首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidemiological studies of DNA methylation (DNAm) profiles may hold substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. Different cell types are likely to have different DNAm patterns. We investigate the DNAm differences between two types of biospecimens available in many genetic epidemiology studies. We compared DNAm patterns in two different DNA samples from each of 34 participants in the Genetic Epidemiology Network of Arteriopathy study (20 Caucasians and 14 African-Americans). One was extracted from peripheral blood cells (PBC) and the other from transformed B-lymphocytes (TBL). The genome-wide DNAm profiles were compared at over 27,000 genome-wide methylation sites. We found that 26 out of the 34 participants had correlation coefficients higher than 0.9 between methylation profiles of PBC and TBL. Although a high correlation was observed in the DNAm profile between PBC and TBL, we also observed variation across samples from different DNA resources and donors. Using principal component analysis of the DNAm profiles, the two sources of the DNA samples could be accurately predicted. We also identified 3,723 autosomal DNAm sites that had significantly different methylation statuses in PBC compared to TBL (Bonferroni corrected p value <0.05). Both PBC and TBL provide a rich resource for understanding the DNAm profiles in humans participating in epidemiologic studies. While the majority of DNAm findings in PBC and TBL may be consistent, caution must be used when interpreting results because of the possibility of cell type-specific methylation modification.  相似文献   

2.
The idea that large DNA molecules adopt a stretched conformation as they pass through gels suggests a simple mechanism for the separation of DNA by crossed field electrophoresis: at each change in field direction a DNA molecule takes off in the new direction of the field by a movement which is led by what was formerly its back end. The effect of this ratcheting motion is to subtract from the DNA molecule's forward movement, at each step, an amount which is proportional to its length. We find that this model explains most of the features of the separation, and we describe experiments, using a novel electrophoresis apparatus, which support the model. The apparatus turns the gel between two preset orientations in a uniform electric field at preset time intervals. This separation method has the practical advantage over some others that the DNA molecules follow straight tracks. A further advantage is that the parameters which determine the separation are readily predicted from the simple theory describing their motion.  相似文献   

3.
Double strand breaks in DNA can be quantified down to very low frequencies (a few per Gigabase pair) in nanogram quantities of nonradioactive, genomic DNA by dispersing the DNAs on electrophoretic gels, digitizing them by quantitative electronic imaging, and calculating the DNA lengths by number average length analysis. No specific distribution of damages is required for number average length analysis. To test the validity of this approach, we used DNA populations of known absolute lengths and break frequencies as experimental DNAs and calculated the number average lengths and double strand break levels. Experimental DNAs and length standards were dispersed using pulsed field electrophoretic modes (unidirectional pulsed field, contour clamped homogeneous field, or transverse alternating field) appropriate for their size range, stained with ethidium, destained, and a quantitative electronic image obtained. A dispersion curve was constructed from the migration-mobility relationships of the length standard DNAs, and the number average lengths of the experimental DNAs were calculated. The calculated DNA lengths agreed well with the actual lengths. Furthermore, the double strand break frequencies calculated through number average length analysis of DNAs dispersed by these pulsed field gel modes and digitized by quantitative electronic imaging were in excellent agreement with the actual values for populations of DNA over the size range of approximately 4 kbp to approximately 3 Mbp. The use of this approach in quantifying DNA damages is illustrated for double strand breaks and damage clusters (e.g., OxyPurine clusters recognized by Escherichia coli Fpg protein) induced in T7 DNA by ionizing radiation.  相似文献   

4.
Fighting geminiviruses by RNAi and vice versa   总被引:3,自引:0,他引:3  
Geminiviruses have recently emerged not only as the cause of devastating diseases of important crop plants but also as a tool to study fundamental aspects of RNA interference (RNAi) and virus-induced gene silencing. RNA silencing is an evolutionary conserved mechanism protecting cell from pathogenic RNA and DNA, which is increasingly viewed as an adaptive immune system of plants against viruses. Here we summarize recent developments in the field of geminivirology presented by several leading groups at the Meeting “Gemini2004” (a total of 85 participants from all over the world) with the main focus on the anti-viral strategies that exploit RNAi and related silencing phenomena.  相似文献   

