首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
M Numazawa  K Yamada 《Steroids》1999,64(5):320-327
19-Hydroxy- and 19-oxo-steroids 13 and 15, respectively, which are potential metabolites of the aromatase inhibitor 5-androstene-4,17-dione (3), were synthesized from 19-(tert-butyldimethylsilyloxy)androst-5-en-17-one (5) or 4beta-acetoxyandrost-5-en-17-one (16), respectively, through 5alpha-bromo-4beta-hydroxy-6beta,19-epoxyandrostan+ ++-17-one (10) as a key intermediate in each sequence. Reaction of the 19-siloxy compound 5 with Br2 gave 5alpha-bromo-6beta,19-epoxide 8, which was treated with N,N'-dimethylacetamide followed by reaction with N-bromoacetamide and 0.28 M HCIO4, to yield compound 10. On the other hand, treatment of the 4beta-acetoxy steroid 16 with N-bromoacetamide-HCI04 followed by oxidation with Pb (IV) acetic acid and I2 under irradiation and subsequent hydrolysis with K2CO3 also produced compound 10 and in better yield than that in the above synthesis. Jones oxidation of the 4beta-ol 10 followed by reductive debromination with zinc dust yielded the 19-ol 13 in low yield as well as 6beta,19-epoxy-4-one 12 as the major product. Furthermore, the major product 12 was converted into the 19-ol 13 in moderate yield from compound 12 through acetolysis and subsequent alkaline hydrolysis. The 19-oxo steroid 15 was obtained after treatment of compound 13 with pyridinium dichromate. Compounds 13 and 15 were analyzed as the methoxime-trimethylsilyl and methoxime-dimethylisopropylsilyl derivatives and the methoxime derivative, respectively, using gas chromatography-mass spectrometry.  相似文献   

2.
M Numazawa  A Mutsumi  M Ogata  Y Osawa 《Steroids》1987,49(4-5):247-257
3 beta,16 alpha,19-Trihydroxy-5-androsten-17-one and 16 alpha,17-dihydroxy-4-androstene-3,17-dione were synthesized from the 5 alpha-bromo-6 beta,19-epoxy-17-ketone derivative 1, using the bromination at C-16 alpha of the 17-ketone 1 and the controlled alkaline hydrolysis of the 16 alpha-bromo-17-ketones 2 and 11 as key reactions. Zinc dust reductive cleavage of the 6 beta,19-epoxy-16 alpha-hydroxy-17-ketones 4 and 12, produced by controlled hydrolysis, gave the corresponding 19-alcohol derivatives 6 and 14, which were rearranged to the 17 beta-hydroxy-16-ketones 7 and 15 when treated with sodium hydroxide. The 3 beta,16 alpha,17 beta,19-tetrol 8 was obtained from the 16 alpha-ketol 6 by reaction with sodium borohydride.  相似文献   

3.
Aromatase catalyzes the conversion of androgens to estrogens through three sequential oxygenations. To gain insight into the catalytic function of aromatase and its aromatization mechanism, we studied the inhibition of human placental aromatase by 4 beta,5 beta-epoxyandrostenedione (5) as well as its 19-hydroxy and 19-oxo derivatives (6 and 7, respectively), and we also examined the biochemical aromatization of these steroids. All of the epoxides were weak competitive inhibitors of aromatase with apparent K(i) values ranging from 5.0 microM to 30 microM. The 19-methyl and 19-oxo compounds 5 and 7 inactivated aromatase in a time-dependent manner with k(inact) of 0.048 and 0.110 min(-1), respectively, in the presence of NADPH. In the absence of NADPH, only the former inhibited aromatase with a k(inact) of 0.091 min(-1). However, 19-hydroxy steroid 6 did not cause irreversible inactivation either in the presence or absence of NADPH. Gas chromatography-mass spectrometric analysis of the metabolite produced by a 5-min incubation of the three epoxides with human placental microsomes in the presence of NADPH under air revealed that all three compounds were aromatized to produce estradiol with rates of 8.82, 0.51, and 1.62 pmol/min/mg protein for 5, 6, and 7, respectively. In each case, the aromatization was efficiently prevented by 19-hydroxyandrost-4-en-17-one, a potent aromatase inhibitor. On the basis of the aromatization and inactivation results, it seems likely that the two pathways, aromatization and inactivation, may proceed, in part, through a common intermediate, 19-oxo compound 7, although they may be principally different.  相似文献   

