首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Landscape genetics increasingly focuses on the way in which landscape features cause the fragmentation of lineages of terrestrial organisms. However, landscape features can also provide functional connectivity or corridors, enhancing the dispersal of plant populations, particularly the case in riparian habitat. Unfortunately, recent research in tree genetics has paid little attention to this role. To examine the possible effects of landscape connectivity on the current population genetic distribution of Fraxinus mandshurica and to provide insights into conserving the local genetic diversity for this endangered tree species, we used nine nuclear microsatellite loci to examine the spatial genetic structure of F. mandshurica at multiple-scales over a riparian–mountain landscape in Northeast China. F-statistics indicated that the magnitude of among-population genetic differentiation was significantly higher between the riparian and mountain habitats than within the riparian habitat. Spatial analysis of molecular variance and principal coordinate analysis consistently revealed that this species exhibited a clear landscape genetic structure between the riparian and mountain habitats, despite no significant isolation by distance pattern being identified by the Mantel test. Spatial autocorrelation analysis further demonstrated significant, positive fine-scale spatial genetic structure among individuals over short distances (<80 m) in each mountain population. Conversely, no spatial genetic structures were identified within and among the riparian populations. Overall, the results suggest that seed dispersal is very low among mountain populations; however seed transport is probably enhanced by a secondary phase of hydrochory (water-dispersal) among riparian populations during flooding. Despite this, there was no significant accumulation of genetic diversity in downstream populations along the main channel. This result suggests that hydrochory is not sufficient to produce a clear unidirectional gene flow along the water course, although it may impede the development of spatial genetic structuring within and among riparian populations.  相似文献   

2.
Habitat fragmentation may reduce gene flow and population viability of rare species. We tested whether riparian corridors enhanced gene flow and if human habitat modification between riparian corridors subsequently reduced dispersal and gene flow of a wetland butterfly, the US federally endangered St. Francis’ satyr butterfly (Neonympha mitchellii francisci). We surveyed nine populations throughout the taxon’s range using five polymorphic microsatellite loci. We found that genetic diversity of N. m. francisci was relatively high despite its restricted distribution, and that there is little evidence of population bottlenecks or extensive inbreeding within populations. We found substantial gene flow and detectable first generation migration, suggesting that N. m. francisci is unlikely to be currently endangered by genetic factors. Pairwise population differentiation and clustering indicate some structuring between populations on different drainages and suggest that dispersal probably occurs mainly via a stepping stone from the closest riparian corridors. However, genetic differentiation between geographically close populations suggests that isolation by distance is not solely responsible for population structure, and that management actions should be targeted at maintaining connectivity of riparian and upland habitats.  相似文献   

3.
Gene flow is an evolutionary process that supports genetic connectivity and contributes to the capacity of species to adapt to environmental change. Yet, for most species, little is known about the specific environmental factors that influence genetic connectivity, or their effects on genetic diversity and differentiation. We used a landscape genetic approach to understand how geography and climate influence genetic connectivity in a foundation riparian tree (Populus angustifolia), and their relationships with specieswide patterns of genetic diversity and differentiation. Using multivariate restricted optimization in a reciprocal causal modelling framework, we quantified the relative contributions of riparian network connectivity, terrestrial upland resistance and climate gradients on genetic connectivity. We found that (i) all riparian corridors, regardless of river order, equally facilitated connectivity, while terrestrial uplands provided 2.5× more resistance to gene flow than riparian corridors. (ii) Cumulative differences in precipitation seasonality and precipitation of the warmest quarter were the primary climatic factors driving genetic differentiation; furthermore, maximum climate resistance was 45× greater than riparian resistance. (iii) Genetic diversity was positively correlated with connectivity (R2 = 0.3744, p = .0019), illustrating the utility of resistance models for identifying landscape conditions that can support a species' ability to adapt to environmental change. From these results, we present a map highlighting key genetic connectivity corridors across P. angustifolia's range that if disrupted could have long‐term ecological and evolutionary consequences. Our findings provide recommendations for conservation and restoration management of threatened riparian ecosystems throughout the western USA and the high biodiversity they support.  相似文献   

4.
In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8–27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species’ distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.  相似文献   