5.
A mesoscale model of DNA is presented (3SPN.1), extending the scheme previously developed by our group. Each nucleotide is mapped onto three interaction sites. Solvent is accounted for implicitly through a medium-effective dielectric constant and electrostatic interactions are treated at the level of Debye-Hückel theory. The force field includes a weak, solvent-induced attraction, which helps mediate the renaturation of DNA. Model parameterization is accomplished through replica exchange molecular dynamics simulations of short oligonucleotide sequences over a range of composition and chain length. The model describes the melting temperature of DNA as a function of composition as well as ionic strength, and is consistent with heat capacity profiles from experiments. The dependence of persistence length on ionic strength is also captured by the force field. The proposed model is used to examine the renaturation of DNA. It is found that a typical renaturation event occurs through a nucleation step, whereby an interplay between repulsive electrostatic interactions and colloidal-like attractions allows the system to undergo a series of rearrangements before complete molecular reassociation occurs.  相似文献   

6.
Biological contexts for DNA charge transport chemistry   总被引:1,自引:0,他引:1  
  相似文献   

7.
Boudsocq F  Ling H  Yang W  Woodgate R 《DNA Repair》2002,1(5):343-358
Our understanding of the molecular mechanisms of error-prone lesion bypass has changed dramatically in the past few years. The concept that the key participants in the mutagenic process were accessory proteins that somehow modified the ability of the cell's main replicase to facilitate bypass of normally blocking lesions has been replaced with one in which the replicase is displaced by a polymerase specialized in lesion bypass. The participants in this process remain the same, only their function has been reassigned. What was once known as the UmuC/DinB/Rev1/Rad30 superfamily of mutagenesis proteins, is now known as the Y-family of DNA polymerases. Quite remarkably, within the space of 3 years, the field has advanced from the initial discovery of intrinsic polymerase function, to the determination of the tertiary structures of several Y-family DNA polymerases.A key to determining the biochemical properties of each DNA polymerase is through structure-function studies that result in the site-specific substitution of particular amino acids at critical sites within each DNA polymerase. However, we should not forget the power of genetic selection that allows us to identify residues within each polymerase that are generated by "random mutagenesis" and which are important for both a gain or loss of function in vivo. In this review, we discuss the structural ramifications of several missense mutations previously identified in various Y-family DNA polymerase and speculate on how each amino acid substitution might modify the enzymatic activity of the respective polymerase or possibly perturb protein-protein interactions necessary for efficient translesion replication in vivo.  相似文献   

8.
The COVID‐19 pandemic has disrupted many standard approaches to STEM education. Particularly impacted were field courses, which rely on specific natural spaces often accessed through shared vehicles. As in‐person field courses have been found to be particularly impactful for undergraduate student success in the sciences, we aimed to compare and understand what factors may have been lost or gained during the conversion of an introductory field course to an online format. Using a mixed methods approach comparing data from online and in‐person field‐course offerings, we found that while community building was lost in the online format, online participants reported increased self‐efficacy in research and observation skills and connection to their local space. The online field course additionally provided positive mental health breaks for students who described the time outside as a much‐needed respite. We maintain that through intentional design, online field courses can provide participants with similar outcomes to in‐person field courses.  相似文献   

9.
Samarendra Basu 《Biopolymers》1977,16(10):2281-2298
A theory for the determination of DNA arrangements in DNA-containing specimens, using planar aromatic dye molecules as probes for plane polarization of fluorescence, has been described. At low dye-to-DNA concentrations, the dye molecules are sandwiched between the stacked bases of DNA; hence, the fluorescence from the dye bound to a local region of DNA helix is plane-polarized with the polarization direction perpendicular to the local axis of DNA. The degree of such polarization from an aligned DNA-specimen complexed with dye is determined both by the DNA orientation and the conformational state (e.g., base tilt) of DNA into that specimen. Analysis has been made of the relationship between the degree of polarization and the orientation of the emitting dipoles of dye. The dye complexes may be aligned in a mechanical shear or electric field. However, any change in the orientation distribution of the emitting dipoles due to force fields should be taken into account. With some assumptions and approximations, the magnitude and the direction of maximum polarization can be related to different orders of DNA coiling and to their various combinations. Since the measured polarization is averaged over all DNA regions of the specimen, if the magnitude of polarization is appreciable and the polarization occurs in the specific direction of the specimen, the theory helps to eliminate several probable arrangements of DNA. The predominant molecular features of the actual DNA arrangement can be determined through this process of elimination, as explained in two subsequent papers with T-even bacteriophage and chromosome systems.  相似文献   

