首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Interstitial deletions of the short arm of chromosome 9 are associated with glioma, acute lymphoblastic leukemia, melanoma, mesothelioma, lung cancer, and bladder cancer. The distal breakpoints of the deletions (in relation to the centromere) in 14 glioma and leukemia cell lines have been mapped within the 400 kb IFN gene cluster located at band 9p21. To obtain information about the mechanism of these deletions, we have isolated and analyzed the nucleotide sequences at the breakpoint junctions in two glioma-derived cell lines. The A1235 cell line has a complex rearrangement of chromosome 9, including a deletion and an inversion that results in two breakpoint junctions. Both breakpoints of the distal inversion junction occurred within AT-rich regions. In the A172 cell line, a tandem heptamer repeat was found on either side of the deletion breakpoint junction. The distal breakpoint occurred 5' of IFNA2; the 256 bp sequenced from the proximal side of the breakpoint revealed 95% homology to long interspersed nuclear elements. One- and two-base-pair overlaps were observed at these junctions. The possible role of sequence overlaps, and repetitive sequences, in the rearrangement is discussed.  相似文献   

2.
A region of chromosome 9, surrounding the interferon-beta (IFNB1) locus and the interferon-alpha (IFNA) gene cluster on 9p13-p22, has been shown to be frequently deleted or rearranged in a number of human cancers, including leukemia, glioma, non-small-cell lung carcinoma, and melanoma. To assist in better defining the precise region(s) of 9p implicated in each of these malignancies, a combined genetic and physical map of this region was generated using the available 9p markers IFNB1, IFNA, D9S3, and D9S19, along with a newly described locus, D9S126. The relative order and distances between these loci were determined by multipoint linkage analysis of CEPH (Centre d'Etude du Polymorphisme Humain) pedigree DNAs, pulsed-field gel electrophoresis, and fluorescence in situ hybridization. All three mapping approaches gave concordant results and, in the case of multipoint linkage analysis, the following gene order was supported for these and other closely linked chromosome 9 markers present in the CEPH database: pter-D9S33-IFNB1/IFNA-D9S126-D9S3-D9S19 -D9S9/D9S15-ASSP3-qter. This map serves to extend preexisting chromosome 9 maps (which focus primarily on 9q) and also reassigns D9S3 and D9S19 to more proximal locations on 9p.  相似文献   

3.
A murine Ets2 target gene isolated by differential display cloning was identified as the phospholipase A2 activating protein (PLAA) gene. A 2.7-kb human cDNA demonstrating high homology to mouse and rat Plaa genes was then isolated and characterized. Human PLAA contains six WD-40 repeat motifs and three different protein kinase consensus domains. Fluorescence in situ hybridization (FISH) mapping placed PLAA on chromosome 9p21, a region frequently deleted in various cancers. A comprehensive mapping strategy was employed to define further the chromosomal localization of PLAA relative to CDKN2A within the 9p21 locus. Radiation hybrid mapping placed the gene 7.69 cR from WI-5735 (LOD >3.0), a marker in close proximity to CDKN2A and CDKN2B. Yeast artificial chromosome (YAC) mapping localized PLAA proximal to the CDKN2A/CDKN2B genes and to a region flanked by D9S171 and INFA commonly deleted in many neoplasms. Two YACs contained both PLAA and D9S259, a marker present in a second more proximal minimal deleted region observed in cutaneous melanoma and squamous cell lung carcinoma. Double-color fiber FISH mapping confirmed the location of PLAA centromeric to D9S171 and CDKN2A/CDKN2B. The mapping data suggest a possible tumor suppressor role for this gene.  相似文献   

4.
Confirmation of chromosome 9p linkage in familial melanoma   总被引:11,自引:3,他引:8       下载免费PDF全文
Malignant melanoma occurs as a familial cancer in 5%–10% of cases where it segregates in a manner consistent with autosomal dominant inheritance. Evidence from cytogenetics, fine-mapping studies of deletions in melanomas, and recent linkage studies supports the location of a human melanoma predisposition gene on the short arm of chromosome 9. We have carried out linkage analysis using the 9p markers IFNA and D9S126 in 26 Australian melanoma kindreds. Multipoint analysis gave a peak lod score of 4.43, 15 cM centromeric to D9S126, although a lod score of 4.13 was also found 15 cM telomeric of IFNA. These data confirm the existence of a melanoma susceptibility gene on 9p and indicate that this locus most probably lies outside of the IFNA–D9S126 interval. No significant heterogeneity was found between families, when either pairwise or multipoint data were analyzed using HOMOG.  相似文献   

