首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Presynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate receptors mediating hippocampal [(3)H]noradrenaline or [(3)H]serotonin release, striatal [(3)H]dopamine release and cortical [(3)H]acetylcholine release were pharmacologically characterized using several AMPA/kainate receptor antagonists. The releases of the four transmitters elicited by exposing synaptosomes to AMPA were antagonized by NBQX, indicating that they reflect AMPA/kainate receptor activation. GYKI52466 did not inhibit the AMPA-induced release of [(3)H]noradrenaline, [(3)H]dopamine or [(3)H]serotonin, while it weakly affected the AMPA-mediated release of [(3)H]acetylcholine. On the contrary, LY300164 and LY303070 were potent antagonists able to discriminate among AMPA/kainate receptor subtypes. Both compounds blocked the AMPA receptors mediating [(3)H]dopamine and [(3)H]acetylcholine release. However, LY303070, but not LY300164, inhibited the AMPA-induced release of [(3)H]noradrenaline, while the AMPA-mediated [(3)H]serotonin release was sensitive to LY300164 but not to LY303070. SYM2206 mimicked LY300164 and prevented the AMPA-induced release of [(3)H]dopamine, [(3)H]acetylcholine and [(3)H]serotonin, but not that of [(3)H]noradrenaline. NS102 failed to antagonize the AMPA-induced release of all four transmitters. LY293558 prevented the AMPA-mediated release of [(3)H]noradrenaline, [(3)H]dopamine, [(3)H]acetylcholine or [(3)H]serotonin. Differently, LY377770 did not inhibit the AMPA-mediated release of [(3)H]noradrenaline and [(3)H]acetylcholine, but it potently blocked the AMPA-induced release of [(3)H]serotonin and, less so, of [(3)H]dopamine. AMOA inhibited the AMPA-induced release of [(3)H]serotonin or [(3)H]acetylcholine, but not that of [(3)H]noradrenaline or [(3)H]dopamine. GAMS prevented the AMPA-mediated release of [(3)H]acetylcholine and, more weakly, that of [(3)H]dopamine, but it failed to inhibit the release of [(3)H]noradrenaline or [(3)H]serotonin elicited by AMPA. gamma-DGG did not affect the AMPA-mediated release of any of the four transmitters studied. In conclusion, based on the antagonist profiles obtained, the four receptors here analyzed all belong to the AMPA-preferring subclass of glutamate receptors; however, they appear to differ from each other, probably due to differences in subunit composition. The compounds LY300164, LY303070, LY377770, AMOA and GAMS may be useful to discriminate among AMPA-preferring receptor subtypes.  相似文献   

2.
Transport of ceramide synthesized at the endoplasmic reticulum to the Golgi compartment, where sphingomyelin (SM) synthase exists, was reconstituted within semi-intact Chinese hamster ovary cells. When [(3)H]ceramide that had been produced from [(3)H]sphingosine at 15 degrees C in perforated cells was chased at 37 degrees C, [(3)H]ceramide-to-[(3)H]SM conversion occurred in a cytosol-dependent manner. In various aspects (i.e. kinetics, ATP dependence, and temperature dependence), [(3)H]ceramide-to-[(3)H]SM conversion in perforated cells was consistent with that in intact cells. The cytosol from LY-A strain, a Chinese hamster ovary cell mutant defective in endoplasmic reticulum-to-Golgi transport of ceramide, did not support [(3)H]ceramide-to-[(3)H]SM conversion in perforated wild-type cells, whereas the wild-type cytosol rescued the conversion in perforated LY-A cells. Brefeldin A-treated cells, in which the endoplasmic reticulum and the Golgi apparatus were merged, no longer required cytosol for conversion of [(3)H]ceramide to [(3)H]SM. These results indicated that the assay of [(3)H]ceramide-to-[(3)H]SM conversion in semi-intact cells is a faithful in vitro assay for the activity of cytosol-dependent transport of ceramide and that LY-A cells are defective in a cytosolic factor involved in ceramide transport. In addition, conversion of [(3)H]ceramide to [(3)H]glucosylceramide in semi-intact cells was little dependent on cytosol, suggesting that ceramide reached the site of glucosylceramide synthesis by a cytosol-independent (or less dependent) pathway.  相似文献   

3.
Myocardial ischaemia is associated with the generation of lipid peroxidation products such as HNE (4-hydroxy-trans-2-nonenal); however, the processes that predispose the ischaemic heart to toxicity by HNE and related species are not well understood. In the present study, we examined HNE metabolism in isolated aerobic and ischaemic rat hearts. In aerobic hearts, the reagent [(3)H]HNE was glutathiolated, oxidized to [(3)H]4-hydroxynonenoic acid, and reduced to [(3)H]1,4-dihydroxynonene. In ischaemic hearts, [(3)H]4-hydroxynonenoic acid formation was inhibited and higher levels of [(3)H]1,4-dihydroxynonene and [(3)H]GS-HNE (glutathione conjugate of HNE) were generated. Metabolism of [(3)H]HNE to [(3)H]4-hydroxynonenoic acid was restored upon reperfusion. Reperfused hearts were more efficient at metabolizing HNE than non-ischaemic hearts. Ischaemia increased the myocardial levels of endogenous HNE and 1,4-dihydroxynonene, but not 4-hydroxynonenoic acid. Isolated cardiac mitochondria metabolized [(3)H]HNE primarily to [(3)H]4-hydroxynonenoic acid and minimally to [(3)H]1,4-dihydroxynonene and [(3)H]GS-HNE. Moreover, [(3)H]4-hydroxynonenoic acid was extruded from mitochondria, whereas other [(3)H]HNE metabolites were retained in the matrix. Mitochondria isolated from ischaemic hearts were found to contain 2-fold higher levels of protein-bound HNE than the cytosol, as well as increased [(3)H]GS-HNE and [(3)H]1,4-dihydroxynonene, but not [(3)H]4-hydroxynonenoic acid. Mitochondrial HNE oxidation was inhibited at an NAD(+)/NADH ratio of 0.4 (equivalent to the ischaemic heart) and restored at an NAD(+)/NADH ratio of 8.6 (equivalent to the reperfused heart). These results suggest that HNE metabolism is inhibited during myocardial ischaemia owing to NAD(+) depletion. This decrease in mitochondrial metabolism of lipid peroxidation products and the inability of the mitochondria to extrude HNE metabolites could contribute to myocardial ischaemia/reperfusion injury.  相似文献   