4.
1. The synthesis of a number of 19-substituted androgens is described. 2. A method for the partially stereospecific introduction of a tritium label at C-19 in 19-hydroxyandrost-5-ene-3beta,17beta-diol was developed. The 19-(3)H-labelled triol produced by reduction of 19-oxoandrost-5-ene-3beta,17beta-diol with tritiated sodium borohydride is tentatively formulated as 19-hydroxy[(19-R)-19-(3)H]androst-5-ene-3beta,17beta-diol and the 19-(3)H-labelled triol produced by reduction of 19-oxo[19-(3)H]-androst-5-ene-3beta,17beta-diol with sodium borohydride as 19-hydroxy[(19-S)-19-(3)H]-androst-5-ene-3beta,17beta-diol. 3. In the conversion of the (19-R)-19-(3)H-labelled compound into oestrogen by a microsomal preparation from human term placenta more radioactivity was liberated in formic acid (61.6%) than in water (38.4%). In a parallel experiment with the (19-S)-19-(3)H-labelled compound the order of radioactivity was reversed: formic acid (23.4%), water (76.2%). 4. These observations are interpreted in terms of the removal of the 19-S-hydrogen atom in the conversion of a 19-hydroxy androgen into a 19-oxo androgen during oestrogen biosynthesis. 5. It is suggested that the removal of C-19 in oestrogen biosynthesis occurs compulsorily at the oxidation state of a 19-aldehyde with the liberation of formic acid.  相似文献   

5.
(22R)-6alpha,9alpha-Difluoro-11beta,21-dihydroxy-16 alpha,17alpha-propylmethylenedioxypregn-4-ene-3,20-dione (rofleponide) is a synthetic glucocorticosteroid with high affinity for the rat thymus glucocorticoid receptor and a very high biotransformation rate demonstrated through incubation with a human liver S9 subcellular fraction. Because oxidation in the 6-position is an important metabolic pathway of glucocorticosteroids, the potential 6beta-hydroxy and 6-oxo metabolites of rofleponide were synthesized to be used as reference compounds. Three alternative routes were used to reach the 6-hydroxy compound: (a) a one-step procedure involving allylic oxidation of rofleponide by selenium dioxide, (b) selenium dioxide oxidation of the corresponding 1,4-diene followed by selective 1,2-hydrogenation using Wilkinson's catalyst, and (c) autoxidation of a 3-methoxypregna-3,5-diene derivative. All three routes proceeded stereospecifically. Routes (a) and (c) gave approximately the same overall yield of the 6beta-hydroxy epimer, whereas the overall yield from route (b) was much lower, primarily because of incomplete 1,2-hydrogenation. The 6-oxo compound was prepared through Pfitzner/Moffat oxidation of the 6-hydroxy compound. The stereochemistry of the 6-hydroxy substituent is discussed on the basis of 1H-NMR spectroscopy and supplementary 2D NOESY experiments.  相似文献   