5.
We examined the relationship between cutaneous malignant melanoma/dysplastic nevi (CMM/DN) and chromosome 9p in 13 pedigrees with two or more living cases of invasive melanoma. We used two highly informative (CA)n repeats, D9S126 and IFNA, previously implicated in familial malignant melanoma (MLM), to conduct linkage analysis. Three analyses were performed: (1) CMM alone--all individuals without either confirmed melanoma or borderline lesions were considered unaffected (model A); (2) CMM/DN with both variable age at onset and sporadics (model B); and (3) CMM affecteds only--all individuals either without confirmed melanoma or with borderline lesions were designated "unknown" (model C). There was significant evidence for linkage to IFNA in all three models. For CMM alone, the maximum lod score (Zmax) was 4.36 at theta = .10 for model A and 3.39 at theta = .10 for model C. For CMM/DN (model B), Zmax = 3.05 at theta = .20. There was no significant evidence for linkage between CMM alone or CMM/DN and chromosome 9p marker D9S126. In addition, there was significant evidence for heterogeneity when a homogeneity test allowing for linkage to chromosome 9p or chromosome 1p or neither region was used. These results suggest that there is an MLM susceptibility locus on chromosome 9p but that familial melanoma is heterogeneous and not all families with CMM/DN are linked to a locus in this region.  相似文献   

6.
Weill-Marchesani syndrome (WMS) is a rare disease characterized by short stature, brachydactyly, joint stiffness, and characteristic eye abnormalities, including microspherophakia, ectopia lentis, and glaucoma. Both autosomal recessive and autosomal dominant modes of inheritance have been described in association with WMS. We have performed a genome-wide search in two large consanguineous families of Lebanese and Saudian origin consistent with an autosomal recessive mode of inheritance. Here, we report the linkage of the disease gene to chromosome 19p13.3-p13.2 (Zmax=5.99 at theta=0 at locus D19S906). A recombination event between loci D19S905 and D19S901 defines the distal boundary, and a second recombination event between loci D19S221 and D19S840 defines the proximal boundary of the genetic interval encompassing the WMS gene (12.4 cM). We hope that our ongoing studies will lead to the identification of the disease-causing gene.  相似文献   

7.
We have analyzed 12 microsatellite markers on chromosome 9p in 54 paired cutaneous malignant melanoma (CMM) tumors and normal tissues. Forty-six percent of the tumors, including two in situ CMMs, showed loss of heterozygosity (LOH) at 9p. Only one tumor was homozygously deleted for 9p markers. The smallest deleted region was defined by five tumors and included markers D9S126 to D9S259. Loss of eight or more markers correlated significantly with worse prognosis (P < .002). Among the primary tumors, 87.5% of those with large deletions have a high risk of metastasis, as compared with only 18% of those without deletions or with loss of fewer than 8 markers (P < .001). It was not possible to demonstrate homozygous deletions of p16 in any of the CMM tumors. In four tumors, the LOH for 9p markers did not involve p16. The reported data suggest the existence of several tumor suppressor genes at 9p that are involved in the predisposition to and/or progression of CMM and exclude p16 from involvement in the early development of some melanoma tumors.  相似文献   

8.
Chamberlain et al. have assigned the gene for Friedreich ataxia (FA), a recessive neurodegenerative disorder, to chromosome 9, and have proposed a regional localization in the proximal short arm (9p22-cen), on the basis of linkage to D9S15 and to interferon-beta (IFNB), the latter being localized in 9p22. We confirmed more recently the close linkage to D9S15 in another set of families but found much looser linkage to IFNB. We also reported another closely linked marker, D9S5. Additional families have now been studied, and our updated lod scores are z = 14.30 at theta = .00 for D9S15-FA linkage and z = 6.30 at theta = .00 for D9S5-FA linkage. Together with the recent data of Chamberlain et al., this shows that D9S15 is very likely within 1 cM of the FA locus. We have found very significant linkage disequilibrium (delta Std = .28, chi 2 = 9.71, P less than .01) between FA and the D9S15 MspI RFLP in French families, which further supports the very close proximity of these two loci. No recombination between D9S5 and D9S15 was found in the FA families or Centre d'Etude du Polymorphisme Humain families (z = 9.30 at theta = .00). Thus D9S5, D9S15, and FA define a cluster of tightly linked loci. We have mapped D9S5 by in situ hybridization to 9q13-q21, and, accordingly, we assign the D9S5, D9S15, and FA cluster to the proximal part of chromosome 9 long arm, close to the heterochromatic region.  相似文献   

