 55 kDa. G6PDH followed Michaelis-Menten kinetics with a K(M) of 63 micro M for glucose-6-phosphate at 70 degrees C with NADP as the cofactor. The enzyme exhibited dual coenzyme specificity, although it showed a preference in terms of k(cat)/ K(M) of 20.4-fold for NADP over NAD at 40 degrees C and 5.7-fold at 70 degrees C. The enzyme showed optimum catalytic activity at 90 degrees C. Modeling of the dimer interface suggested the presence of cysteine residues that may form disulfide bonds between the two subunits, thereby preserving the oligomeric integrity of the enzyme. Interestingly, addition of dithiothreitol or mercaptoethanol did not affect the activity of the enzyme. With a half-life of 24 h at 90 degrees C and 12 h at 100 degrees C, this is the most thermostable G6PDH described.  相似文献   

8.
Endoglucanase D from Clostridium thermocellum was purified from inclusion bodies formed upon its overproduction in Escherichia coli, using 5 M urea as a solubilizing solution. We examined the effects of denaturing agents upon the stability of the pure soluble enzyme as a function of the temperature. At room temperature, guanidinium chloride induces an irreversible denaturation. By comparison, we observed no structural or functional effects at room temperature using high concentrations of urea as denaturing agent. The irreversible denaturation process observed with guanidinium chloride also occurs with urea but only at elevated temperature (greater than or equal to 60 degrees C); in 6 M urea, the activation energy of the denaturation reaction is decreased by a factor of only 1.8. We interpret the high resistance of this protein to urea as reflecting a reduced flexibility of its structure at normal temperatures which should be correlated to the thermophilic origin of this protein.  相似文献   

9.
Fitter J  Herrmann R  Dencher NA  Blume A  Hauss T 《Biochemistry》2001,40(35):10723-10731
To elucidate how enzymes adapt to extreme environmental conditions, a comparative study with a thermostable alpha-amylase from Bacillus licheniformis (BLA) and its mesophilic homologue from Bacillus amyloliquefaciens (BAA) was performed. We measured conformational stability, catalytic activity, and conformational fluctuations on the picosecond time scale for both enzymes as a function of temperature. The objective of this study is to analyze how these properties are related to each other. BLA shows its maximal catalytic activity at about 90-95 degrees C and a strongly reduced activity (only 20% of the maximum) at room temperature. Although B. licheniformis itself is a mesophilic organism, BLA shows an activity profile typical for a thermophilic enzyme. In contrast to this, BAA exhibits its maximal activity at about 80 degrees C but with a level of about 60% activity at room temperature. In both cases the unfolding temperatures T(m) are only 6 degrees C (BAA, T(m) = 86 degrees C) and 10 degrees C (BLA, T(m) = 103 degrees C), respectively, higher than the temperatures for maximal activity. In contrast to many previous studies on other thermophilic-mesophilic pairs, in this study a higher structural flexibility of the thermostable BLA was measured as compared to the mesophilic BAA. The findings of this study neither indicate a proportionality between the observed dynamics and the catalytic activity nor support the idea of more "rigid" thermostable proteins, as often proposed in the concept of "corresponding states".  相似文献   

10.
Sulfolobus solfataricus metabolizes the five-carbon sugar d-arabinose to 2-oxoglutarate by an inducible pathway consisting of dehydrogenases and dehydratases. Here we report the crystal structure and biochemical properties of the first enzyme of this pathway: the d-arabinose dehydrogenase. The AraDH structure was solved to a resolution of 1.80 A by single-wavelength anomalous diffraction and phased using the two endogenous zinc ions per subunit. The structure revealed a catalytic and cofactor binding domain, typically present in mesophilic and thermophilic alcohol dehydrogenases. Cofactor modeling showed the presence of a phosphate binding pocket sequence motif (SRS-X2-H), which is likely to be responsible for the enzyme's preference for NADP+. The homo-tetrameric enzyme is specific for d-arabinose, l-fucose, l-galactose and d-ribose, which could be explained by the hydrogen bonding patterns of the C3 and C4 hydroxyl groups observed in substrate docking simulations. The enzyme optimally converts sugars at pH 8.2 and 91 degrees C, and displays a half-life of 42 and 26 min at 85 and 90 degrees C, respectively, indicating that the enzyme is thermostable at physiological operating temperatures of 80 degrees C. The structure represents the first crystal structure of an NADP+-dependent member of the medium-chain dehydrogenase/reductase (MDR) superfamily from Archaea.  相似文献   

