首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Insulin (Ins) and various other hormones and growth factors have been shown to be rapidly internalized and translocated to the cell nucleus. This review summarizes the mechanisms that are involved in the translocation of Ins to the nucleus, and discusses its possible role in Ins action, based on observations by the authors and others. Ins is internalized to endosomes by both receptor-mediated and fluid-phase endocytosis, the latter occurring only at high Ins concentrations. The authors recently demonstrated the caveolae are the primary cell membrane locations responsible for initiating the signal transduction cascade induced by Ins. Once Ins is internalized, Ins dissociates from the Ins receptor in the endosome, and is translocated to the cytoplasm, where most Ins is degraded by Ins-degrading enzyme (IDE), although how the polypeptides cross the lipid bilayer is unknown. Some Ins escapes the degradation and binds to cytosolic Ins-binding proteins (CIBPs), in addition to IDE. IDE and some CIBPs are known to be binding proteins for other hormones or their receptors, and are involved in gene regulation, suggesting physiological relevance of CIBPs in the signaling of Ins and other hormones. Ins is eventually translocated through the nuclear pore to the nucleus, where Ins tightly associates with nuclear matrix. The role of Ins internalization and translocation to the nucleus is still controversial, although there is substantial evidence to support its role in cellular responses caused by Ins. Many studies indicate that nuclear translocation of various growth factors and hormones plays an important role in cell proliferation or DNA synthesis. It would be reasonable to suggest that tial for the regulation of nuclear events by Ins.  相似文献   

6.
7.
8.
9.
10.
In neuronal cells, the mitogen-activated protein kinase (MAP kinase) cascade is an important mediator of neurotrophin signaling from cell surface receptors to the nucleus, resulting in changes in gene expression. Nuclear localization of Erk is thought to be required for these effects. To examine the mechanism and regulation of Erk nuclear translocation, we have created a green fluorescent protein (GFP)-labeled Erk2 construct, which provides a sensitive means to follow the movement of Erk from the cytoplasm to the nucleus following receptor-mediated MAP kinase activation. Using this system in PC12 cells, we have examined a number of mechanisms that have been implicated in regulating the translocation of Erk. In PC12 cells, NGF and EGF induce a rapid translocation of GFP-Erk that requires Ras and Mek. We have found that prolonged phosphorylation of Erk is not required for the rapid and early influx of Erk into the nucleus following growth factor stimulation. Furthermore, following influx, GFP-Erk rapidly returned to the cytoplasm regardless of its phosphorylation state. The release of Erk from its cytoplasmic activator, Mek, followed by the dimerization of Erk, was sufficient to stimulate nuclear uptake, whereas Erk kinase activity was dispensable. PKA activity has been reported to be required for Erk translocation in PC12 cells. However, PKA activity was also not necessary for the early translocation of Erk into the nucleus by NGF or Ras, but it was able to induce a small influx of Erk that could be measured with GFP-Erk2.  相似文献   

11.
Regulation of Stat3 activation by MEK kinase 1   总被引:6,自引:0,他引:6  
  相似文献   

12.
13.
14.
15.
Lee KH  Moon KJ  Kim HS  Yoo BC  Park S  Lee H  Kwon S  Lee ES  Yoon S 《FEBS letters》2008,582(15):2319-2324
We investigated the cellular localization of ectopically-expressed CIS, SOCS1, SOCS2 and SOCS3 proteins. We found that SOCS proteins localize to the nucleus where they reduce Stat3 proteins and that the presence of proteasome inhibitors increased SOCS nuclear localization. Our results indicate that increased nuclear localization resulted from increased levels of SOCS proteins in the cytoplasm. Finally, we demonstrate that the same effect occurs with endogenously-expressed SOCS proteins. These observations suggest that increased cytoplasmic levels of proteins in the SOCS family are regulated through nuclear translocation.  相似文献   

16.
17.
18.
19.
Canine parvovirus (CPV), a model virus for the study of parvoviral entry, enters host cells by receptor-mediated endocytosis, escapes from endosomal vesicles to the cytosol, and then replicates in the nucleus. We examined the role of the microtubule (MT)-mediated cytoplasmic trafficking of viral particles toward the nucleus. Immunofluorescence and immunoelectron microscopy showed that capsids were transported through the cytoplasm into the nucleus after cytoplasmic microinjection but that in the presence of MT-depolymerizing agents, viral capsids were unable to reach the nucleus. The nuclear accumulation of capsids was also reduced by microinjection of an anti-dynein antibody. Moreover, electron microscopy and light microscopy experiments demonstrated that viral capsids associate with tubulin and dynein in vitro. Coprecipitation studies indicated that viral capsids interact with dynein. When the cytoplasmic transport process was studied in living cells by microinjecting fluorescently labeled capsids into the cytoplasm of cells containing fluorescent tubulin, capsids were found in close contact with MTs. These results suggest that intact MTs and the motor protein dynein are required for the cytoplasmic transport of CPV capsids and contribute to the accumulation of the capsid in the nucleus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号