首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Video recordings of interference phase contrast microscopy were used to study plasmalemma deletion during plasmolysis in hardened and non-hardened suspension cultured cells of Brassica napus, alfalfa, and cells isolated from rye seedlings. Although different hardening regimes and different cells were used, the responses to plasmolysis were consistent. Hardened cells uncoupled the volume to surface area ratio during plasmolysis both by forming a large number of strands between the cell wall and protoplast and by leaving rivulet-like networks of membranes on the cell wall surface. Tonoplast membrane was deleted as sac-like intrusions into the vacuole. Non-hardened cells produced few strands during plasmolysis. They also deleted plasmalemma and tonoplast into the vacuole as endocytotic vesicles. During deplasmolysis of hardened cells both the individual membrane strands and the rivulets of membrane material vesiculated into strings of vesicles. The vesicles were osmotically active and were re-incorporated into the expanding protoplast. Conversely, deplasmolysis in non-hardened cells resulted in few osmotically active vesicles and many broken strands. The vacuolar sac-like intrusions in hardened cells were re-incorporated into the vacuole whereas the endocytotic vesicles in non-hardened cells were not re-incorporated. Therefore, the non-hardened cells underwent expansion-induced lysis.  相似文献   

2.
Chloroplasts developed at cold-hardening (5°C) and non-hardening temperatures (20°C) were compared with respect to the stability of photosynthetic electron transport activities, the capacity to produce and maintain a H+ gradient and the capacity fat photophosphorylation as a function of resuspension in the presence or absence of osmoticum. The results for electron transport indicate that whole chain, photosystem I and pfaotosystem II activities in non-hardened chloroplast thyalkoids were unaffected by resuspension in the presence of high or low osmoticum. In contrast, the same electron transport activities in cold-hardened chloroplast thylakoids exhibited a 3- to 4-fold decrease in activity when resuspended in the presence of low osmoticum. Impairment of electron transport through photosystem II of cold-hardened thylakoids resuspended in the presence of low osmoticum was supported by room temperature fluorescence induction kinetics. Since the presence of Mn2+ partially overcame this inhibition, it is concluded that this osmotically-induced inhibition of PSII activity in cold-hardened chloroplast thylakoids may, in part, be due to damage to the H2O-splitting side of photosystem II. Both the initial rate and the maximum capacity for cyclic photophosphorylation were significantly inhibited in cold-hardened as compared to non-hardened thylakoids upon resuspension in the presence of low concentrations of osmoticum. This was correlated with an inability of the cold-hardened chloroplast thylakoids to maintain a significant transrnembrane H+ gradient. The results indicate that cold-hardened thylakoid membranes required an osmotic concentration (0.8 M) twice as high as non-hardened thylakoids (0.4 M) to produce the same initial rate of H+ uptake. In addition, the capacity to produce a proton gradient in cold-hardened thylakoids was less stable than that in non-hardened thylakoids regardless of the osmotic concentration tested. It is concluded that development of rye thylakoid membranes at low temperature results in a differential sensitivity to low osmoticum and thus extreme caution should be exercised when comparing the structure and function of isolated thylakoids developed under contrasting thermal regimes.  相似文献   

3.
Photoinhibition of photosynthesis at low temperatures was investigated in two species of subalpine eucalypt, Eucalypts nitens (Deane and Maiden) Maiden and E. pauciflora Sieb. ex Spreng. Imposition of an artificial cold-hardening treatment increased the frost tolerance of leaf tissue and increased tolerance to excess light. Cold-hardened seedlings of both species had a higher photosynthetic capacity than non-hardened seedlings at 6 and 16°C and lower levels of non-photochemical quenching (NPQ) at 20 and 5°C. Furthermore, hardened seedlings had faster rates of NPQ development at 5 and −3.5°C. An increase in minimal fluorescence, which indicates slowly reversible photoinhibition, was evident in all seedlings at −1.5 and −3.5°C but was less pronounced in hardened seedlings, with a threefold faster rate of development of NPQ, at −3.5°C than non-hardened seedlings. Hardened seedlings also recovered faster from photoinhibition at −3.5°C. Thus cold hardening increased tolerance to high light in these species. Differences between E. nitens and E. pauciflora in their response to excess light were small and significant only at −3.5°C. Faster recovery from photoinhibition of E. pauciflora was consistent with its occurrence in colder habitats than E. nitens. Received: 27 April 1997 / Accepted: 9 September 1997  相似文献   