6.
Treatment of enol acetates of 3beta-acetoxyandrost-5-en-17-one and its 5alpha-reduced analog, 5alpha-androstan-17-one, and estrone acetate, 1-4, with Pb(OCOCH(3))(4) in acetic acid and acetic anhydride gave the previously unreported products, 16beta-(acetoxy)acetoxy-17-ketones 8-10 and 12, in 9-15% yields along with the known major products, 16beta-acetoxy-17-ketones 5-7 and 11. Similar treatment of the 16beta-acetoxy-17-ketones with the lead reagent did not yield the corresponding (acetoxy)acetates. Reaction of the enol acetate 3 with Pb(OCOCD(3))(4) in CD(3)COOD yielded principally the labeled (acetoxy)acetate 10-d(3), which had a CD(3)COOCH(2)COO moiety at C-16beta. In contrast, when the deuterated enol acetate 3-d(3), which was obtained by treatment of the 17-ketone 14 with (CD(3)CO)(2)O in the presence of LDA and which had a CD(3)COO moiety at C-17, was reacted with Pb(OCOCH(3))(4), the resulting product was the labeled compound 10-d(2). This product had a CH(3)COOCD(2)COO function at C-16beta. Based on these results, along with further isotope-labeling experiments, it seems likely that the (acetoxy)acetate is produced through a lead (IV) acetate-catalyzed migration of the 17-acetyl function of the enol acetate to the C-16beta-position followed by attack of an acetoxy anion of the lead reagent.  相似文献   

7.
Microsomal fractions obtained from testes of 3-week-old piglets have been incubated, separately, with progesterone, 17-hydroxyprogesterone, 5-pregnene-3 beta,20 beta-diol, 16 alpha-hydroxypregnenolone, 5-androstene-3 beta,17 alpha-diol and dehydro-epiandrosterone. The metabolites, after derivatization, have been separated by capillary gas chromatography and identified by mass spectrometry. Quantification was by selected ion monitoring. Progesterone was shown to be 17-hydroxylated and also converted into 4,16-androstadien-3-one (androstadienone). The major metabolite of 17-hydroxyprogesterone was 4-androstene-3,17-dione (4-androstenedione), but little, if any, androstadienone was formed, indicating that this particular biosynthesis did not require 17-hydroxylation. The metabolites of 5-pregnene-3 beta, 20 beta-diol were found to be 17-hydroxypregnenolone, 3 beta-hydroxy-5,16-pregnadien-20-one (16-dehydropregnenolone) and 5,16-androstadien-3 beta-ol. Dehydroepiandrosterone and 5-androstene-3 beta,17 alpha-diol were interconvertible but neither steroid acted as a substrate for 16-androstene formation. However, dehydroepiandrosterone was metabolized to a small quantity of 4-androstenedione. Under the conditions used, no metabolites of 16 alpha-hydroxypregnenolone could be detected. The present results, together with those obtained earlier, indicate that the neonatal porcine testis has the capacity to synthesize weak androgens, mainly by the 4-en-3-oxo steroid pathway. Although 16-androstenes cannot be formed from C19 steroids, progesterone served as a substrate and may be converted directly to androstadienone, without being 17-hydroxylated first. The pathway to 5,16-androstadien-3 beta-ol, however, involves 17-hydroxypregnenolone and 16-dehydropregnenolone as intermediates.  相似文献   

8.
18,20-Epoxy-11 beta,17 alpha,20 beta,21-tetrahydroxypregn-4-en-3-one was synthesized by the application of hypoiodite reaction to the cortisol acetonide. The intermediary 18-iodo derivative was converted to the 11-oxo steroid by chromic acid prior to silver ion-assisted solvolysis. Removal of the protective group with hydrochloric acid was finally carried out to give the desired 11 beta,17 alpha,18,21-tetrahydroxypregn-4-ene-3,20-dione as the hemiacetal form. 18,20-Epoxy-11 beta-17 alpha,20 beta,21- tetrahydroxypregna-1,4-dien-3-one was also prepared from prednisolone through a similar reaction sequence.  相似文献   