11.
Thermal denaturation and aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been studied using differential scanning calorimetry (DSC), dynamic light scattering (DLS), and analytical ultracentrifugation. The maximum of the protein thermal transition (T(m)) increased with increasing the protein concentration, suggesting that the denaturation process involves the stage of reversible dissociation of the enzyme tetramer into the oligomeric forms of lesser size. The dissociation of the enzyme tetramer was shown by sedimentation velocity at 45 degrees C. The DLS data support the mechanism of protein aggregation that involves a stage of the formation of the start aggregates followed by their sticking together. The hydrodynamic radius of the start aggregates remained constant in the temperature interval from 37 to 55 degrees C and was independent of the protein concentration (R(h,0) approximately 21 nm; 10 mM sodium phosphate, pH 7.5). A strict correlation between thermal aggregation of GAPDH registered by the increase in the light scattering intensity and protein denaturation characterized by DSC has been proved.  相似文献   

12.
Although enzymes of thermophilic organisms are often very resistant to thermal denaturation, they are usually less active than their mesophilic or psychrophilic homologues at moderate or low temperatures. To explore the structural features that would improve the activity of a thermophilic enzyme at less than optimal temperatures, we randomly mutated the DNA of single-site mutants of the thermostable Thermus thermophilus 3-isopropylmalate dehydrogenase that already had improved low-temperature activity and selected for additional improved low-temperature activity. A mutant (Ile279 → Val) with improved low-temperature activity contained a residue that directly interacts with the adenine of the coenzyme NAD(+), suggesting that modulation of the coenzyme-binding pocket's volume can enhance low-temperature activity. This idea was further supported by a saturation mutagenesis study of the two codons of two other residues that interact with the adenine. Furthermore, a similar type of amino acid substitution also improved the catalytic efficiency of another thermophilic dehydrogenase, T. thermophilus lactate dehydrogenase. Steady-state kinetic experiments showed that the mutations all favorably affected the catalytic turnover numbers. Thermal stability measurements demonstrated that the mutants remain very resistant to heat. Calculation of the energetic contributions to catalysis indicated that the increased turnover numbers are the result of destabilized enzyme-substrate-coenzyme complexes. Therefore, small changes in the side chain volumes of coenzyme-binding residues improved the catalytic efficiencies of two thermophilic dehydrogenases while preserving their high thermal stabilities and may be a way to improve low-temperature activities of dehydrogenases in general.  相似文献   

13.
Summary Bacillus stearothermophilus was adapted to grow at 55°C and 37°C in a complex medium with almost equivalent yields in cell mass. In both temperature ranges the maximum specific growth rates (μmax) were identical. Cellular extracts of this bacterium showed remarkable differences in the activity levels of several enzymes, depending on the respective growth temperature. High activities of glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase were observed in bacteria from thermophilic cultures (55°C) and the respiratory quotient exceeded 1.0. Under anaerobic conditions at 55°C μmax was the same as in aerobic cultures. No alcohol dehydrogenase was detected in cells from mesophilic cultures (37°C), however, and the level of glyceraldehyde-3-phosphate dehydrogenase was also extremely low under mesophilic conditions. Succinate dehydrogenase and isocitrate dehydrogenase activity appeared to be higher in bacteria grown at 37°C; the resspiratory quotient was always lower than 1.0. At 37°C, acetoin formation was observed regularly, a fermentation product which was never detected in 55°C-cultures. Under anaerobic conditions at 37°C a very low growth rate was found. When adapted to grow at 37°C or 55°C,B. stearothermophilus is apparently able to use different catabolic systems.  相似文献   

14.
Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic-mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25°C for thermophilic IGPS, near its adaptive temperature (75°C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO2 release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards.  相似文献   

15.
Rabbit skeletal muscle glyceraldehyde-3-phosphate dehydrogenase was stabilized by intramolecular intersubunit crosslinking with diimidoesters. Half-inactivation temperature for optimal cross-linker-treated enzyme preparation increased by 11 degrees C. Stabilization effect correlated with the content of crosslinked fractions in enzyme preparation, as proved by SDS gel-electrophoresis. It is proposed that artificial crosslinks stabilize the enzyme in a similar fashion to salt bridges in the thermophilic bacteria enzymes, i.e. preventing dissociation into inactive subunits.  相似文献   

16.
The D-glyceraldehyde-3-phosphate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus was purified and crystallized. The enzyme is a homomeric tetramer (molecular mass of subunits 45 kDa). Partial sequence analysis shows homology to the enzymes from eubacteria and from the cytoplasm of eukaryotes. Unlike these enzymes, the D-glyceraldehyde-3-phosphate dehydrogenase from Methanothermus fervidus reacts with both NAD+ and NADP+ and is not inhibited by pentalenolactone. The enzyme is intrinsically stable up to 75 degrees C. It is stabilized by the coenzyme NADP+ and at high ionic strength up to about 90 degrees C. Breaks in the Arrhenius and Van't Hoff plots indicate conformational changes of the enzyme at around 52 degrees C.  相似文献   