4.
Previous studies have shown that hypoxia induces nitric oxide synthase-mediated generation of nitric oxide free radicals leading to peroxynitrite production. The present study tests the hypothesis that hypoxia results in NO-mediated modification of Na+, K+-ATPase in the fetal brain. Studies were conducted in guinea pig fetuses of 58-days gestation. The mothers were exposed to FiO2 of 0.07% for 1 hour. Brain tissue hypoxia in the fetus was confirmed biochemically by decreased ATP and phosphocreatine levels. P2 membrane fractions were prepared from normoxic and hypoxic fetuses and divided into untreated and treated groups. The membranes were treated with 0.5 mM peroxynitrite at pH 7.6. The Na+, K+-ATPase activity was determined at 37°C for five minutes in a medium containing 100 mM NaCl, 20 mM KCl, 6.0 mM MgCl2, 50 mM Tris HCl buffer pH 7.4, 3.0 mM ATP with or without 10 mM ouabain. Ouabain sensitive activity was referred to as Na+, K+-ATPase activity. Following peroxynitrite exposure, the activity of Na+, K+-ATPase in guinea pig brain was reduced by 36% in normoxic membranes and further 29% in hypoxic membranes. Enzyme kinetics was determined at varying concentrations of ATP (0.5 mM-2.0 mM). The results indicate that peroxynitrite treatment alters the affinity of the active site of Na+, K+-ATPase for ATP and decreases the Vmax by 35% in hypoxic membranes. When compared to untreated normoxic membranes Vmax decreases by 35.6% in treated normoxic membranes and further to 52% in treated hypoxic membranes. The data show that peroxynitrite treatment induces modification of Na+, K+-ATPase. The results demonstrate that peroxynitrite decreased activity of Na+, K+-ATPase enzyme by altering the active sites as well as the microenvironment of the enzyme. We propose that nitric oxide synthase-mediated formation of peroxynitrite during hypoxia is a potential mechanism of hypoxia-induced decrease in Na+, K+-ATPase activity.  相似文献   

5.
Xylem pressure potential was determined using the Scholander pressure chamber on stems of cold hardened and non-hardened black locust (Robinia pseudoacacia L.) seedlings following freezing to various nonlethal and lethal temperatures and subsequent thawing. Correlation was found between immediate xylem pressure potential and long-term seedling survival. Chlorophyll fluorescence transients were monitored using needles of western hemlock (Tsuga heterophylla (Raf.) Sarg.) seedlings following freezing to various non-lethal and lethal temperatures and subsequent thawing. Immediate and repeatable differences in fluorescence transients correlated with long-term seedling survival. Methodology is described and correlations discussed relative to using either chlorophyll fluorescence or xylem pressure potential as an immediate indicator of long-term freezing survival in woody plant seedlings.  相似文献   

6.
Coleman EA  Bula RJ  Davis RL 《Plant physiology》1966,41(10):1681-1683,1685
Electrophoretic and immunological properties of the soluble root protein complement of 6 Medicago sativa L. genotypes in the cold hardened and non-hardened physiological condition were compared. These 6 genotypes were chosen to represent a range of abilities to survive exposure to subfreezing temperatures when in the cold hardened condition.  相似文献   

7.
Electrophoretic measurements on membrane coated particles were performed with a Zytopherometer. Tris-HCl buffer 0.2 M pH 7.0 at 37°C with addition of different combinations of Na+, K+, Mg2+ and ATP was used as test medium. The membranes were of two types, an untreated preparation with low NaK ATPase activity and a deoxycholate treated preparation with high NaK ATPase activity. There was no marked difference in reaction between the two types of membranes. To both types of membranes Mg2+ gave a strong positive and ATP a slight negative addition to the membrane charge. In the presence of ATP Na+ gave a higher charge contribution than did K+ or a combination of Na+ and K+. This implies that K+ gives a higher affinity for ATP than Na+ does and or that ATP mediates a higher affinity for Na+ than for K+.  相似文献   