9.
Ruddock PL  Reese PB 《Steroids》1999,64(12):812-819
The reactions of 3beta-acyloxyandrost-5-enes with bromine/silver acetate (Petrow reaction) and mercury(II) trifluoroacetate (modified Treibs oxidation) have been used previously to effect allylic oxidation on these substrates en route to biologically active compounds. In both these reactions, which involve electrophilic addition to the delta5-bond, the 3-acyloxy substituent plays a significant role. In this report, the effect of introducing other substituents proximate to the delta5-bond has been studied by using derivatives of 3beta-acetoxyandrost-5-en-17-one (1), namely, 3beta,4beta-diacetoxyandrost-5-en-17-one (13), 3beta,19-diacetoxyandrost-5-en-17-one (14), 3beta-acetoxyandrost-5-ene-7,17-dione (15), and 3beta-acetoxy-4,4-dimethylandrost-5-en-17-one (17). Our results indicate that in both sets of reactions the effect of the introduced functional groups was pronounced. In the Petrow reaction, electrophilic addition rather than allylic oxidation on the diacetates was observed. With the Treibs reaction, allylic oxidation on the diacetates occurred. The 7-keto and 4,4-dimethyl steroids proved to be poor substrates in both reactions.  相似文献   

10.
The urinary excretion of 3beta,16beta-dihydroxy-5-androsten-17-one (16beta-OH-DHEA) is increased in patients with low renin essential hypertension. This steroid and its isomer 3beta,17beta-dihydroxy-5-androsten-16-one (16-oxo-A) have also been reported to have mineralocorticoid activity in adrenalectomized rats. These findings have led to the postulate that excessive secretion of 16beta-OH-DHEA may be responsible for the production of low renin essential hypertension. In this study unilaterally nephrectomized salt loaded rats injected once a week with 30 mg of 11-desoxycorticosterone acetate per/kg of body weight for 2 month periods developed hypertension. Rats given similar amounts of 16beta-OH-DHEA or 16-oxo-A and rats given no steroids did not develop hypertension. We conclude that it is unlikely that 16beta-OH-DHEA and 16-oxo-A are direct causative factors in the production of low renin essential hypertension.  相似文献   

11.
Side-chain functionalized delta 8(14)-15-ketosterols have been synthesized from 3 beta-acetoxy-24-hydroxy-5 alpha-chol-8(14)-en-15-one (VI) as part of a program to prepare potential metabolites and analogs of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (I), a potent regulator of cholesterol metabolism. Oxidation of VI to the 24-aldehyde VII, followed by Wittig olefination with isopropyltriphenylphosphonium iodide gave 3 beta-acetoxy-5 alpha-cholesta-8(14),24-dien-15-one (VIII), which was hydrolyzed to the free sterol IX. Oxymercuration of VIII followed by hydrolysis of the 3 beta-acetate gave 3 beta,25-dihydroxy-5 alpha-cholest-8(14)-en-15-one (IV). Hydroboration-oxidation of VIII followed by hydrolysis of the 3 beta-acetate gave 3 beta,24-dihydroxy-5 alpha-cholest-8(14)-en-15-one (V) as a 5:4 mixture of the 24R and 24S epimers. 1H and 13C nuclear magnetic resonance (NMR) assignments and mass spectral fragmentation patterns, supported by high-resolution measurements, are presented for IV and its 3 beta-acetate, V, VII, VIII, and IX. Characterization of IV by NMR and of trimethylsilyl ethers of IV and V by gas chromatography-mass spectrometry was compatible with spectral data for samples of IV and V isolated previously after incubation of I with rat liver mitochondria in the presence of NADPH. Sterols IV, V, and IX were very potent in lowering of the level of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in Chinese hamster ovary cells; their potency was comparable to that of I.  相似文献   