9.
Smith-Magenis syndrome (SMS) is a clinically recognizable, multiple congenital anomalies/mental retardation syndrome caused by an interstitial deletion involving band p11.2 of chromosome 17. Toward the molecular definition of the interval defining this microdeletion syndrome, 62 unrelated SMS patients in conjunction with 70 available unaffected parents were molecularly analyzed with respect to the presence or absence of 14 loci in the proximal region of the short arm of chromosome 17. A multifaceted approach was used to determine deletion status at the various loci that combined (i) FISH analysis, (ii)PCR and Southern analysis of somatic cell hybrids retaining the deleted chromosome 17 from selected patients, and (iii) genotype determination of patients for whom a parent(s) was available at four microsatellite marker loci and at four loci with associated RFLPs. The relative order of two novel anonymous markers and a new microsatellite marker was determined in 17p11.2. The results confirmed that the proximal deletion breakpoint in the majority of SMS patients is located between markers D17S58 (EW301) and D17S446 (FG1) within the 17p11.1-17p11.2 region. The common distal breakpoint was mapped between markers cCI17-638, which lies distal to D17S71, and cCI17-498, which lies proximal to the Charcot Marie-Tooth disease type 1A locus. The locus D17S258 was found to be deleted in all 62 patients, and probes from this region can be used for diagnosis of the SMS deletion by FISH. Ten patients demonstrated molecularly distinct deletions; of these, two patients had smaller deletions and will enable the definition of the critical interval for SMS.  相似文献   

10.
A child with normal growth and development and the abnormal karyotype 46,XY,17ps, was analyzed using molecular probes localized to 17p13. The results indicated the presence of two copies of the probes YNZ22.1 (D17S5) and YNH37.3 (D17S28), previously shown to be deleted in all Miller-Dieker (MDS) patients studied. However, the patient was hemizygous for probe p144D6 (D17S34), which is absent in approximately 75% of the MDS patients. As the patient is active at 9 months of age, with no clinical signs of MDS, the results confirm that the absence of locus D17S34 does not lead to the phenotypic expression of MDS. Furthermore, this deletion should assist in defining the distal limits of this contiguous gene syndrome.  相似文献   

11.
Wang G  Huang CH  Zhao Y  Cai L  Wang Y  Xiu SJ  Jiang ZW  Yang S  Zhao T  Huang W  Gu JR 《Cell research》2000,10(4):311-323
To elucidate the molecular pathology underlying the development of hepatocellular carcinoma (HCC),we used 41 highly polymorphic microsatellite markers to examine 55 HCC and corresponding non-tumor liver tissues on chromosome 9,16 and 17.Loss-of-heterozygosity(LOH) is observed with high frequency on chromosomal region 17p13(36k/55,65%),9q21-p23(28/55,51%),16q21-23(27/55,49%) in tumors.Meanwhile,microsatellite instability is rarely found in these microsatellite loci.Direct sequencing was performed to detect the tentative mutation of tumor wuppressor genes in these regions:p53,MTS1/p16,and CDH1/E-cadherin.Wihin exon 5-9 of p53 gene,14 out of 55 HCC specimens(24%) have somatic mutations,and nucleotide deletion of this gene is reported in HCC for the first time.Mutation in MTS1/p16 is found only in one tumor case.We do not find mutations in CDH1/E-cadherin.Furthermore,a statistically significant correlation is present between p53 gene mutation and loss of chromosome region 16q21-q23 and 9p21-p23,which indicates that synergism between p53 inactivation and deletion of 16q21-q23 and 9p21-p23 may play a role in the pathogenesis of HCC.  相似文献   