8.
Summary Characteristics of the native and reconstituted H+-ATPase from the plasma membrane of red beet (Beta vulgaris L.) were examined. The partially purified, reconstituted H+-ATPase retained characteristics similar to those of the native plasma membrane H+-ATPase following reconstitution into proteoliposomes. ATPase activity and H+ transport of both enzymes were inhibited by vanadate, DCCD, DES and mersalyl. Slight inhibition of ATPase activity associated with native plasma membranes by oligomycin, azide, molybdate or NO 3 was eliminated during solubilization and reconstitution, indicating the loss of contaminating ATPase activities. Both native and reconstituted ATPase activities and H+ transport showed a pH optimum of 6.5, required a divalent cation (Co2+>Mg2+>Mn2+>Zn2+>Ca2+), and preferred ATP as substrate. The Mg:ATP kinetics of the two ATPase activities were similar, showing simple Michaelis-Menten kinetics. Saturation occurred between 3 and 5mM Mg: ATP, with aK m of 0.33 and 0.46mM Mg: ATP for the native and reconstituted enzymes, respectively. The temperature optimum for the ATPase was shifted from 45 to 35°C following reconstitution. Both native and reconstituted H+-ATPases were stimulated by monovalent ions. Native plasma membrane H+-ATPase showed an order of cation preference of K+>NH 4 + >Rb+>Na+>Cs+>Li+>choline+. This basic order was unchanged following reconstitution, with K+, NH 4 + , Rb+ and Cs+ being the preferred cations. Both enzymes were also stimulated by anions although to a lesser degree. The order of anion preference differed between the two enzymes. Salt stimulation of ATPase activity was enhanced greatly following reconstitution. Stimulation by KCl was 26% for native ATPase activity, increasing to 228% for reconstituted ATPase activity. In terms of H+ transport, both enzymes required a cation such as K+ for maximal transport activity, but were stimulated preferentially by Cl even in the presence of valinomycin. This suggests that the stimulatory effect of anions on enzyme activity is not simply as a permeant anion, dissipating a positive interior membrane potential, but may involve a direct anion activation of the plasma membrane H+-ATPase.  相似文献   

9.
10.
The effect of fusicoccin on Mg:ATP-dependent H+-pumping in microsomal vesicles from 24-hour-old radish (Raphanus sativus L.) seedlings was investigated by measuring the initial rate of decrease in the absorbance of the ΔpH probe acridine orange. Fusicoccin stimulated Mg:ATP-dependent H+-pumping when the pH of the assay medium was in the range 7.0 to 7.6 while no effect of fusicoccin was detected between pH 6.6 and pH 6.0. Both basal and fusicoccin-stimulated H+-pumping were completely inhibited by vanadate and almost unaffected by nitrate. Fusicoccin did not change membrane permeability to protons and fusicoccin-induced stimulation of Mg:ATP-dependent H+-pumping was not affected by changes in the buffer capacity of the incubation medium. Deacetylfusicoccin stimulated H+-pumping as much as fusicoccin, while the physiologically inactive derivative 8-oxo-9-epideacetylfusicoccin did not. Stimulation of H+-pumping was saturated by 100 nanomolar fusicoccin. These data indicate that fusicoccin activates the plasma membrane H+-ATPase by acting at the membrane level independently of the involvement of other cell components. The percent stimulation by fusicoccin was the same at all ATP concentrations tested (0.5-5.0 millimolar), thus suggesting that with fusicoccin there is an increase in Vmax of the plasma membrane H+-ATPase rather than a decrease in its apparent Km for Mg:ATP.  相似文献   

11.
Regulatory changes in the activity of the plasma membrane H+-ATPase in salt-stressed roots were investigated using seven-day-old seedlings of two cultivars of barley (Hordeum disticum L.) with different salt tolerances: Moskovskii-121 (salt-tolerant) and Elf (salt-sensitive). During the first hour of salt stress, the rate of proton extrusion from the excised roots increased in parallel with the ATP hydrolase activity and the amount of 14-3-3 proteins bound to H+-ATPase in isolated plasma membranes. Subsequently, all these parameters decreased and dropped after 3–6 h below the initial levels. The initial stimulation of proton extrusion from the detached barley roots was caused by osmotic stress, whereas the subsequent retardation of proton extrusion was probably caused by a toxic effect of excessive Na+ content in the cytoplasm. The salt-stress responses showed similar trends in both cultivars, with the exception that Moskovskii-121 responded faster than cv. Elf. The results indicate that 14-3-3 proteins regulate the H+-ATPase activity in the plasma membranes of barley root cells during salt stress; furthermore, the response time might be a useful indicator to discriminate cultivars with different salt tolerances.  相似文献   