12.
The retro steroids 17beta-hydroxy-5beta,9beta,10alpha-androstan-3-one and 5beta,9beta,10alpha-androstane-3,17-dione were good substrates for cortisone reductase in the presence of NADH, and the products corresponded to the respective 3beta-hydroxy compounds, in which the 3beta-hydroxyl group is axial and the absolute configuration is 3S. The analogous natural steroids 17beta-hydroxy-5beta,9alpha,10beta-androstan-3-one and 5beta,9alpha,10beta-androstane-3,17-dione were very poor substrates, and gave the corresponding 3alpha(equatorial,3R)-hydroxy compounds, and, in the latter case, also an appreciable amount of 3beta(axial, 3S)-hydroxy-5beta,9alpha,10beta-androstan-17-one. The natural steroids 17beta-hydroxy-5alpha,9alpha,10beta-androstan-3-one and 5alpha,9alpha,10beta-androstane-3,17-dione were better substrates than the retro steroid 17beta-hydroxy-5alpha,9beta,10alpha-androstan-3-one, but were not such good substrates as the retro steroids 17beta-hydroxy-5beta,9beta,10alpha-androstan-3-one and 5beta,9beta,10alpha-androstane-3,17-dione. Unlike these retro steroid 5beta,9beta,10alpha-androstan-3-ones, the natural steroids 17beta-hydroxy-5alpha,9alpha,10beta-androstan-3-one and 5alpha,9alpha,10beta-androstane-3,17-dione gave the corresponding 3alpha(axial,3R)-hydroxy compounds. The retro steroid 17beta-hydroxy-5alpha,9beta,10alpha-androstan-3-one was not a good substrate, and the product of reaction corresponded to the 3alpha(axial,3R)-hydroxy compound. The nature of substrate recognition by this enzyme is discussed in the light of these structure-activity relationships.  相似文献   

13.
Alkaline hydrolysis of a 16β-acetoxy-17-oxo steroid is accompanied by almost complete rearrangement of the product to a 16-oxo-17β-hydroxy steroid. Hydrolysis can be achieved without rearrangement by 1) formation of a C-17 semicarbazone, 2) alkaline removal of the acetate group, and 3) removal of the semicarbazone group in the presence of pyruvic acid-acetic acid. By employing this technique, the title compound was obtained from its diacetate in a yield of 65%.  相似文献   

14.
19-Hydroxyaldosterone (20) and the 3 beta-hydroxy-5-ene analog of aldosterone (HAA) (8) were synthesized from 21-acetoxy-4-pregnene-3,20-dion-20-ethylene ketal-18, 11 beta-lactone (2) as follows: the double bond was transposed from the 4,5 to the 5,6-position by enol acetylation to 3, followed by sodium borohydride reduction. Further reduction of the resulting lactone 4a with diisobutylaluminum hydride (DIBAH) furnished the 20-ketal of HAA 6, from which free HAA (8) and the 18,21-anhydro compound 7 were obtained by acid treatment. The [1H]NMR spectrum of 8 in CDCl3 showed it to be a mixture of two isomeric forms. Correlation with the known aldosterone-gamma-etiolactone (10) was established by periodate oxidation of HAA to the corresponding etiolactone 9 followed by chromic acid oxidation. The preparation of 20 was next effected in the following manner: the diacetate 4b was converted into the 6 beta, 19-oxido compound 13b by addition of hypobromous acid followed by the hypoiodite reaction of the bromohydrin 11. Mild saponification of 13b lead to the corresponding diol 13a, and was followed by selective oxidation to the 3-one 14, readily dehydrobrominated to 15a. Reductive ring opening furnished a mixture of the 19,21-diol 16a and its 5-ene isomer 16b, which was directly converted to the diketal 17. Reduction with DIBAH gave the hemiacetal 18, and hydrolysis of the latter 19-hydroxyaldosterone (20) as a water-soluble solid, accompanied by the 18,21-anhydro compound 19. 19-Hydroxyaldosterone exists in CHCl3 and water as a mixture of mainly two isomers. Periodate oxidation furnished the etiolactone 21. Preliminary results indicate that HAA and 19-hydroxyaldosterone are active mineralocorticoids in the Kagawa bioassay and short-circuit current measurements.  相似文献   