5.
Predicting population-level effects of landscape change depends on identifying factors that influence population connectivity in complex landscapes. However, most putative movement corridors and barriers have not been based on empirical data. In this study, we identify factors that influence connectivity by comparing patterns of genetic similarity among 146 black bears (Ursus americanus), sampled across a 3,000-km(2) study area in northern Idaho, with 110 landscape-resistance hypotheses. Genetic similarities were based on the pairwise percentage dissimilarity among all individuals based on nine microsatellite loci (average expected heterozygosity=0.79). Landscape-resistance hypotheses describe a range of potential relationships between movement cost and land cover, slope, elevation, roads, Euclidean distance, and a putative movement barrier. These hypotheses were divided into seven organizational models in which the influences of barriers, distance, and landscape features were statistically separated using partial Mantel tests. Only one of the competing organizational models was fully supported: patterns of genetic structure are primarily related to landscape gradients of land cover and elevation. The alternative landscape models, isolation by barriers and isolation by distance, are not supported. In this black bear population, gene flow is facilitated by contiguous forest cover at middle elevations.  相似文献   

6.
Fragmented landscapes resulting from anthropogenic habitat modification can have significant impacts on dispersal, gene flow, and persistence of wildlife populations. Therefore, quantifying population connectivity across a mosaic of habitats in highly modified landscapes is critical for the development of conservation management plans for threatened populations. Endangered populations of the eastern tiger salamander (Ambystoma tigrinum) in New York and New Jersey are at the northern edge of the species’ range and remaining populations persist in highly developed landscapes in both states. We used landscape genetic approaches to examine regional genetic population structure and potential barriers to migration among remaining populations. Despite the post-glacial demographic processes that have shaped genetic diversity in tiger salamander populations at the northern extent of their range, we found that populations in each state belong to distinct genetic clusters, consistent with the large geographic distance that separates them. We detected overall low genetic diversity and high relatedness within populations, likely due to recent range expansion, isolation, and relatively small population sizes. Nonetheless, landscape connectivity analyses reveal habitat corridors among remaining breeding ponds. Furthermore, molecular estimates of population connectivity among ponds indicate that gene flow still occurs at regional scales. Further fragmentation of remaining habitat will potentially restrict dispersal among breeding ponds, cause the erosion of genetic diversity, and exacerbate already high levels of inbreeding. We recommend the continued management and maintenance of habitat corridors to ensure long-term viability of these endangered populations.  相似文献   

7.
Anthropogenic alterations to landscape structure and composition can have significant impacts on biodiversity, potentially leading to species extinctions. Population‐level impacts of landscape change are mediated by animal behaviors, in particular dispersal behavior. Little is known about the dispersal habits of rails (Rallidae) due to their cryptic behavior and tendency to occupy densely vegetated habitats. The effects of landscape structure on the movement behavior of waterbirds in general are poorly studied due to their reputation for having high dispersal abilities. We used a landscape genetic approach to test hypotheses of landscape effects on dispersal behavior of the Hawaiian gallinule (Gallinula galeata sandvicensis), an endangered subspecies endemic to the Hawaiian Islands. We created a suite of alternative resistance surfaces representing biologically plausible a priori hypotheses of how gallinules might navigate the landscape matrix and ranked these surfaces by their ability to explain observed patterns in genetic distance among 12 populations on the island of O`ahu. We modeled effective distance among wetland locations on all surfaces using both cumulative least‐cost‐path and resistance‐distance approaches and evaluated relative model performance using Mantel tests, a causal modeling approach, and the mixed‐model maximum‐likelihood population‐effects framework. Across all genetic markers, simulation methods, and model comparison metrics, surfaces that treated linear water features like streams, ditches, and canals as corridors for gallinule movement outperformed all other models. This is the first landscape genetic study on the movement behavior of any waterbird species to our knowledge. Our results indicate that lotic water features, including drainage infrastructure previously thought to be of minimal habitat value, contribute to habitat connectivity in this listed subspecies.  相似文献   