12.
《Plant science》1988,54(2):117-124
H+-pumping driven by the plasma membrane H+-ATPase in membrane vesicles from 24-hour-old radish seedlings is stimulated by pretreatment of the membranes with fusicoccin (FC) (Rasi-Caldogno et al., Plant Physiol., 82 (1986) 121).FC-pretreatment stimulates also the ATPase activity, but to a lesser extentthan H+-pumping. More than 80% of the ATPase activity is inhibited by 100 μM vanadate or by 3 mM Ca2+.Preincubation of diluted membranes in the presence of 5 mM MgSO4 without ATP lowers both ATPase and H+-pumping activity by 20—30% without affecting FC-stimulated activities (i.e. the differences between FC-treated samples and the controls).After preincubation with MgSO4, ATPase activity of membranes pretreatedwith or without FC is delivery affected by Triton X-100 and by temperature: Triton X-100 activates FC-stimulated ATPase more than that of the controls and an increase of temperature (between 13 and 33°C) enhances ATPase activity of the controls more than the FC-stimulated one.These results have been interpreted as suggesting that, while H+-pumping in this membrane fraction is driven only by the plasma membrane H+-ATPase, ATP-hydrolysis is catalyzed by two different enzymes (or forms of the same enzxxyme) diversely sensitive to FC, Triton X-100 and temperature and possibly diversely involved in H+-pumping.  相似文献   

13.
A membrane fraction enriched with a magnesium-dependent, monovalent cation-stimulated ATPase was isolated from red beet (Beta vulgaris L.) storage roots by a combination of differential centrifugation, extraction with KI, and sucrose density gradient centrifugation. This fraction was distinct from endoplasmic reticulum, Golgi, mitochondrial, and possibly tonoplast membranes as determined from an analysis of marker enzymes. The ATPase activity associated with this fraction was further characterized and found to have a pH optimum of 6.5 in the presence of both Mg2+ and K+. The activity was substrate specific for ATP and had a temperature optimum near 40°C. Kinetics with Mg:ATP followed a simple Michaelis-Menten relationship. However the kinetics of K+-stimulation were complex and suggestive of negative cooperativity. When monovalent cations were present at 2.5 millimolarity, ATPase was stimulated in the sequence K+ > Rb+ > Na+ > Li+ but when the concentration was raised to 50 millimolarity, the sequence changed to K+ ≥ Na+ ≥ Rb+ > Li. The activity was not synergistically stimulated by combinations of Na+ and K+. The enzyme was insensitive to NaN3, oligomycin, ouabain, and sodium molybdate but sensitive to N,N′-dicyclohexylcarbodiimide, diethylstilbestrol, and sodium vanadate. Based on the similarity between the properties of this ATPase activity and those from other well characterized plant tissues, it has been concluded that this membrane fraction is enriched with plasma membrane vesicles.  相似文献   

14.
Brauer D  Hsu AF  Tu SI 《Plant physiology》1988,87(3):598-602
Proton transport catalyzed by the nitrate-insensitive, vanadate-sensitive H+-ATPase in microsomes from maize (Zea mays L.) roots washed with 0.25 molar KI decreased as a function of time at 0 to 4°C. The rate of proton transport was approximately one-half of that by freshly isolated microsomes after 6 to 18 hours of cold storage. The decrease in proton transport coincided with losses in membrane phosphatidylcholine and was not associated with a change in vanadate-sensitive ATP hydrolysis. A technique based on a protocol developed for the reconstitution of Neurospora crassa plasma membrane H+-ATPase (DS Perlin, K Kasamo, RJ Brooker, CW Slayman 1984 J Biol Chem 259: 7884-7892) was employed to restore proton transport activity to maize microsomes. These results indicated that the decline in proton transport by maize root membranes during cold storage was not due to degradation of the protein moiety of the H+-ATPase, but was due to the loss of phospholipids.  相似文献   