15.
Aromatase is a cytochrome P450 enzyme complex that catalyzes the conversion of androst-4-ene-3,17-dione (AD) to estrone through three sequential oxygenations of the 19-methyl group. To gain insight into the ability of 3-deoxy derivative of AD, compound 1, and its 5-ene isomer 4, which are potent competitive inhibitors of aromatase, to serve as a substrate, we studied their 19-oxygenation by human placental aromatase and the metabolites isolated were analyzed by gas chromatography–mass spectrometry. Inhibitors 1 and 4 were found to be oxygenated with aromatase to produce the corresponding 19-hydroxy derivatives 2 and 5 and 19-oxo derivatives 3 and 6 as well as the 17β-reduced 19-hydroxy compounds 7 and 8. Kinetic studies indicated that the 5-ene steroid 4 was surprisingly a good substrate for the aromatase-catalyzing 19-oxygenation with the Vmax value of 45 pmol/min per mg prot which was approx. four times higher than that of the other. The relative Km value for steroids 1 and 4 obtained in this study is opposite from the relative Ki value obtained previously in the inhibition study. The results reveal that there is a difference between a binding suitable for serving as an inhibitor of aromatase and a binding suitable for serving as a substrate of the enzyme in the 3-deoxy steroid series and the C-3 carbonyl group of AD is essential for a proper binding as a substrate to the active site of aromatase.  相似文献   

16.
Deuterated analogs of pregnenolone and pregnenolone sulfate with three atoms of deuterium in position 19 were prepared. The synthetic approach was developed on derivatives of dehydroepiandrosterone, where initial intermediates were well characterized, and then applied to the pregnenolone series. Starting 19-hydroxy compounds were transformed into 3alpha,5-cycloderivatives to simplify the Jones oxidation into the corresponding 19-oic acids. After oxidation, rearrangement to 3-hydroxy-5-enes, and suitable protection, two deuterium atoms were introduced by lithium aluminum deuteride reduction. Mesylate exchange by iodide in the presence of zinc and deuterium oxide added third deuterium atom. Deprotection gave title analogs with about 93-95% content of d3-derivative, the rest was mainly not fully deuterated d2-analogue as followed from the mass spectra analysis. Thus, 3beta-hydroxy[19-2H3]androst-5-en-17-one was prepared in 14 steps from 19-hydroxy-17-oxoandrost-5-en-3beta-yl acetate in 8.9% yield, the analogous sequence in the pregnenolone series gave 3beta-hydroxy[19-2H3]pregn-5-en-20-one in 7.3% yield. Corresponding sulfates were prepared via pyridinium salts in 53 and 57% yields, respectively. Fully assigned NMR data of selected pregnenolone derivatives were given.  相似文献   

17.
The formation and gas chromatographic behavior of syn- and anti-isomers in position 20 of the methoxime-trimethylsilyl (MO-TMS) derivatives of many 20-oxo and 3,20-dioxo-21-hydroxysteroids is reported. The existence of such isomers was established from the gas chromatographic (GC) and mass spectrometric analysis of the MO-TMS derivatives of 3 alpha,21-dihydroxy-5 beta-pregnan-20-one and its 17 alpha-epimer. The degree of separation during GC analysis of the syn- and anti-isomers in position 20, as well as those in position 3, is associated to the position of additional hydroxyl groups on the steroid ring. These data are very important for the location of oxygenated substituents such as 2 alpha/2 beta, 6 alpha/6 beta, 11 beta, 16 alpha, 17 alpha, 18, 19 or 21-hydroxyl groups during structural studies of 20-oxo and 3,20-dioxosteroids.  相似文献   