10.
Pulsed field gradient electrophoresis allows the separation of large DNA molecules up to 2,000 kilobases (kb) in length and has the potential to close the resolution gap between standard electrophoresis of DNA molecules (smaller than 50 kb) and standard cytogenetics (larger than 2,000 kb). We have analysed the amplified DNA in four cell lines containing double minute chromosomes (DMs) and two lines containing homogeneously staining regions. The cells were immobilized in agarose blocks, lysed, deproteinized, and the liberated DNA was digested in situ with various restriction endonucleases. Following electrophoretic separation by pulsed field gel electrophoresis, the DNA in the gel was analysed by Southern blotting with appropriate probes for the amplified DNA. We find that the DNA in intact DMs is larger than 1,500 kb. Our results are also compatible with the notion that the DNA in DMs is circular, but this remains to be proven. The amplified segment of wild-type DNA covers more than 550 kb in all lines and possibly up to 2,500 kb in some. We confirm that the repeat unit is heterogeneous in some of the amplicons. In two cell lines, however, with low degrees of gene amplification, we find no evidence for heterogeneity of the repeats up to 750 (Y1-DM) and 800 kb (3T6-R50), respectively. We propose that amplicons start out long and homogeneous and that the heterogeneity in the repeat arises through truncation during further amplification events in which cells with shorter repeats have a selective advantage. Even if the repeats are heterogeneous, however, pulsed field gradient gels can be useful to establish linkage of genes over relatively short chromosomal distances (up to 1,000 kb). We discuss some of the promises and pitfalls of pulsed field gel electrophoresis in the analysis of amplified DNA.  相似文献   

11.
我们设计了一种简单电洗脱装置,从琼脂糖胶中回收DNA。该装置由两个带旋盖的小管、两块透析膜和一个凝胶屏障组成。在电场作用下,DNA从凝胶中迁移出来,通过凝胶屏障进入由凝胶屏障和透析膜组成的回收小仓。用微量吸样器收集DNA,乙醇沉淀和清洗。该法DNA的回收率约85%;回收的DNA可用于基因工程常规实验。  相似文献   

12.
The first Sino-German Symposium on DNA Repair and Human Diseases was held in the Capital Normal University, Beijing, China, from October 9th to 11th, 2010. It was initiated and organized by Xingzhi Xu and Zhao-Qi Wang with strong support from top scientists in the field from China, Germany and the United States. Financially, it was fully supported by the Sino-German Center for Science Promotion jointly founded by the National Natural Science Foundation of China (NSFC) and the Deutsche Forschungsgemeinschaft (DFG). This report summarizes 35 plenary lectures presented during this three-day symposium, with topics ranging from DNA damage checkpoint signaling, DNA repair, posttranslational protein modifications in DNA damage response (DDR) to DDR in ageing and cancer. This symposium stimulated extensive discussions on science and potential collaboration among the 230 participants.  相似文献   

13.
We study theoretically the feasibility of using transverse electronic transport within a nanopore for rapid DNA sequencing. Specifically, we examine the effects of the environment and detection probes on the distinguishability of the DNA bases. We find that the intrinsic measurement bandwidth of the electrodes helps the detection of single bases by averaging over the current distributions of each base. We also find that although the overall magnitude of the current may change dramatically with different detection conditions, the intrinsic distinguishability of the bases is not significantly affected by pore size and transverse field strength. The latter is the result of very effective stabilization of the DNA by the transverse field induced by the probes, so long as that field is much larger than the field that drives DNA through the pore. In addition, the ions and water together effectively screen the charge on the nucleotides, so that the electron states participating in the transport properties of the latter ones resemble those of the uncharged species. Finally, water in the environment has negligible direct influence on the transverse electrical current.  相似文献   

14.
We investigated the prevalence of beliefs in several key and contested aspects of human psychology and behavior in a broad sample of evolutionary-informed scholars (N = 581). Nearly all participants believed that developmental environments substantially shape human adult psychology and behavior, that there are differences in human psychology and behavior based on sex differences from sexual selection, and that there are individual differences in human psychology and behavior resulting from different genotypes. About three-quarters of participants believed that there are population differences from dissimilar ancestral ecologies/environments and within-person differences across the menstrual cycle. Three-fifths believed that the human mind consists of domain-specific, context-sensitive modules. About half of participants believed that behavioral and cognitive aspects of human life history vary along a unified fast-slow continuum. Two-fifths of participants believed that group-level selection has substantially contributed to human evolution. Results indicate that there are both shared core beliefs as well as phenomena that are accepted by varying proportions of scholars. Such patterns represent the views of contemporary scholars and the current state of the field. The degree of acceptance for some phenomena may change over time as evolutionary science advances through the accumulation of empirical evidence.  相似文献   