8.
Aim The aim of this study was to understand the roles of landscape features in shaping patterns of contemporary and historical genetic diversification among populations of the Andean tree frog (Hypsiboas andinus) across spatial scales. Location Andes mountains, north‐western Argentina, South America. Methods Mitochondrial DNA control region sequences were utilized to assess genetic differentiation among populations and calculate population pair‐wise genetic distances. Three models of movement, namely traditional straight‐line distance and two effective distances based on habitat classification, were examined to determine which of these explained the most variation in pair‐wise population genetic differentiation. The two habitat classifications were based on digital vegetation and hydrology layers that were generated from a 90‐m resolution digital elevation model (DEM) and known relationships between elevation and habitat. Mantel tests were conducted to test for correlations between geographic and genetic distance matrices and to estimate the percentage variation explained by each type of geographic distance. To investigate the location of possible barriers to gene flow, we used Monmonier’s maximum difference algorithm as implemented in barrier 2.2. Results At both geographic scales, effective distances explained more variation in genetic differentiation than did straight‐line distance. The least‐cost distances based on the simple classification performed better than the more detailed habitat classification. We controlled for the effects of historical range fragmentation determined from previous nested clade analyses, and therefore evaluated the effect of different distances on the genetic variation attributable to more recent factors. Effective distances identified populations that were highly divergent as a result of isolation in unsuitable habitats. The proposed locations of barriers to gene flow identified using Monmonier’s maximum difference algorithm corresponded well with earlier analyses and supported findings from our partial Mantel tests. Main conclusions Our results indicate that landscape features have been important in both historical and contemporary genetic structuring of populations of H. andinus at both large and small spatial scales. A landscape genetic perspective offers novel insights not provided by traditional phylogeographic studies: (1) effective distances can better explain patterns of differentiation in populations, especially in heterogeneous landscapes where barriers to dispersal may be common; and (2) least‐cost path analysis can help to identify corridors of movement between populations that are biologically more realistic.  相似文献   

9.
Populations of the endangered giant kangaroo rat, Dipodomys ingens (Heteromyidae), have suffered increasing fragmentation and isolation over the recent past, and the distribution of this unique rodent has become restricted to 3% of its historical range. Such changes in population structure can significantly affect effective population size and dispersal, and ultimately increase the risk of extinction for endangered species. To assess the fine-scale population structure, gene flow, and genetic diversity of remnant populations of Dipodomys ingens, we examined variation at six microsatellite DNA loci in 95 animals from six populations. Genetic subdivision was significant for both the northern and southern part of the kangaroo rat’s range although there was considerable gene flow among southern populations. While regional gene diversity was relatively high for this endangered species, hierarchical F-statistics of northern populations in Fresno and San Benito counties suggested non-random mating and genetic drift within subpopulations. We conclude that effective dispersal, and therefore genetic distances between populations, is better predicted by ecological conditions and topography of the environment than linear geographic distance between populations. Our results are consistent with and complimentary to previous findings based on mtDNA variation of giant kangaroo rats. We suggest that management plans for this endangered rodent focus on protection of suitable habitat, maintenance of connectivity, and enhancement of effective dispersal between populations either through suitable dispersal corridors or translocations.  相似文献   

10.
Eight German populations of the land snail Balea biplicata(Mollusca: Clausiliidae) were studied using the randomly amplified polymorphic DNA-polymerase chain reaction and morphometrics (principal component and discriminant analysis) to examine population structure and gene flow patterns in a fragmented landscape mosaic along the Elster/Saale riparian system, Germany. A variety of population genetic analyses targeting either more on the geographic scale of gene flow (genetic distances, F statistics, Mantel test) or on local genotypic structure (heterozygosity, linkage disequilibrium, bottleneck probability) showed that (1) the population system in total is governed by high gene flow independent of geographic distance, (2) genetic structure on the narrower sampling scale is mainly determined by stochastic processes due to genetic drift in small isolated and frequently recolonized populations, and (3) the morphometrical variation of the populations was related neither to habitat nor to genetic heterogeneity. The potentials for active and passive dispersal capacity of the snails and possible environmental impacts on their population structure are discussed.  相似文献   