12.
The tumors of patients with small cell lung carcinoma (SCLC) frequently exhibit the loss of alleles at polymorphic loci on the short arm of chromosome 3. We report the genotype analysis of six SCLC patients obtained using 15 chromosome 3 probes that identified 19 restriction fragment length polymorphisms (RFLPs). Five of the six patients were reduced to homozygosity in the tumor DNA at every informative 3p locus, and thus did not serve to delineate the deletion. However, the RFLP analysis of the tumor DNA of the sixth patient demonstrated both heterozygous and hemizygous loci on 3p and allowed the definition of an interstitial deletion that extends proximal to the D3S2 locus at 3p14.2-p21 to include at least 3p13-p14. The exclusion of the D3F15S2 locus from the deleted region, observed in this patient, is an uncharacteristic feature of SCLC deletions. This deletion includes the location of D3S30 and D3S4, and thus serves to map these loci within the proximal half of chromosome 3.  相似文献   

13.
Cytogenetic analyses conducted on several cases of melanoma have contributed to the identification of the chromosomal regions where the sequences responsible for malignant transformation and the evolution of this tumor are probably located. With regard to these problems, it is very important to have the possibility to analyze, through the use of cytogenetics, both the primary melanoma and the metastatic lesions from the same patient. We present a case in which the primary melanoma and five different metastases were studied by using cytogenetics. The primary tumor showed an inversion of chromosome 1 where the p36 region, often proposed in literature as the location of a melanoma susceptibility gene, was involved. Three cutaneous and one lymphonodal metastases presented the same nine clonal chromosomal aberrations. In particular, one is a further rearrangement of the marker present in the primary tumor; another is a deletion of the 9p21pter region in which the p16 gene is located. Our results can provide a contribution to the hypothesis of the location of a candidate gene for melanoma in the 1p36 region and can also underscore the role of the 9p21 region in the progression of melanoma.  相似文献   

14.
We have used a panel of 13 DNA markers in the distal region of chromosome 14q to characterize deletions in three patients determined cytogenetically to have a ring or terminally deleted chromosome 14. We have characterized one patient with a ring chromosome 14 [r (14) (p13q32.33)] and two with terminal deletions [del (14) (pterq32.3:)]. The two patients with cytogenetically identical terminal deletions of chromosome 14 were found to differ markedly when characterized with molecular markers. In one patient, none of the markers tested were deleted, indicating that the apparent terminal deletion is actually due to either an undetected interstitial deletion or a cryptic translocation event. In the other patient, the deletion was consistent with the cytogenetic observations. The deleted chromosome was shown to be of paternal origin. The long-arm breakpoint of the ring chromosome was mapped to within a 350-kb region of the immunoglobulin heavy chain gene cluster (IGH). This breakpoint was used to localize markers D14S20 and D14S23, previously thought to lie distal to IGH, to a more proximal location. The ring chromosome represents the smallest region of distal monosomy 14q yet reported.  相似文献   

15.
Myotonic dystrophy (DM) is caused by a defect in an unknown gene that maps to 19q13.3, flanked by the tightly linked markers ERCC1 on the proximal side and D19S51 on the distal side. We report the isolation and characterization of overlapping YAC and cosmid clones around D19S51 for the construction of a physical map around this locus. The resulting contig contains the markers D19S51 and D19S62 (another new marker tightly linked to the DM locus) and the distal breakpoint of a radiation hybrid cell line used in the physical mapping of the DM region. We have compared the restriction maps of the YACs and cosmids with that of the genome to investigate the fidelity of these clones.  相似文献   

16.
We report on a 12-year-old boy with a supernumerary chromosome der(21)t(7; 21)(p21; q21.3)mat, resulting in a partial trisomy 21 and a partial trisomy 7p. The patient has a severe psychomotor retardation. Although he has most of chromosome 21 in three copies, he does not have a phenotype of Down syndrome (DS). In addition to cytogenetic analysis, molecular analysis confirmed that the "DS critical region" on chromosome 21 (21q22) is not present in three copies, since the breakpoint of the partial trisomy 21 was found to be located distal to the marker locus D21S145 but proximal to D21S226. The patient's severe mental retardation is probably due to the small telomeric 7p trisomy, having the breakpoint between markers D7S507 and D7S488. In comparison with previously published cases of partial trisomy 7p, the phenotype of this patient indicates that there is a region around the distal part of band 7p21 that in three copies might contribute to many of the facial features common to patients with partial trisomy 7p.  相似文献   

17.
The polymorphic DNA probe D3S3 was assigned to 3p14 by molecular hybridization using a human chromosome 3/hamster somatic cell hybrid deletion panel. This is the first regional assignment of a polymorphic probe to the short arm of chromosome 3. This probe appears to be proximal to the chromosome 3 fragile site and, therefore, may prove useful in characterizing the 3p chromosomal aberrations that occur in various malignant diseases.  相似文献   