18.
Substitution of a methylene group for the C-3 oxygen in androstenedione, testosterone, and the corresponding 19-hydroxy and 19-oxo derivatives results in a new category of inhibitors of estrogen biosynthesis by human placental microsomes. The inhibition is of the competitive type with the most effective inhibitors being the 17-ketonic compounds, 3-methyleneandrost-4-en-17-one, 19-hydroxy-3-methyleneandrost-4-en-17-one, and 3-methylene-19-oxoandrost-4-en-17-one with apparent Ki values of 4.7, 13, and 24 nM, respectively. The 3-methylene derivatives of androstenedione and 19-hydroxyandrostenedione were effective substrates for the placental microsomal 17 beta-hydroxy-steroid oxidoreductase but were only marginally hydroxylated at the C-19 position to the respective 19-hydroxy and 19-oxo derivatives. The 3-methylene analogs are thus competitive inhibitors of aromatization but are not substrates for this enzyme complex. Time-dependent inhibition of aromatization by 10 beta-difluoromethylestr-4-ene-3,17-dione and 10 beta-(2-propynyl)estr-4-ene,3,17-dione was abolished by substitution of a methylene function for the C-3 oxygen, suggesting that the presence of an oxygen at C-3 is required for an oxidative transformation at C-19, an initial step in aromatization. The essential role of the C-19 hydroxylation in aromatization is supported by the observation that the 3-methylene derivatives of 19-hydroxy- and 19-oxoandrostenedione showed time-dependent inhibition, but the corresponding 19-methyl compound did not. The 3-methylene androgens are potent inhibitors of placental aromatization but are themselves only marginal substrates for the enzyme. Their high affinity for and inertness to the placental aromatase complex makes them valuable probes of the aromatization process.  相似文献   

19.
A simple and versatile method for the chemical synthesis of 21-hydroxypregnane 21-O-malonyl hemiesters which may be important intermediates of cardenolide biosynthesis is described. Starting from commercial beta-methyldigitoxin, acid hydrolysis followed by 3beta-O-acetylation and ozonolysis with reductive cleavage of the ozonides afforded 3beta-acetoxy-5beta-pregnane-14beta,21-diol-20-one which was finally converted into the target compound by treatment with malonyl chloride. The malonylation protocol was optimized using deoxycorticosterone (DOC) as the pregnane educt.  相似文献   

20.
After incubation of 3beta-hydroxy-5-[17,21,21,21-2H]-pregnen-20-one with the microsomal fraction of boar testis, the metabolites were analyzed by gas chromatography and gas chromatography-mass spectrometry. The following metabolites were identified: 3beta,17alpha-dihydroxy-5-[21,21,21-3H]pregnen-20-one, 3beta-hydroxy-5-androsten-17-one, 5-androstene-3beta,17beta-diol, and 5-[17beta-2H]androstene-3beta,17alpha-diol. The presence of a 2H atom at the 17beta position of 5-androstene-3beta,17alpha-diol was confirmed by oxidizing the steroid with 3beta-hydroxy-steroid dehydrogenase of Pseudomonas testosteroni to obtain 17alpha-hydroxy-4-[2H]androsten-3-one and then by oxidizing the latter steroid with chromic acid to obtain nonlabeled 4-androstene-3,17-dione. Among these metabolites, the first three can be interpreted to be synthesized by a well documented pathway, including 17alpha-hydroxylation followed by side chain cleavage as follows: 3beta-hydroxy-5-[17,21,21,21-2H]pregnen-20-one leads to 3beta,17alpha-dihydroxy-2-[21,21,212H]-pregnen-20-one leads to 3beta-hydroxy-5-androsten-17-one leads to 5-androstene-3beta,17beta-diol. On the other hand, 5-androstene-3beta,17alpha-diol, which contained a 2H atom at the 17beta position, is not likely to be synthesized via above mentioned pathway in which nonlabeled 3beta-hydroxy-5-androsten-17-one is formed as the first C19-steroid. It seems that an alternate side chain cleavage mechanism leading from pregnenolone to 17alpha-hydroxy-C19-steroid exists in boar testis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号