11.
Urbanization is a major factor driving habitat fragmentation and connectivity loss in wildlife. However, the impacts of urbanization on connectivity can vary among species and even populations due to differences in local landscape characteristics, and our ability to detect these relationships may depend on the spatial scale at which they are measured. Bobcats (Lynx rufus) are relatively sensitive to urbanization and the status of bobcat populations is an important indicator of connectivity in urban coastal southern California. We genotyped 271 bobcats at 13,520 SNP loci to conduct a replicated landscape resistance analysis in five genetically distinct populations. We tested urban and natural factors potentially influencing individual connectivity in each population separately, as well as study–wide. Overall, landscape genomic effects were most frequently detected at the study–wide spatial scale, with urban land cover (measured as impervious surface) having negative effects and topographic roughness having positive effects on gene flow. The negative effect of urban land cover on connectivity was also evident when populations were analyzed separately despite varying substantially in spatial area and the proportion of urban development, confirming a pervasive impact of urbanization largely independent of spatial scale. The effect of urban development was strongest in one population where stream habitat had been lost to development, suggesting that riparian corridors may help mitigate reduced connectivity in urbanizing areas. Our results demonstrate the importance of replicating landscape genetic analyses across populations and considering how landscape genetic effects may vary with spatial scale and local landscape structure.  相似文献   

12.
When populations reside within a heterogeneous landscape, isolation by distance may not be a good predictor of genetic divergence if dispersal behaviour and therefore gene flow depend on landscape features. Commonly used approaches linking landscape features to gene flow include the least cost path (LCP), random walk (RW), and isolation by resistance (IBR) models. However, none of these models is likely to be the most appropriate for all species and in all environments. We compared the performance of LCP, RW and IBR models of dispersal with the aid of simulations conducted on artificially generated landscapes. We also applied each model to empirical data on the landscape genetics of the endangered fire salamander, Salamandra infraimmaculata, in northern Israel, where conservation planning requires an understanding of the dispersal corridors. Our simulations demonstrate that wide dispersal corridors of the low-cost environment facilitate dispersal in the IBR model, but inhibit dispersal in the RW model. In our empirical study, IBR explained the genetic divergence better than the LCP and RW models (partial Mantel correlation 0.413 for IBR, compared to 0.212 for LCP, and 0.340 for RW). Overall dispersal cost in salamanders was also well predicted by landscape feature slope steepness (76 %), and elevation (24 %). We conclude that fire salamander dispersal is well characterised by IBR predictions. Together with our simulation findings, these results indicate that wide dispersal corridors facilitate, rather than hinder, salamander dispersal. Comparison of genetic data to dispersal model outputs can be a useful technique in inferring dispersal behaviour from population genetic data.  相似文献   

13.
We used landscape genetics and statistical models to test how landscape features influence connectivity or create barriers to dispersal for a mountain riparian tree species, Euptelea pleiospermum. Young leaves from 1078 individuals belonging to 36 populations at elevations of 900–2000 m along upper reaches of four rivers were genotyped using eight nuclear microsatellite markers. We found no evidence for the unidirectional dispersal hypothesis in E. pleiospermum within each river. The linear dispersal pattern along each river valley is mostly consistent with the “classical metapopulaton” model. Mountain ridges separating rivers were genetic barriers for this wind-pollinated tree species with anemochorous seeds, whereas river valleys provided important corridors for dispersal. Gene flow among populations along elevational gradients within each river prevails over gene flow among populations at similar elevations but from different rivers. This pattern of gene flow is likely to promote elevational range shifts of plant populations and to hinder local adaptation along elevational gradients. This study provides a paradigm to determine which of the two strategies (migration or adaptation) will be adopted by mountain riparian plants under climate warming.  相似文献   

14.

Revealing patterns of genetic diversity and barriers for gene flow are key points for successful conservation in endangered species. Methods based on molecular markers are also often used to delineate conservation units such as evolutionary significant units and management units. Here we combine phylo-geographic analyses (based on mtDNA) with population and landscape genetic analyses (based on microsatellites) for the endangered yellow-bellied toad Bombina variegata over a wide distribution range in Germany. Our analyses show that two genetic clusters are present in the study area, a northern and a southern/central one, but that these clusters are not deeply divergent. The genetic data suggest high fragmentation among toad occurrences and consequently low genetic diversity. Genetic diversity and genetic connectivity showed a negative relationship with road densities and urban areas surrounding toad occurrences, indicating that these landscape features act as barriers to gene flow. To preserve a maximum of genetic diversity, we recommend considering both genetic clusters as management units, and to increase gene flow among toad occurrences with the aim of restoring and protecting functional meta-populations within each of the clusters. Several isolated populations with especially low genetic diversity and signs of inbreeding need particular short-term conservation attention to avoid extinction. We also recommend to allow natural gene flow between both clusters but not to use individuals from one cluster for translocation or reintroduction into the other. Our results underscore the utility of molecular tools for species conservation, highlight outcomes of habitat fragmentation onto the genetic structure of an endangered amphibian and reveal particularly threatened populations in need for urgent conservation efforts.