15.
Neurotensin behaves as a neuromodulator or as a neurotransmitter interacting with NTS1 and NTS2 receptors. Neurotensin in vitro inhibits synaptosomal membrane Na+, K+-ATPase activity. This effect is prevented by administration of SR 48692 (antagonist for NTS1 receptor). The administration of levocabastine (antagonist for NTS2 receptor) does not prevent Na+, K+-ATPase inhibition by neurotensin when the enzyme is assayed with ATP as substrate. Herein levocabastine effect on Na+, K+-ATPase K+ site was explored. For this purpose, levocabastine was administered to rats and K+-p-nitrophenylphosphatase (K+-p-NPPase) activity in synaptosomal membranes and [3H]-ouabain binding to cerebral cortex membranes were assayed in the absence (basal) and in the presence of neurotensin. Male Wistar rats were administered with levocabastine (50 μg/kg, i.p., 30 min) or the vehicle (saline solution). Synaptosomal membranes were obtained from cerebral cortex by differential and gradient centrifugation. The activity of K+-p-NPPase was determined in media laking or containing ATP plus NaCl. In such phosphorylating condition enzyme behaviour resembles that observed when ATP hydrolyses is recorded. In the absence of ATP plus NaCl, K+-p-NPPase activity was similar for levocabastine or vehicle injected (roughly 11 μmole hydrolyzed substrate per mg protein per hour). Such value remained unaltered by the presence of 3.5 × 10?6 M neurotensin. In the phosphorylating medium, neurotensin decreased (32 %) the enzyme activity in membranes obtained from rats injected with the vehicle but failed to alter those obtained from rats injected with levocabastine. Levocabastine administration enhanced (50 %) basal [3H]-ouabain binding to cerebral cortex membranes but failed to modify neurotensin inhibitory effect on this ligand binding. It is concluded that NTS2 receptor blockade modifies the properties of neuronal Na+, K+-ATPase and that neurotensin effect on Na+, K+-ATPase involves NTS1 receptor and -at least partially- NTS2 receptor.  相似文献   

16.
Summary Treatment of red cell membranes with pure phospholipase C inactivates (Na++K+)-ATPase activity and Na+-dependent phosphorylation but increases K+-dependent phosphatase activity. When phospholipase A2 replaces phospholipase C, all activities are lost. Activation of K+-dependent phosphatase by treatment with phospholipase C is caused by an increase in the maximum rate of hydrolysis ofp-nitrophenylphosphate and in the maximum activating effect of K+, the apparent affinities for substrate and cofactors being little affected. After phospholipase C treatment K+-dependent phosphatase is no longer sensitive to ouabain but becomes more sensitive to N-ethylmaleimide. In treated membranes Na+ partially replaces K+ as an activator of the phosphatase. Although ATP still inhibits phosphatase activity, neither ATP nor ATP+Na+ are able to modify the apparent affinity for K+ of K+-dependent phosphatase in these membranes.  相似文献   

17.
Ribulose bisphosphate carboxylase-oxygenase, RuBP carboxylase (EC 4.1.1.39), was purified from non-hardened and hardened needles of Pinus sylvestris L. Needles were collected from pine seedlings cultivated in nutrient solution in a climate chamber from seedlings grown outdoors, and from a tree in a natural stand. The enzyme was isolated from crude extracts through quantitative precipitation in polyethylene glycol 4000 and MgCl2, followed by sucrose gradient centrifugation in a fixed angle rotor. The purified enzyme seemed homogeneous by the criterion of (sodium dodecylsulphate) polyacrylamide gel electrophoresis. Contamination by nucleic acids was negligible. The RuBP carboxylase protein content of the gradient fractions was estimated as A2801 cm× 0.61 mg ml−1. Carboxylase activities were determined in a radioactive assay at 25°C. The specific activity of RuBP carboxylase isolated from non-hardened needles was approximately 1 μmol CO2 (mg protein)−1 min−1. For enzyme isolated from hardened needles collected during winter the specific activity was somewhat lower due to loss of enzyme activity during the preparation. The described two-step procedure provides a means for quantitation of the RuBP carboxylase protein in pine needles during all seasons.  相似文献   