15.
Quantitative measurement of DNA migration in gel electrophoresis requires precisely controlled homogeneous electric fields. A new electrophoresis system has allowed us to explore several parameters governing DNA migration during homogeneous field pulsed field gel (PFG) electrophoresis. Migration was measured at different switch times, temperatures, agarose concentrations, and voltage gradients. Conditions which increase DNA velocities permit separation over a wider size range, but reduce resolution. We have also varied the angle between the alternating electric fields. Reorientation angles between 105 degrees and 165 degrees give equivalent resolution, despite significant differences in DNA velocity. Separation of DNA fragments from 50 to greater than 7000 kilobases (Kb) can easily be optimized for speed and resolution based on conditions we describe.  相似文献   

16.
The environment can influence human health and disease in many harmful ways. Many epidemiological studies have been conducted with the aim of elucidating the association between environmental exposure and human disease at the molecular and pathological levels, and such associations can often be through induced epigenetic changes. One such mechanism for this is through environmental factors increasing oxidative stress in the cell, and this stress can subsequently lead to alterations in DNA molecules. The two cellular organelles that contain DNA are the nucleus and mitochondria, and the latter are particularly sensitive to oxidative stress, with mitochondrial functions often disrupted by increased stress. There has been a substantial increase over the past decade in the number of epigenetic studies investigating the impact of environmental exposures upon genomic DNA, but to date there has been insufficient attention paid to the impact upon mitochondrial epigenetics in studying human disease with exposure to environment. Here, in this review, we will discuss mitochondrial epigenetics with regard to epidemiological studies, with particular consideration given to study design and analytical challenges. Furthermore, we suggest future directions and perspectives in the field of mitochondrial epigenetic epidemiological studies.  相似文献   

17.
Our bloodstream is considered to be an environment well separated from the outside world and the digestive tract. According to the standard paradigm large macromolecules consumed with food cannot pass directly to the circulatory system. During digestion proteins and DNA are thought to be degraded into small constituents, amino acids and nucleic acids, respectively, and then absorbed by a complex active process and distributed to various parts of the body through the circulation system. Here, based on the analysis of over 1000 human samples from four independent studies, we report evidence that meal-derived DNA fragments which are large enough to carry complete genes can avoid degradation and through an unknown mechanism enter the human circulation system. In one of the blood samples the relative concentration of plant DNA is higher than the human DNA. The plant DNA concentration shows a surprisingly precise log-normal distribution in the plasma samples while non-plasma (cord blood) control sample was found to be free of plant DNA.  相似文献   

18.
Ligands recognizing the minor groove of DNA: development and applications   总被引:1,自引:0,他引:1  
Wemmer DE 《Biopolymers》1999,52(4):197-211
  相似文献   

19.
Aquatic invasive plant species cause negative impacts to economies and ecosystems worldwide. Traditional survey methods, while necessary, often do not result in timely detections of aquatic invaders, which can be cryptic, difficult to identify, and exhibit very rapid growth and reproduction rates. Environmental DNA (eDNA) is a relatively new method that has been used to detect multiple types of animals in freshwater and marine ecosystems through tissues naturally shed from the organism into the water column or sediment. While eDNA detection has proven highly effective in the detection of aquatic animals, we know less about the efficacy of eDNA as an effective surveillance tool for aquatic plants. To address this disparity, we designed mesocosm experiments with Elodea species to determine the ability to detect accumulation and degradation of the DNA signal for aquatic plants, followed by field surveillance of the highly invasive Hydrilla verticillata in freshwaters across several U.S. geographic regions. In both lab and field experiments, we designed a high sensitivity quantitative PCR assay to detect the aquatic plant species. In both experiments, plant eDNA detection was successful; we saw accumulation of DNA when plants were introduced to tanks and a decrease in DNA over time after plants were removed. We detected eDNA in the field in areas of known Hydrilla distribution. Employing eDNA detection for aquatic plants will strengthen efforts for early detection and rapid response of invaders in global freshwater ecosystems.  相似文献   

20.
Use of DNA from dry leaves for PCR and RAPD analysis   总被引:11,自引:0,他引:11  
Fresh or frozen tissue is usually used as a source of DNA for PCR and RAPD analysis. We have found that leaves can be allowed to dry at room temperature before extraction of DNA. Heating the leaves or microwave drying resulted in poor recovery of DNA. Storage of fresh leaves in paper envelopes in the laboratory was the most successful approach. This allowed the tissue to dry out over a period of several days and DNA could be extracted at any time, providing a convenient method for the collection and analysis of field material. DNA from leaves stored for four months at room temperature was suitable for PCR analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号