  相似文献   

15.
Estimating population connectivity and species' abilities to disperse across the landscape is crucial for understanding the long‐term persistence of species in changing environments. Surprisingly, few landscape genetic studies focused on tropical regions despite the alarming extinction rates within these ecosystems. Here, we compared the influence of landscape features on the distribution of genetic variation of an Afromontane frog, Amietia wittei, with that of its more broadly distributed lowland congener, Amietia angolensis, on Mt. Kilimanjaro, Tanzania. We predicted high gene flow in the montane species with movements enhanced through terrestrial habitats of the continuous rainforest. In contrast, dispersal might be restricted to aquatic corridors and reduced by anthropogenic disturbance in the lowland species. We found high gene flow in A. wittei relative to other montane amphibians. Nonetheless, gene flow was lower than in the lowland species which showed little population structure. Least‐cost path analysis suggested that dispersal is facilitated by stream networks in both species, but different landscape features were identified to influence connectivity among populations. Contrary to a previous study, gene flow in the lowland species was negatively correlated with the presence of human settlements. Also, genetic subdivision in A. wittei did not coincide with specific physical barriers as in other landscape genetic studies, suggesting that factors other than topography may contribute to population divergence. Overall, these results highlight the importance of a comparative landscape genetic approach for assessing the influence of the landscape matrix on population connectivity, particularly because nonintuitive results can alter the course of conservation and management.  相似文献   

16.
The cognizing of connectivity among small mammal populations across heterogeneous landscapes is complicated due to complex influences of landscape and anthropogenic factors on gene flow. A landscape genetics approach offers inferences on how landscape features drive population structure. Through a landscape genetics approach, we investigated influences of geographical, environmental, and anthropogenic features on populations of Apodemus agrarius, the striped field mouse, the prime vector of hemorrhagic fever by a landscape genetic approach. We identified landscape features that might affect the population structure of striped field mice by analyzing microsatellite markers of 197 striped field mice from 21 populations throughout South Korea. We developed Maximum-likelihood population effects models based on landscape distances and resistance matrices and pairwise FST values for meta-populations of striped field mouse. We also conducted Mantel and partial Mantel tests to investigate geographic patterns of genetic similarities. In Mantel and partial Mantel tests, the FST was significantly correlated with all three models of movement; movement cost, Euclidian distance and least-cost distance, although the magnitudes of correlations varied. The 4 top-ranked models included three variables; temperature, precipitation and one human disturbance factor (population). We did not attain a significant effect for anthropogenic factors on genetic similarities among populations in the Korean striped field mouse, but we confirmed a significant association for genetic similarity with climatic features (temperature and precipitation).  相似文献   

17.
The populations of goitered gazelle suffered significant decline due to natural and anthropogenic factors over the last century. Investigating the effects of barriers on gene flow among the remaining populations is vital for conservation planning. Here we adopted a landscape genetics approach to evaluate the genetic structure of the goitered gazelle in Central Iran and the effects of landscape features on gene flow using 15 polymorphic microsatellite loci. Spatial autocorrelation, isolation by distance (IBD) and isolation by resistance (IBR) models were used to elucidate the effects of landscape features on the genetic structure. Ecological modeling was used to construct landscape permeability and resistance map using 12 ecogeographical variables. Bayesian algorithms revealed three genetically homogeneous groups and restricted dispersal pattern in the six populations. The IBD and spatial autocorrelation revealed a pattern of decreasing relatedness with increasing distance. The distribution of potential habitats was strongly correlated with bioclimatic factors, vegetation type, and elevation. Resistance distances and graph theory were significantly related with variation in genetic structure, suggesting that gazelles are affected by landscape composition. The IBD showed greater impact on genetic structure than IBR. The Mantel and partial Mantel tests indicated low but non-significant effects of anthropogenic barriers on observed genetic structure. We concluded that a combination of geographic distance, landscape resistance, and anthropogenic factors are affecting the genetic structure and gene flow of populations. Future road construction might impede connectivity and gene exchange of populations. Conservation measures on this vulnerable species should consider some isolated population as separate management units.  相似文献   