18.
The effect of fusicoccin (FC) on the activity of the PM H+-ATPase was investigated in a plasma membrane (PM) fraction from radish seedlings purified by the phase-partitioning procedure. FC stimulated the PM H+-ATPase activity by up to 100 %; the effect was essentially on Vmax with only a slight decrease of the apparent KM of the enzyme for ATP. FC-induced stimulation of the PM H+-ATPase was evident within the first minute and maximal within five minutes of membrane treatment with the toxin indicating that transmission of the signal from the activated receptor to the PM H+-ATPase is very rapid. Both FC-induced stimulation of the PM H+-ATPase and FC binding to its receptor decreased dramatically upon incubation of the membranes in ATPase assay medium at 33 °C in the absence of FC, due to the lability of the free FC receptor. FC-induced stimulation of the PM H+-ATPase was strongly pH dependent: absolute increase of activity was maximal at pH 7, while percent stimulation increased with the increase of pH up to pH 7.5; FC binding was scarcely influenced by pH in the pH range investigated. Taken as a whole, these results indicate that FC binding is a condition necessary, but not sufficient, for FC-induced stimulation of the PM H+-ATPase.  相似文献   

19.
The presence of dicyclohexylcarbodiimide (DCCD) inhibited the activities of vanadate-sensitive H+ -ATPase in both native and reconstituted plasma membrane of maize (Zea mays L. cv. WF9 × Mo 17) roots. Concentration dependence of DCCD inhibition on adenosine triphosphate (ATP) hydrolysis of native plasma membrane vesicles suggested that the molar ratio of effective DCCD binding to ATPase was close to 1. The DCCD inhibition of ATP hydrolysis could be slightly reduced by the addition of ATP, Mg:ATP, adenosine monophosphate (AMP), Mg:AMP and adenosine diphosphate (ADP). More hydrophilic derivatives of DCCD such as l-ethyl-N?-3-trimethyl ammonium carbodiimide (EDAC) or 1-ethyl-3-3-dimethyl-aminopropyl carbodiimide (EDC) gave no inhibition, indicating that the effective DCCD binding site was located in a hydrophobic region of the protein. The proton transport activity of reconstituted plasma membrane at a temperature below 20°C or above 25°C was much sensitive to DCCD treatment. Build-up of the proton gradient was analyzed according to a kinetic model, which showed that proton leakage across de-energized reconstituted plasma membranes was not affected by DCCD, but was sensitive to the method employed to quench ATP hydrolysis. Reconstituted plasma membrane vesicles treated with DCCD exhibited a differential inhibition of the coupled H+-transport and ATP hydrolysis. The presence of 50 μM DCCD nearly abolished transport but inhibited less than 50% of ATP hydrolysis. The above results suggest that the link between proton transport and vanadate-sensitive ATP hydrolysis is indirect in nature.  相似文献   

20.
The aim of this work was to examine H+-ATPase hydrolytic activity and the stability of transmembrane electrochemical gradients in membrane vesicles isolated from seedlings and leaf cells of an invasive Washington lupine (Lupinus polyphyllus Lindl.) and compare them with non-invasive yellow lupine (Lupinus luteus L.). Temperatures of 25 and 30°C, keeping in mind possible climate warming, were used. For harder stress conditions, short term cold treatment (?8°C in vivo) was used. Plasmalemma-, tonoplast-, and endoplasmic reticulum-enriched membrane fractions were obtained from a sucrose density gradient and identified. Differences in ATPase hydrolytic activity were significant only between lupine species and were more obvious in plasmalemma-enriched fractions. Preincubation of seedlings and leaves at ?8°C for 15 min to 24 h showed that microsomic fraction membranes of invasive lupine were more stable (according to Na+-diffusive potential) at low temperature compared to yellow lupine ones. The level of transmembrane electrochemical potential, mainly evoked by ATP-dependent active proton transport, was almost equal in both lupine species. Supposedly, the cells of invasive lupine are able to maintain transmembrane electrochemical potential by the employment of lower hydrolytic activity of H+-ATPase, thus saving energy for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号