首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Isolation of pure beta cells of the rat pancreas was achieved employing counterflow sedimentation technique (CST) followed by density gradient centrifugation technique (DGCT). The proportion of non-endocrine cells to beta cells was minimal (1 acinar cell in 296 beta cells, and 1 duct cell in 300 beta cells) with total absence of alpha and delta cells. Oxidation of D-(U-14C) glucose to 14CO2 by the isolated beta cells was linear to time. Glucagon (1, 5, or 10 nM) or arginine (1, 5 or 10 mM) produced concentration dependent insulin secretion. Thus, a highly purified preparation of isolated beta cells of rat pancreas could be obtained with excellent morphologic, metabolic and functional integrity.  相似文献   

2.
3.
4.
Pancreatic acinar cells do not contain depolarization-sensitive calcium channels. Nonetheless, in the current study, the calcium channel activator, BAY-K-8644, was found to stimulate a time- and concentration-dependent increase in the spontaneous release of amylase. Secretion was dependent on the presence of extracellular calcium in the incubation medium. Racemic BAY-K-8644 and (or) its S(-)optical isomer did not enhance the secretory response to either carbachol or cholecystokinin octapeptide; however, when co-applied with either phorbol ester, vasoactive intestinal peptide, or forskolin, they potentiated amylase secretion. Nifedipine and the R(+)isomer of BAY-K-8644, which are both calcium channel antagonists, did not alter basal or forskolin-stimulated amylase secretion, and [3H]nitrendipine did not bind to acinar cell membranes. Neither atropine nor dibutyryl cGMP, inhibitors of cholinergic and cholecystokininergic receptors, respectively, affected BAY-K-8644-induced amylase secretion. While BAY-K-8644 stimulated concentration-dependent cGMP synthesis in acinar cells, it had no effect on basal or forskolin-stimulated cAMP formation. The data suggest that BAY-K-8644 may bind to acinar cell sites that are not functional calcium channel proteins but are coupled nevertheless to the secretory response, and that calcium channel antagonists do not bind to these sites. The mechanism of the secretagogue action of BAY-K-8644 remains to be elucidated.  相似文献   

5.
Adenosine 3',5'-monophosphate (cAMP) evoked amylase release from saponin-permeabilized parotid cells of the rat. Saponin concentration was optimal at 10 micrograms/ml. Amylase release was stimulated by cAMP almost as well in Ca2+-free medium containing 1 mM EGTA as in the medium containing a physiological concentration of calcium. Although the basal and stimulated releases of amylase were markedly reduced by the further addition of 5 mM EGTA, the effect of cAMP was still detectable. The half-maximal dose of cAMP was 0.3 mM, whereas those of dibutyryl cAMP and 8-bromo-cAMP were 10-fold lower than that of cAMP. In the presence of 10 microM 3-isobutyl-1-methylxanthine, the half-maximal dose of cAMP was also decreased by 5-fold. These results suggest: 1) intracellular calcium is not essential for the exocytosis of amylase stimulated by cAMP; 2) the responsiveness of the cells to exogenous cAMP is reduced by phosphodiesterase.  相似文献   

6.
7.
The cellular and molecular effects of forskolin, a direct, nonhormonal activator of adenylate cyclase, were assessed on the enzyme secretory process in dispersed rat pancreatic acinar cells. Forskolin stimulated adenylate cyclase activity in the absence of guanyl nucleotide. It promoted a rapid and marked increase in cellular accumulation of cyclic AMP alone or in combination with vasoactive intestinal peptide (VIP) but was itself a weak pancreatic agonist and did not increase the secretory response to VIP or other cyclic AMP dependent agonists. Somatostatin was a partial antagonist of forskolin stimulated cyclic AMP synthesis and forskolin plus cholecystokinin-octapeptide (CCK-OP) induced amylase release. Forskolin potentiated amylase secretion in response to calcium-dependent agonists such as CCK-OP, carbachol and A-23187, but did not affect the ability of CCK-OP and (or) carbachol to mobilize 45Ca from isotope preloaded cells; forskolin alone did not stimulate 45Ca release. In calcium-poor media, the secretory response to forskolin and CCK-OP was reduced in a both absolute and relative manner. The data suggests that calcium plays the primary role as intracellular mediator of enzyme secretion and that the role of cyclic AMP may be to modulate the efficiency of calcium utilization.  相似文献   

