首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The abundance of a given species in a community is likely to depend on both the total abundance and diversity of other species making up that community. A large number of co-occurring individuals or co-occurring species may decrease the abundance of any given species via diffuse competition; however, indirect interactions among many co-occurring species can have positive effects on a focal species. The existence of diffuse competition and facilitation remain difficult to demonstrate in natural communities. Here, we use data on communities of fleas ectoparasitic on small mammals from 27 distinct geographical regions to test whether the abundance of any given flea species in a community is affected by either the total abundance of all other co-occurring flea species, or the species richness and/or taxonomic diversity of the flea community. At all scales of analysis, i.e. whether we compared the same flea species on different host species, or different flea species, two consistent results emerged. First, the abundance of a given flea species correlates positively with the total abundance of all other co-occurring flea species in the community. Second, the abundance of any given flea species correlates negatively with either the species richness or taxonomic diversity of the flea community. The results do not support the existence of diffuse competition in these assemblages, because the more individuals of other flea species are present on a host population, the more individuals of the focal species are there as well. Instead, we propose explanations involving either apparent facilitation among flea species via suppression of host immune defenses, or niche filtering processes acting to restrict the taxonomic composition and abundance of flea assemblages.  相似文献   

2.
The resource specialization or niche breadth of a species is not fixed across populations, but instead varies over geographical space. A species may be a local specialist but a regional generalist, if it uses locally few resources that are substitutable across locations. In contrast, a species is a local generalist and a regional specialist if it uses locally many resources that cannot be substituted from 1 location to the next. Scale‐dependence can thus be a major factor in estimation of niche breadth. Here, we test for relationships between local and global estimates of host specificity (a measure of niche breadth for parasites) in fleas (Siphonaptera) parasitic on small mammals from 49 different regions within the Holarctic. Across all fleas, we found a strong, positive relationship between the number of host species that a flea uses in 1 locality and the number of different host species that can serve as the flea's principal host (i.e. the one supporting the most fleas in a region) among all regions. Also, we observed a strong positive relationship between the taxonomic distinctness of the host species used in 1 locality and that of all known principal hosts among all localities. These relationships held after correcting for potentially confounding phylogenetic influences. We discuss the implications of scale‐independent host specificity and its association with geographical range size and species‐specific patterns of host use.  相似文献   

3.
Aim We studied the relationships between the numbers of species and numbers of higher taxa (genera, tribes, subfamilies and families) in flea assemblages of small mammalian hosts with the aims of: (a) comparing these relationships across different regions, and (b) testing the hypothesis that flea assemblages in warmer regions diversify mainly via intrahost speciation, whereas those in colder regions diversify mainly via host switching. Location The study used previously published data on flea assemblages on small mammalian hosts from 25 different regions of the Holarctic. Methods The number of flea genera, tribes, subfamilies or families in an assemblage (host species) was plotted against the number of flea species in this assemblage for each region separately, and a power function was fitted to the resulting relationships. Then, the values of the exponent of the power function for a region were regressed against the mean annual temperature in this region, across all regions. Results The relationships between the number of flea species and the numbers of flea genera, tribes, subfamilies or families on a host species in each region were found to be well described by simple power functions. The exponent of the power function of the relationship between the number of flea species and the number of flea genera per host tended to decrease with increasing local mean annual temperature. When two apparent outliers from the trend (corresponding to regions where sampling was not performed as in other regions) were omitted from the analysis, the negative relationship between temperature and the exponent of the power function between the number of flea species and number of flea genera per host became highly significant. No relationship was found between the values of the exponents of the power functions between the number of flea species and the number of flea tribes, subfamilies or families per host, and the mean local annual temperature. Main conclusions The results suggest that the diversification of flea assemblages is associated with climatic variables. In warm regions, the greater number of congeneric species per flea assemblage, reflected by the lower exponent of the power function, may well be the outcome of intrahost speciation. This indicates that, as regional temperature increases, intrahost speciation becomes a relatively more important mode of diversification than acquisition of fleas via host switching.  相似文献   