18.
Children with constitutional deletions of chromosome 11p13 suffer from aniridia, genitourinary malformations, and mental retardation and are predisposed to develop bilateral Wilms tumor (the WAGR syndrome). The critical region for these defects has been narrowed to a segment of band 11p13 between the catalase and the beta-follicle-stimulating hormone genes. In this report, we have cloned the endpoints from a WAGR patient whose large cytogenetic deletion, del(11)(p14.3::p13), does not include the catalase gene. The deletion was characterized using DNA polymorphisms and found to originate in the paternally derived chromosome 11. The distal endpoint was identified as a rearrangement of locus D11S21 in conventional Southern blots of the patient's genomic DNA, but was not detected in leukocyte DNA from either parent or in sperm DNA from the father. The proximal endpoint was isolated by cloning the junction fragment and was mapped in relation to other markers and breakpoints. It defines a new locus in 11p13-delta J, which is close to the Wilms tumor gene and the breakpoint cluster region (TCL2) of the frequent t(11;14)(p13;q11) translocation in acute T-cell leukemia. An unusual concentration of base pair substitutions was discovered at delta J, in which 9 of 44 restriction sites tested (greater than 20%) vary in the population. This property makes delta J one of the most polymorphic loci on chromosome 11 and may reflect an underlying instability that contributed to the original mutation. The breakpoint extends the genetic map of this region and provides a useful marker for linkage studies and the analysis of allelic segregation in tumor cells.  相似文献   

19.
In 46,XY individuals, testes are determined by the activity of the SRY gene (sex-determining region Y), located on the short arm of the Ychromosome. The other genetic components of the cascade that leads to testis formation are unknown and may be located on the Xchromosome or on the autosomes. Evidence for the existence of several loci associated with failure of male sexual development is indicated by reports of 46,XY gonadal dysgenesis associated with structural abnormalities of the Xchromosome or of autosomes (chromosomes9, 10, 11 and 17). In this report, we describe the investigation of a child presenting with multiple congenital abnormalities, mental retardation and partial testicular failure. The patient had a homogeneous de novo 46,XY,inv dup(9)(pter→p24.1::p21.1 →p23.3::p24.1→qter) chromosome complement. No deletion was found by either cytogenetic or molecular analysis. The SRY gene and DSS region showed no abnormalities. Southern blotting dosage analysis with 9p probes and fluorescent in situ hybridisation data indicated that the distal breakpoint of the duplicated fragment was located at 9p24.1, proximal to the SNF2 gene. We therefore suggest that a gene involved in normal testicular development and/or maintenance is present at this position on chromosome 9. Received: 20 January 1997 / Accepted: 5 November 1997  相似文献   

20.
Ruiz A  Nadal M  Puig S  Estivill X 《Gene》1999,239(1):155-161
Cutaneous malignant melanoma (CMM) is a common skin cancer. About 50% of CMM sporadic tumours have lost one copy of the chromosome 9p21 region. To identify genes involved in the initiation and/or progression of CMM we have characterised the 9p21 melanoma deleted region and screened the human expressed sequence tag (EST) databases (dbEST) to search for expressed genes. We have identified the gene that encodes the human orthologue of the rat phospholipase A2 activating protein (PLAP). PLAP was considered a potential candidate to be involved in malignant melanoma because it maps to the critical region for CMM and because the PLA2 gene has been identified as a modifier of the APC gene, responsible for the adenomatous polyposis phenotype in the mouse. PLAP encodes a protein of 738 amino acids and has a high DNA (90%) and protein (97%) sequence similarity with the rat and mouse PLAP protein. PLAP has a region of WD40 repeats in the amino-terminus, which allows us to include this protein in the superfamily of beta-transducin proteins. Northern blot hybridisation gave a fragment of 4.5 kb, with higher expression in heart compared to other tissues. PLAP was localised at chromosome 9p21, between marker AFM218xg11 and TEK. SSCP analysis of the coding region of PLAP revealed no variants in the studied samples, but one of six CMM samples analysed by RT-PCR showed specific inactivation of PLAP. Despite PLAP's important role in mediating several cellular responses and its localisation to the chromosome 9p21 region deleted in CMM, it is unlikely that point mutations or deletions in the coding region of PLAP are responsible for the initiation or progression of CMM. Further studies on PLAP inactivation should be performed to clarify its potential involvement in CMM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号