8.
The role of prostaglandins in exocrine pancreatic enzyme secretion was studied. The effects of three inhibitors of prostaglandin and thromboxane syntheses, were evaluated on release of amylase from dispersed rat pancreatic acinar cells. Mepacrine inhibited, while indomethacin and imidazole had no effect on basal or carbachol or cholecystokinin stimulated enzyme release. Exogenous arachidonic acid or various prostaglandins (E1, E2, F, I2), also did not affect the secretory process. Acinar cells actively incorporated radioactive arachidonic acid, principally into phospholipids (especially phosphatidylcholine), however release of the free fatty acid and subsequent synthesis of radioactive endogenous prostaglandins was not stimulated by the presence of different pancreatic stimulants. Pancreatic microsomes were found to be lacking in cyclo-oxygenase, an enzyme involved in endegenous synthesis of prostaglandins. The data suggest that prostaglandins are not involved directly in excitation-secretion coupling in the exocrine pancreas.  相似文献   

9.
The effects of the thiol reagent, phenylarsine oxide (PAO, 10(-5)-10(-3) M ), a membrane-permeable trivalent arsenical compound that specifically complexes vicinal sulfhydryl groups of proteins to form stable ring structures, were studied by monitoring intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. PAO increased [Ca2+]i by mobilizing calcium from intracellular stores, since this increase was observed in the absence of extracellular calcium. PAO also prevented the CCK-8-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF-4). In addition to the effects of PAO on calcium mobilization, it caused a significant increase in amylase secretion and reduced the secretory response to either CCK-8 or AlF-4. The effects of PAO on both [Ca2+]i and amylase release were reversed by the sulfhydryl reducing agent, dithiothreitol (2 mM). Pretreatment of acinar cells with high concentration of ryanodine (50 microM) reduced the PAO-evoked calcium release. However, PAO was still able to release a small fraction of Ca2+ from acinar cells in which agonist-releasable Ca2+ pools had been previously depleted by thapsigargin (0.5 microM) and ryanodine receptors were blocked by 50 microM ryanodine. We conclude that, in pancreatic acinar cells, PAO mainly releases Ca2+ from the ryanodine-sensitive calcium pool and consequently induces amylase secretion. These effects are likely to be due to the oxidizing effects of this compound.  相似文献   

10.
This study investigates the effects of dephostatin, a new tyrosine phosphatase inhibitor, on intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. Dephostatin evoked a sustained elevation in [Ca2+]i by mobilizing calcium from intracellular calcium stores in either the absence of extracellular calcium or the presence of lanthanium chloride (LaCl3). Pretreatment of acinar cells with dephostatin prevented cholecystokinin-octapeptide (CCK-8)-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF- 4), whereas co-incubation with CCK-8 enhances the plateau phase of calcium response to CCK-8 without modifying the transient calcium spike. The effects of dephostatin on calcium mobilization were reversed by the presence of the sulfhydryl reducing agent, dithiothreitol. Stimulation of acinar cells with thapsigargin in the absence of extracellular Ca2+ resulted in a transient rise in [Ca2+]i . Application of dephostatin in the continuous presence of thapsigargin caused a small but sustained elevation in [Ca2+]i . These results suggest that dephostatin can mobilize Ca2+ from both a thapsigargin-sensitive and thapsigargin-insensitive intracellular stores in pancreatic acinar cells. In addition, dephostatin can stimulate the release of amylase from pancreatic acinar cells and moreover, reduce the secretory response to CCK-8. The results indicate that dephostatin can release calcium from intracellular calcium pools and consequently induces amylase secretion in pancreatic acinar cells. These effects are likely due to the oxidizing effects of this compound.  相似文献   

11.
Leukotrienes LTC4 and LTD4 display contractile effect on the stomach. The stimulation of acid secretion by LTC4, LTD4 and LTE4 was evidenced on a crude isolated cell preparation from rabbit gastric mucosa using the (14C)aminopyrine accumulation method. LTs were in the same order of potency. No potentiation with histamine, carbachol or IBMX was observed suggesting a specific mechanism for LTs on parietal cell.  相似文献   

12.
Human gastric mucosal cells were isolated from the resected fundic mucosa of peptic ulcer patients. The intracellular content and secretion of intrinsic factor were estimated by binding to cyano[57Co]cobalamin. The content was maximal in the enriched parietal cell fraction which also displayed the highest H+ production as measured by amino[14C]pyrine uptake. Secretagogues evoked full response after 15 min of incubation: pentagastrin (181% of basal secretion), carbachol (208%), histamine (250%) and dibutyryl cyclic adenosine monophosphate (304%). The phosphodiesterase inhibitor isobutylmethylxanthine was slightly more effective even than dibutyryl cAMP. The response to histamine was abolished by ranitidine, indicating activation of adenylate cyclase via histamine H2 receptors, but remained unaffected by atropine, which in turn blocked the carbachol effect, whereas ranitidine was ineffective. The mean formation rate was 8.4 fmol intrinsic factor/106 cells per h under basal conditions and 14.3 fmol in response to histamine.  相似文献   