4.
Opportunistic parasite species, capable of exploiting several different host species, do not achieve the same abundance on all these hosts. Parasites achieve maximum abundance on their principal host species, and lower abundances on their auxiliary host species. Taxonomic relatedness between the principal and auxiliary host species may determine what abundance a parasite can achieve on its auxiliary hosts, as relatedness should reflect similarities among host species in ecological, physiological and/or immunological characters. We tested this hypothesis with fleas (Siphonaptera) parasitic on small Holarctic mammals. We determined whether the abundance of a flea in its auxiliary hosts decreases with increasing taxonomic distance of these hosts from the principal host. Using data on 106 flea species from 23 regions, for a total of 194 flea-locality combinations, we found consistent support for this relationship, both within and across regions, and even after controlling for the potentially confounding effect of flea phylogeny. These results are most likely explained by a decrease in the efficiency of the parasite's evasive mechanisms against the host's behavioural and immune defences with increasing taxonomic distance from the principal host. Our findings suggest that host switching over evolutionary time may be severely constrained by the coupling of parasite success with the relatedness between new hosts and the original host.  相似文献   

5.
Animal species with larger local populations tend to be widespread across many localities, whereas species with smaller local populations occur in fewer localities. This pattern is well documented for free-living species and can be explained by the resource breadth hypothesis: the attributes that enable a species to exploit a diversity of resources allow it to attain a broad distribution and high local density. In contrast, for parasitic organisms, the trade-off hypothesis predicts that parasites exploiting many host species will achieve lower mean abundance on those hosts than more host-specific parasites because of the costs of adaptations against multiple defense systems. We test these alternative hypotheses with data on host specificity and abundance of fleas parasitic on small mammals from 20 different regions. Our analyses controlled for phylogenetic influences, differences in host body surface area, and sampling effort. In most regions, we found significant positive relationships between flea abundance and either the number of host species they exploited or the average taxonomic distance among those host species. This was true whether we used mean flea abundance or the maximum abundance they achieved on their optimal host. Although fleas tended to exploit more host species in regions with either larger number of available hosts or more taxonomically diverse host faunas, differences in host faunas between regions had no clear effect on the abundance-host specificity relationship. Overall, the results support the resource breadth hypothesis: fleas exploiting many host species or taxonomically unrelated hosts achieve higher abundance than specialist fleas. We conclude that generalist parasites achieve higher abundance because of a combination of resource availability and stability.  相似文献   

6.
We studied body size ratio in gamasid mites (Acari: Mesostigmata) parasitic on Palearctic small mammals at 3 hierarchical scales, namely infracommunities (an assemblage of mites harboured by an individual host), component communities (an assemblage of mites harboured by a host population), and compound communities (an assemblage of mites harboured by a host community). We used null models and asked a) whether body size distributions in these communities demonstrate non‐random patterns; b) whether these patterns indicate segregation or aggregation of body sizes of coexisting species; and c) whether patterns of body size distribution are scale‐dependent, that is, differ among infracommunities, component communities, and compound communities. In most mite assemblages, the observed pattern of body size distribution did not differ from that expected by chance. However, meta‐analyses demonstrated that component and compound communities of gamasid mites consistently demonstrated a tendency to reduced body size overlap, while we did not find any clear trend in mite body size distribution across infracommunities. We discuss reasons for scale‐dependence of body size distribution pattern in parasite communities and propose ecological and evolutionary mechanisms that allowed the reduced body size overlap in component and compound communities of ectoparasites to arise.  相似文献   

7.
We studied patterns of phylogenetic and compositional diversity of fleas parasitic on small mammals and asked whether these patterns are affected by environmental variation or evolutionary/historical processes. We considered environmental variation via both off‐host (air temperature, precipitation, the amount of green vegetation, latitude) and host‐associated (phylogenetic and species composition) environments. The indicators of evolutionary/historical processes were phylogenetic and compositional uniqueness estimated via phylogenetic or compositional, respectively, β‐diversity of either fleas or hosts. We found that phylogenetic uniqueness of flea assemblages was the main predictor of their phylogenetic diversity in all realms. In addition, host phylogenetic diversity and uniqueness played also some role in the Palearctic, whereas the effect of the off‐host environment was either extremely weak or absent. Compositional diversity of fleas was consistently affected by compositional diversity of hosts in all realms except the Neotropics. The effect of the off‐host environment on compositional flea diversity was substantial in all realms except the Palearctic. No effect of latitude on either metric of flea diversity was found. We conclude that phylogenetic diversity of fleas is driven mainly by evolutionary/historical processes, whereas drivers of their compositional diversity are associated with current ecological conditions.  相似文献   