17.
Limited thermostability of antibiotic resistance markers has restricted genetic research in the field of extremely thermophilic Archaea and bacteria. In this study, we used directed evolution and selection in the thermophilic bacterium Thermus thermophilus HB27 to find thermostable variants of a bleomycin-binding protein from the mesophilic bacterium Streptoalloteichus hindustanus. In a single selection round, we identified eight clones bearing five types of double mutated genes that provided T. thermophilus transformants with bleomycin resistance at 77 degrees C, while the wild-type gene could only do so up to 65 degrees C. Only six different amino acid positions were altered, three of which were glycine residues. All variant proteins were produced in Escherichia coli and analyzed biochemically for thermal stability and functionality at high temperature. A synthetic mutant resistance gene with low GC content was designed that combined four substitutions. The encoded protein showed up to 17 degrees C increased thermostability and unfolded at 85 degrees C in the absence of bleomycin, whereas in its presence the protein unfolded at 100 degrees C. Despite these highly thermophilic properties, this mutant was still able to function normally at mesophilic temperatures in vivo. The mutant protein was co-crystallized with bleomycin, and the structure of the binary complex was determined to a resolution of 1.5 A. Detailed structural analysis revealed possible molecular mechanisms of thermostabilization and enhanced antibiotic binding, which included the introduction of an intersubunit hydrogen bond network, improved hydrophobic packing of surface indentations, reduction of loop flexibility, and alpha-helix stabilization. The potential applicability of the thermostable selection marker is discussed.  相似文献   

18.
A casein-agar plate assay was used for the quantitative determination of both mesophilic and thermophilic proteases. Because many proteases are thermostable, assay at higher temperatures is possible. The sensitivity of the plate assay increased with temperature, the optimum assay temperature depending on the thermostability of the enzyme (e.g. Thermus protease, 75 degrees C; thermolysin, 65 degrees C; trypsin, 65 degrees C; alpha-chymotrypsin, 45 degrees C). A positive correlation was observed between incubation temperature and the density of the para-casein precipitate, increasing the accuracy of diameter measurement. Using this modified method, thermostable proteases could be assayed at levels well below the limits of detection of other methods (e.g. 40 pg of thermolysin and 300 pg of trypsin detectable at 65 degrees C, a 16-fold increase in the sensitivity for trypsin compared with a conventional plate assay (Fossum, K. (1970) Acta Pathol. Microbiol. Scand. Sect. B 78, 350-361)). The sensitivity of the plate assay could be further increased by the inclusion of some detergents and chaotropic agents in the gel.  相似文献   

19.
The thermostability of several enzymes from the facultative thermophilic actinomycete Streptomyces sp., derived from cells grown in the temperature range from 37 degrees C to 60 degrees C, has been examined. A correlation between the growth temperature of the cultures and the heat stability of the enzymes could be demonstrated for alanine dehydrogenase, isocitrate dehydrogenase, myokinase and pyruvate kinase. Except for the isocitrate dehydrogenase, which showed a linear increase of its stability throughout the entire temperature range, all enzymes exhibited a steep increase of the heat stability up to about 50 degrees C, but no further increase in the higher growth range, suggesting, that from 50 degrees C upward a shift to the exclusive production of thermostable protein occurs. Furthermore, the stability of alanine dehydrogenase and pyruvate kinase was found to increase substantially in presence of their substrates. In contrast, substrate-mediated stabilization was very weak with glucose-6-phosphate dehydrogenase and totally absent with acetate kinase, isocitrate dehydrogenase and myokinase. A comparison with previous observations with the same enzymes from Bacillus flavothermus showed, that enzymes from different organisms can have different thermal properties. Determination of the fatty acid composition of Streptomyces sp. cells, grown at different temperatures, showed relatively small alterations, with the main changes occurring between 37 degrees C and 40 degrees C.  相似文献   

20.
The genes for glyceraldehyde-3-phosphate dehydrogenase (gap genes) from the mesophilic methanogenic archaebacteria Methanobacterium formicicum and Methanobacterium bryantii were cloned and sequenced. The deduced amino acid sequences show 95% identity to each other and about 70% identity to the glyceraldehyde-3-phosphate dehydrogenase from the thermophilic methanogenic archaebacterium Methanothermus fervidus. Although the sequence similarity between the archaebacterial glyceraldehyde-3-phosphate dehydrogenase and the homologous enzyme of eubacteria and eukaryotes is low, an equivalent secondary-structural arrangement can be deduced from the profiles of the physical parameters hydropathy, chain flexibility and amphipathy. In order to find possible thermophile-specific structural features of the enzyme from M. fervidus, a comparative primary-sequence analysis was performed. Amino acid exchanges leading, to a stabilization of the main-chain conformation, could be found throughout the sequence of the thermophile enzyme. Striking features of the thermophile sequence are the preference for isoleucine, especially in beta-sheets, and a low arginine/lysine ratio of 0.54.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号