13.
Standard (UICC) chrysotile B asbestos fibres caused rapid (within minutes) 5-to-8-fold stimulations of catecholamine secretion from isolated bovine adrenal chromaffin cells without affecting their viability (97%). The stimulation of catecholamine secretion by asbestos was selective to chrysotile type fibres, half-maximal stimulation by standard chrysotile B, chrysotile A, crocidolite, amosite and silica fibres being observed at 7, 73, 160, 250 and ? 500 μg per ml, respectively. The secretory effect of chrysotile B was additive to that of acetylcholine and blocked by either the divalent cations, Co2+, Ni2+ and Mg2+ or the ion chelators, EGTA and EDTA. Conversely, neither verapamil, methoxyverapamil, or removal of extracellular calcium affected the asbestos-evoked catecholamine secretion. These data indicate that the selective stimulatory effect of chrysotile type asbestos on adrenal chromaffin cells can be mediated by membrane or intracellular calcium and raise the question of the possible involvement of catecholamines in the pathogenesis of asbestos related diseases.  相似文献   

14.
Dopamine has been shown to effect pancreatic flow, protein output and amylase secretion in a variety of species. However, there is conflicting evidence regarding the role of dopamine on amylase release in vitro. Specific studies were conducted to evaluate the effect of dopamine and to compare its effects with other substances on basal- and secretagogue-stimulated amylase secretion in a guinea pig dispersed pancreatic acinar cells preparation. Dopamine (10(-6) M) induced a small, but significant (P less than 0.05) increase of amylase secretion. Established secretagogues (10(-6) M) including bombesin, cholecystokinin-octapeptide (CCK-8) and carbachol as anticipated induced significantly larger responses. Other substances tested (10(-6) M) including thyrotropin-releasing hormone (TRH) and muscimol were without effect. Complete dose-response studies (10(-11)-10(-3) M) in the presence of bombesin, CCK-8 and carbachol revealed that dopamine does not affect amylase release in response to these secretagogues. These findings suggest that dopamine is a weak stimulant of amylase secretion in vitro, and that it may therefore play a minor role in regulation of pancreatic enzyme secretion. Several factors including vascular, hormonal and neural have been implicated in regulation of pancreatic exocrine secretion. In particular, autonomic nervous system activity, notably cholinergic, has been shown to affect the secretory status of the pancreatic acinar cell. In addition, several biologically active peptides including bombesin, cholecystokinin (CCK), secretin, vasoactive intestinal peptide (VIP), substance P, gastrin and stimulation of cholinergic (muscarinic) receptors with carbachol have been shown to stimulate pancreatic enzyme secretion both in vivo and in vitro. Certain controversy regarding the role of the sympathetic nervous system in regulation of pancreatic exocrine secretion does exist. For example, several studies with agonists and antagonists of noradrenergic and dopaminergic receptor subtypes suggest a stimulatory effect on pancreatic fluid, electrolyte and enzyme secretion. However, these responses are species-specific and variations inherent to the model have been described. Dopamine administration has been shown to stimulate pancreatic bicarbonate and enzyme secretion in a variety of species including mice, dogs, and man. Radioligand binding studies with 3H-dopamine have revealed the presence of high- and low-affinity dopamine binding sites in dog pancreatic acinar cells. Stimulation of these receptors has been correlated with dose-dependent increases in intracellular cAMP levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Internalization of cationized ferritin by isolated pancreatic acinar cells   总被引:2,自引:0,他引:2  
The internalization of cationized ferritin (CF) was studied in isolated pancreatic acinar cells in vitro. Horseradish peroxidase (HRP) was used in conjunction with CF to compare internalization of soluble-phase and membrane-bound tracers. The mode of internalization of CF was dependent upon tracer concentration and origin of the plasma membrane (apical vs. lateral-basal). At the lower tracer concentrations (0.19 and 0.38 mg/ml), internalization from the apical cell surface occurred via small vesicles. The tracer then appeared in multivesicular bodies, in tubules, and in irregular membrane-bound structures. After 15 min, CF particles were seen in many small vesicles near the Golgi apparatus, but not in the Golgi saccules. In contrast, at the lateral-basal cell surface the CF particles tended to form clusters. These clusters were more pronounced at higher CF concentrations (0.76 and 1.5 mg/ml) and were associated with elongated cellular processes, which seemed to engulf CF accumulations in a phagocytic manner. Once internalized, CF was found primarily in large irregular structures which appeared to migrate slowly toward the nucleus, reaching a juxtanuclear position after approximately 30 min. CF was observed in lysosomes after 30-45 min and by 90 min most of the CF was confined to large vacuoles and to trimetaphosphatase-positive lysosomes. Similar routes were observed when cells were double-labeled with CF and HRP, where endocytic structures showed co-localization of both tracers. The results of this study indicate the importance of the Golgi region in the intracellular sorting of internalized apical membrane. Furthermore, this work confirms the presence of distinct endocytic pathways at the apical and lateral-basal cell surfaces.  相似文献   