8.
The evolution of host specificity remains a central issue in the study of host‐parasite relationships. Here we tackle three basic questions about host specificity using data on host use by fleas (Siphonaptera) from 21 geographical regions. First, are the host species exploited by a flea species no more than a random draw from the locally available host species, or do they form a taxonomically distinct subset? Using randomization tests, we showed that in the majority of cases, the taxonomic distinctness (measured as the average taxonomic distances among host species) of the hosts exploited by a flea is no different from that of random subsets of hosts taken from the regional pool. In the several cases where a difference was found, the taxonomic distinctness of the hosts used by a flea was almost always lower than that of the random subsets, suggesting that the parasites use hosts within a narrower taxonomic spectrum than what is available to them. Second, given the variation in host specificity among populations of the same flea species, is host specificity truly a species character? We found that host specificity measures are repeatable among different populations of the same flea species: host specificity varies significantly more among flea species than within flea species. This was true for both measures of host specificity used in the analyses: the number of host species exploited, and the index measuring the average taxonomic distinctness of the host species and its variance. Third, what causes geographical variation in host specificity among populations of the same flea species? In the vast majority of flea species, neither of our two measures of host specificity correlated with either the regional number of potential host species or their taxonomic distinctness, or the distance between the sampled region and the center of the flea's geographical range. However, in most flea species host specificity correlated with measures of the deviation in climatic conditions (precipitation and temperature) between the sampled region and the average conditions computed across the flea's entire range. Overall, these results suggest that host specificity in fleas is to a large extent phylogenetically constrained, while still strongly influenced by local environmental conditions.  相似文献   

9.
Scaling biodiversity patterns has been recognized lately as a very important issue in the search of global processes; however coexistence and assemblage patterns are typically approached at a single spatial scale. Here, we examined coexistence and co-occurrence patterns of desert small mammal communities across different spatial scales in the search of general community patterns. We sampled small mammals in Monte desert (Argentina, South America) for small spatial scales and reviewed published papers from other worldwide deserts for large spatial scale analyses. We used classic community estimators (Shannon, Richness), rank abundance curves and fitting distributions to analyze species coexistence and co-occurrence patterns. Assemblage patterns were analyzed evaluating nestedness across spatial scales and among deserts. Worldwide desert small mammal assemblages are characterized mainly by low species richness and high variation in species composition. The central Monte desert of Argentina showed a consistent assemblage pattern across spatial scales, with a generalist species being the most abundant and widely distributed, accompanied by other subordinate and more narrowly distributed species. All Monte desert communities were significantly nested, with nestedness increasing with scale from patch to regional. Assemblage and coexistence patterns were similar when comparing worldwide deserts despite differences in total richness and faunal singularity. The degree of nestedness varied among worldwide deserts; however all of them showed a consistent nested pattern. Differences in the degree of nestedness could be a result of different regulating factors depending on the desert and scale. These results highlight the importance of including multiscale approaches when dealing with processes that structure desert communities.  相似文献   

10.
The total aestival ectoparasitic burden of six small mammal species ( Sorex araneus, Clethrionomys glareolus, C. rutilus, C. rufocanus, Microtus agrestis , and M. oeconomus ) was investigated in terms of frequency distribution, frequency of occurrence, species diversity and joint occurrences. The mammals were collected in northern Fennoscandia during peak density years. The frequency distribution of the ectoparasites was best described as negative binomial on C. glareolus, M. agrestis , and M. oeconomus but not so on S. araneus, C. rutilus and C. rufocanus. The distribution did not fit the Poisson distribution in any species. The percentage of S. araneus that had ectoparasites was 49%, and of the microtidae species, 73-96% had ectoparasites. The median number of ectoparasites on the vole species was between 2 and 9 specimens of 1 or 2 species. There was a significant, positive correlation between the number of ectoparasitic species and the total number of individuals on all host species. Pairs of ectoparasitic species occurring together more or less often than expected by chance were found on all host species. However, the pairs rarely repeated themselves on the same host species under different environmental conditions, or on other host species under similar circumstances. Differences in total infestation between reproductive categories and sexes were observed in M. agrestis but not in S. araneus and C. glareolus.  相似文献   

11.
Materials on occurrence and abundance of 36 species of fleas on 17 species of small mammals are systematized. A great similarity between the faunas of ectoparasites of rodents and predators has been shown by means of special indices. The conception of parasitic field is formulated which implies the phenomenon of community of the fauna of plague vectors parasitic on its potential carriers. Some aspects of the formation of parasitic field and its possible effect the epizootic process are considered. It is established that the similarity between the faunas of fleas from different animals is ensured in this region first of all by a wide distribution of specific parasites of gerbils.  相似文献   