18.
The Eastern Afromontane Biodiversity Hotspot is known for microendemism and exceptional population genetic structure. The region's landscape heterogeneity is thought to limit gene flow between fragmented populations and create opportunities for regional adaptation, but the processes involved are poorly understood. Using a combination of phylogeographic analyses and circuit theory, I investigate how characteristics of landscape heterogeneity including regional distributions of slope, rivers and streams, habitat and hydrological basins (drainages) impact genetic distance among populations of the endemic spotted reed frog (Hyperolius substriatus), identifying corridors of connectivity as well as barriers to dispersal. Results show that genetic distance among populations is most strongly correlated to regional and local hydrologic structure and the distribution of suitable habitat corridors, not isolation by distance. Contrary to expectations, phylogeographic structure is not coincident with the two montane systems, but instead corresponds to the split between the region's two major hydrological basins (Zambezi and East Central Coastal). This results in a paraphyletic relationship for the Malawian Highlands populations with respect to the Eastern Arc Mountains and implies that the northern Malawian Highlands are the diversity centre for H. substriatus. Although the Malawian Highlands collectively hold the greatest genetic diversity, individual populations have lower diversity than their Eastern Arc counterparts, with an overall pattern of decreasing population diversity from north to south. Through the study of intraspecific differentiation across a mosaic of ecosystem and geographic heterogeneity, we gain insight into the processes of diversification and a broader understanding of the role of landscape in evolution.  相似文献   

19.
Habitat and geographical features of river systems strongly influence gene flow and spatial genetic patterning in riparian plant populations. We investigated the patterns of genetic diversity within and among populations of Ainsliaea faurieana relative to different spatial conditions (along a river, among rivers, and among regions on an island), based on nuclear and chloroplast microsatellite DNA variations. Within an individual river system, we found higher haplotype diversities in downstream populations, and in a Bayesian analysis of recent migration, we detected unidirectional gene movements from upstream to downstream, indicating water-mediated dispersal along the river. Mantel tests detected no isolation-by-distance in genetic variation, suggesting the maintenance of a metapopulation with wide-range seed dispersal by water. Moreover, the observed high level of genetic differentiation, especially in the cpDNA (F(ST) = 0.539), indicated a metapopulation structure with frequent extinction and colonization. On a larger scale, we found high population differentiation and clear genetic structuring among regions, suggesting that gene flow was restricted by geographical features (mountains separating river systems) for relatively long periods. Our findings of genetic structures based on different spatial conditions elucidated patterns and ranges of historical and contemporary gene movement in a plant species that is persistent in extremely disturbed riparian environments.  相似文献   

20.
The evolutionary viability of an endangered species depends upon gene flow among subpopulations and the degree of habitat patch connectivity. Contrasting population connectivity over ecological and evolutionary timescales may provide novel insight into what maintains genetic diversity within threatened species. We employed this integrative approach to evaluating dispersal in the critically endangered Coahuilan box turtle (Terrapene coahuila) that inhabits isolated wetlands in the desert‐spring ecosystem of Cuatro Ciénegas, Mexico. Recent wetland habitat loss has altered the spatial distribution and connectivity of habitat patches; and we therefore predicted that T. coahuila would exhibit limited movement relative to estimates of historic gene flow. To evaluate contemporary dispersal patterns, we employed mark–recapture techniques at both local (wetland complex) and regional (intercomplex) spatial scales. Gene flow estimates were obtained by surveying genetic variation at nine microsatellite loci in seven subpopulations located across the species’ geographical range. The mark–recapture results at the local spatial scale reveal frequent movement among wetlands that was unaffected by interwetland distance. At the regional spatial scale, dispersal events were relatively less frequent between wetland complexes. The complementary analysis of population genetic substructure indicates strong historic gene flow (global FST = 0.01). However, a relationship of genetic isolation by distance across the geographical range suggests that dispersal limitation exists at the regional scale. Our approach of contrasting direct and indirect estimates of dispersal at multiple spatial scales in T. coahuila conveys a sustainable evolutionary trajectory of the species pending preservation of threatened wetland habitats and a range‐wide network of corridors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号