16.
It is well-known that amylase is secreted in response to extracellular stimulation from the acinar cells. However, amylase is also secreted without stimulation. We distinguished vesicular amylase as a newly synthesized amylase from the accumulated amylase in secretory granules by short time pulse and chased with 35S-amino acid. The newly synthesized amylase was secreted without stimulation from secretory vesicles in rat parotid acinar cells. The secretion process did not include microtubules, but was related to microfilaments. p-Nitrophenyl β-xyloside, an inhibitor of proteoglycan synthesis, inhibited the newly synthesized amylase secretion. This indicated that the newly synthesized amylase was secreted from secretory vesicles, not via the constitutive-like secretory route, which includes the immature secretory granules, and that proteoglycan synthesis was required for secretory vesicle formation.  相似文献   

17.
The pancreas is vulnerable to ethanol toxicity, but the pathogenesis of alcoholic pancreatitis is not fully defined. The intracellular oxidative balance and the characteristics of the secretion of isolated rat pancreatic acinar cells stimulated with the cholecystokinin analogue cerulein were assayed after acute oral ethanol (4 g/kg) load. Pancreatic acinar cells from ethanol-treated rats showed a significant (p < 0.02) lower content of total glutathione and protein sulfhydryls, and higher levels of oxidized glutathione (p < 0.03), malondialdehyde, and protein carbonyls (p < 0.05). Ethanol-intoxicated acinar cells showed a lower baseline amylase output compared to controls, with the difference being significantly exacerbated by cerulein stimulation. After cerulein, the release of protein carbonyls by ethanol-treated cells was significantly increased, whereas that of protein sulfhydryls was significantly decreased. In conclusion, ethanol oxidatively damages pancreatic acinar cells; cerulein stimulation is followed by a lower output of amylase and by a higher release of oxidized proteins by pancreatic acinar cells from ethanol-treated rats. These findings may account for the decreased exocrine function, intraductular plug formation, and protein precipitation in alcoholic pancreatitis.  相似文献   

18.
19.
20.
This study compares the susceptibility of pancreatic acinar cells and zymogen granules against oxidative injury and analyzes the mechanisms involved. Zymogen granules and acinar cells, isolated from rat pancreas, were exposed to a reaction mixture containing xanthine oxidase, hypoxanthine, and chelated iron. Cell function and viability were assessed by various techniques. Trypsin activation was quantified by an Elisa for trypsinogen activating peptide. Integrity of granules was determined by release of amylase. The reaction mixture rapidly generated radicals as assessed by deoxyribose and luminol assays. This oxidative stress caused lysis of granules in a matter of minutes but significant cell death only after some hours. Nevertheless, radicals initiated intracellular vacuolization, morphological damage to zymogen granules and mitochondria, increase in trypsinogen activating peptide, and decrease in ATP already after 5–30 min. Supramaximal caerulein concentrations also caused rapid trypsin activation. Addition of cells but not of granules reduced deoxyribose oxidation, suggesting that intact cells act as scavengers. Caerulein pretreatment only slightly increased the susceptibility of cells but markedly that of granules. In conclusion, isolated zymogen granules are markedly more susceptible to oxidative injury than intact acinar cells, in particular, in early stages of caerulein pancreatitis. The results show that oxidative stress causes a rapid trypsin activation that may contribute to cell damage by triggering autodigestion. Zymogen granules and mitochondria appear to be important targets of oxidative damage inside acinar cells. The series of intracellular events initiated by oxidative stress was similar to changes seen in early stages of pancreatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号