12.
Species composition and structure of ectoparasite arthropod communities were examined all year round six years in the bank vole Clethrionomys glareolus, Ural wood mouse Apodemus uralensis and the common shrew Sorex araneus in forests of the Ilmen'-Volkhov depression. In total, 4500 host samples have been examined and all ectoparasites have been collected. The species composition of ectoparasite community in small mammal species are as follows: the bank vole--29 insect, tick and mite species, the common shrew--23 species, the Ural wood mouse--16 species. In forest biotopes, many temporary ectoparasitic species occur on several host species living in the same habitats under a forest canopy and contacting each other. A parasitic supracommunity in the ecosystem examined has a pool of temporary ectoparasites, which is available for all the community of small mammals. A role of different rodent and shrew species are hosts of insects and ticks changes depending on a density of potential host populations and numerous other environment factors.  相似文献   

13.
F. E. G. COX 《Mammal Review》1987,17(2-3):143-147
In the wild, small mammals are frequently infected with more than one parasite. Laboratory studies have revealed complex interactions between parasites and also between parasitic protozoa and viruses or bacteria. In general, infection with many parasites is accompanied by a period of immunodepression during which superimposed infections are favoured, giving rise to more intense and prolonged secondary infections while the original infection is unaffected. On the other hand, organisms that activate macrophages may protect die host against a subsequent infection. These kinds of interactions have been investigated in the laboratory using Trypanosoma musculi, T. lewisi, Giardia muris, Spironucleus muris, Babesia microti and Heligmosomoides polygyrus , all of which occur in British small mammals, suggesting that such interactions occur in the field, are worth investigating and should be considered in epidemiological studies.  相似文献   

14.
Interspecific interaction may lead to species exclusion but there are several ways in which species can coexist. One way is by reducing the overall intensity of competition via aggregated utilisation of fragmented resources. Known as the 'aggregation model of coexistence', this system assumes saturation and an equilibrium number of species per community. In this study we tested the effects of interspecific aggregation on the level of intraspecific aggregation among ectoparasites of marine fishes (36 communities of gill and head ectoparasite species). If parasite species are distributed in a way that interspecific aggregation is reduced relative to intraspecific aggregation then species coexistence is facilitated. We found a positive relationship between parasite species richness and fish body size, controlling for host phylogeny. A positive relationship between infracommunity species richness and total parasite species richness was also found, providing no evidence for saturation. This result supports the view that infracommunities of parasites are not saturated by local parasite residents. The observed lack of saturation implies that we are far from a full exploitation of the fish resource by parasites. Ectoparasites were aggregated at both population and species levels. However, only half of the ectoparasite communities were dominated by negative interspecific aggregation. We found that infracommunity parasite species richness was positively correlated with the level of intraspecific aggregation versus interspecific aggregation. This means that intraspecific aggregation increases compared with interspecific aggregation when total parasite species richness increases, controlling fish size and phylogeny. This supports one assumption of the 'aggregation model of coexistence', which predicts that interspecific interactions are reduced relative to intraspecific interactions, facilitating species coexistence.  相似文献   

15.
Data on the species composition of fleas, their abundance and distribution on hosts and on territory are given. Changes in the species composition and abundance of fleas in the latitude and meridional directions are shown.  相似文献   

16.
It is well established that intraspecific aggregation has the potential to promote coexistence in communities of species competing for patchy ephemeral resources. We developed a simulation model to explore the influence of aggregation on coexistence in such communities when an important assumption of previous studies – that interspecific interactions have only negative effects on the species involved – is relaxed. The model describes a community of competing insect larvae in which an interaction that is equivalent to intraguild predation (IGP) can occur, and is unusual in that it considers species exploiting very small resource patches (carrying capacity=1). Model simulations show that, in the absence of any intraspecific aggregation, variation between species in the way that resource heterogeneity affects survival increases the likelihood of species coexistence. Simulations also show that intraspecific aggregation of the dominant competitor's eggs across resource patches can promote coexistence by reducing the importance of interspecific competition relative to that of intraspecific competition. Crucially, however, this effect is altered if one competitor indulges in IGP. In general, coexistence is only possible when the species that is capable of IGP is less effective at exploiting the shared resource than its competitor. Because it reduces the relative importance of interspecific interactions, intraspecific aggregation of the eggs of a species that is the victim of IGP actually reduces the likelihood of coexistence in parts of parameter space in which the persistence of the other species is dependent on its ability to exploit its competitor. Since resource heterogeneity, intraspecific aggregation and IGP are all common phenomena, these findings shed light on mechanisms that are likely to influence diversity in communities exploiting patchy resources.  相似文献   

17.
During 1998–2000, at least 14 species (n = 309) of small mammals were live‐trapped and examined for ectoparasites in moist forests of the Taita and Shimba Hills and drier savannah habitats of Nguruman, southeastern Kenya. Ectoparasites were recorded from 11 species of mammals. Five species of sucking lice [Hoplopleura inexpectans Johnson, H. intermedia Kellogg & Ferris, Polyplax reclinata (Nitzsch), P. waterstoni Bedford and Schizophthirus graphiuri Ferris], six species of fleas (Ctenophthalmus leptodactylous Hubbard, Dinopsyllus grypurus Jordan & Rothschild, D. lypusus Jordan & Rothschild, Hypsophthalmus campestris Jordan & Rothschild, Listropsylla basilewskyi Smit and Xiphiopsylla lippa Jordan) and at least six species of ticks (Amblyomma sp., Haemaphysalis sp., Ixodes sp., I. alluaudi Neumann, I. cumulatimpunctatus Schulze, I. muniensis Arthur & Burrow and Rhipicephalus sp.) were recorded from these hosts. Four of the five species of sucking lice were host specific whereas P. reclinata was recorded from two different species of white‐toothed shrews, Crocidura spp. Although fleas and ticks were less host specific, C. leptodactylous, D. grypurus and I. cumulatimpunctatus were only recorded from the murid rodent Praomys delectorum (Thomas), Amblyomma sp. was only recorded from the nesomyid rodent Beamys hindei Thomas, Rhipicephalus sp. was only recorded from the murid Lemniscomys striatus (L.) and I. muniensis was only recorded from the dormouse Graphiurus microtis (Noack). More species of ectoparasites and significantly greater infestation prevalences were recorded from small mammals in moist habitats compared with those from the savannah habitat. At least one of the fleas recorded, D. lypusus, is a known vector of Yersinia pestis Lehmann & Neumann, the causative agent of plague, which is present in the region.  相似文献   

18.
The number of recognized flea‐borne pathogens has increased over the past decade. However, the true number of infections related to all flea‐borne pathogens remains unknown. To better understand the enzootic cycle of flea‐borne pathogens, fleas were sampled from small mammals trapped in central Pennsylvania. A total of 541 small mammals were trapped, with white‐footed mice (Peromyscus leucopus) and southern red‐backed voles (Myodes gapperi) accounting for over 94% of the captures. Only P. leucopus were positive for examined blood‐borne pathogens, with 47 (18.1%) and ten (4.8%) positive for Anaplasma phagocytophilum and Babesia microti, respectively. In addition, 61 fleas were collected from small mammals and tested for pathogens. Orchopeas leucopus was the most common flea and Bartonella vinsonii subspecies arupensis, B. microti, and a Rickettsia felis‐like bacterium were detected in various flea samples. To the best of our knowledge, this is the first report of B. microti DNA detected from a flea and the first report of a R. felis‐like bacterium from rodent fleas in eastern North America. This study provides evidence of emerging pathogens found in fleas, but further investigation is required to resolve the ecology of flea‐borne disease transmission cycles.  相似文献   

19.
20.
Species composition, abundance, annual cycles, and host association of fleas parasitizing small mammals were investigated. The problem of niche differentiation in these insects is considered on the base of the comparative analysis of their annual cycles. The annual cycles of the fleas are revealed to be similar in the case of few number of flea species in parasite community. Thus, two species parasitizing Sorex araneus (Doratopsylla dasycnema and Palaeopsylla soricis), as well as three species associated with Apodemus uralensis (Megabothris turbidus, Ctenophthalmus agyrtes, and Ct. uncinatus) have equal phenology of parasitizing. The fleas community of Clethrionomys glareolus is characterized by a large species number and high diversity of the annual cycles. The differentiation by the seasons of parasitizing is observed most clearly in the dominant flea species, namely Amalaraeus penicilliger, Ct. uncinatus, and Peromyscopsylla bidentata. The periods of imaginal life are overlapped significanly in these species, but they are differed by the season of dominance. Ct. uncinatus predominates in spring and summer, while P. bidentata predominates in autumn, and A. penicilliger predominates in winter and early spring. It may be noted also, that niche partitioning was not observed in the fleas having wide range of hosts. The imaginal life of such fleas usually does not go beyond the warm season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号