4.
[(3)H]8-OH-DPAT is a selective ligand for labeling 5-HT(1A) receptor sites. In competition binding experiments, we found that classic biogenic amine transporter inhibitors displaced [(3)H]8-OH-DPAT binding at its high-affinity binding sites in HeLaS3 cells. [(125)I]RTI-55 and [(3)H]paroxetine are known to specifically label amine transporter sites, and this was observed in our cells. Displacement studies showed that 8-OH-DPAT displayed affinity in a dose-dependent manner for the labeled amine transporter sites. These data suggest that [(3)H]8-OH-DPAT binds to amine uptake sites in HeLaS3 cells. A variety of drugs targeting different classes of receptors did not significantly affect [(3)H]8-OH-DPAT binding. Moreover, we determined the specific binding effects of various serotonergic ligands (i.e. [(125)I]cyanopindolol, [(3)H]ketanserin/[(3)H]mesulergine, [(3)H]GR-65630, [(3)H]GR-113808 and [(3)H]LSD) that specifically labeled 5-HT(1), 5-HT(2), 5-HT(3), 5-HT(4) and 5-HT(5-7) receptors, respectively. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor recognition binding sites. These observations could help elucidate the relevant characteristics of different types of 5-HT receptors and 5-HT membrane transporters in tumor cells and their role in tumorigenesis.  相似文献   

5.
The late endosomal/lysosomal compartment (LE/LY) plays a key role in sphingolipid breakdown, with the last degradative step catalyzed by acid ceramidase. The released sphingosine can be converted to ceramide in the ER and transported by ceramide transfer protein (CERT) to the Golgi for conversion to sphingomyelin. The mechanism by which sphingosine exits LE/LY is unknown but Niemann-Pick C1 protein (NPC1) has been suggested to be involved. Here, we used sphingomyelin, ceramide and sphingosine labeled with [(3) H] in carbon-3 of the sphingosine backbone and targeted them to LE/LY in low-density lipoprotein (LDL) particles. These probes traced LE/LY sphingolipid degradation and recycling as suggested by (1) accumulation of [(3) H]-sphingomyelin-derived [(3) H]-ceramide and depletion of [(3) H]-sphingosine upon acid ceramidase depletion, and (2) accumulation of [(3) H]-sphingosine-derived [(3) H]-ceramide and attenuation of [(3) H]-sphingomyelin synthesis upon CERT depletion. NPC1 silencing did not result in the accumulation of [(3) H]-sphingosine derived from [(3) H]-sphingomyelin/LDL or [(3) H]-ceramide/LDL. Additional evidence against NPC1 playing a significant role in LE/LY sphingosine export was obtained in experiments using the [(3) H]-sphingolipids or a fluorescent sphingosine derivative in NPC1 knock-out cells. Instead, NPC1-deficient cells displayed an increased affinity for sphingosine independently of protein-mediated lipid transport. This likely contributes to the increased sphingosine content of NPC1 cells.  相似文献   

6.
Dehydroepiandrosterone-fatty acyl esters (DHEA-FAE) belong to a unique family of naturally occurring hydrophobic steroid hormone derivatives that are transported in circulating lipoproteins and may act as a source of dehydroepiendrosterone (DHEA) and other biologically active steroid hormones in cells. Here, we studied the metabolic fate of low-density lipoprotein-associated [(3)H]DHEA-FAE ([(3)H]DHEA-FAE-LDL) and the possible role of lysosomal acid lipase (LAL) in the hydrolysis of DHEA-FAE in cultured human cells. When HeLa cells were incubated with [(3)H]DHEA-FAE-LDL, the accumulation of label in the cellular fraction increased with incubation time and could be inhibited by excess unlabeled LDL, suggesting LDL receptor or LDL receptor-related receptor-dependent uptake. During 48 h of chase, decreasing amounts of [(3)H]DHEA-FAE were found in the cellular fraction, while in the medium increasing amounts of unesterified [(3)H]DHEA and its two metabolites, [(3)H]-5alpha-androstanedione (5alpha-adione) and [(3)H]androstenedione (4-adione), appeared. As LDL-cholesteryl ester hydrolysis is dependent on LAL activity, we depleted LAL from HeLa cells using small interfering RNAs and compared the hydrolysis of [(3)H]DHEA-FAE-LDL and [(3)H]cholesteryl-FAE-LDL. The results demonstrated a more modest but significant reducing effect on the hydrolysis of [(3)H]DHEA-FAE compared with [(3)H]cholesteryl-FAE. Moreover, experiments in LAL-deficient human fibroblasts (Wolman disease patient cells) showed that [(3)H]DHEA-FAE hydrolysis was not completely dependent on LAL activity. In summary, LDL-transported [(3)H]DHEA-FAE entered cells via LDL receptor or LDL receptor-related receptor-mediated uptake, followed by intracellular hydrolysis and further metabolism into 5alpha-adione and 4-adione that were excreted from cells. Although LAL contributed to the deesterification of DHEA-FAE, it was not solely responsible for the hydrolysis.  相似文献   

7.
Inositol phosphate (InsP) responses to receptor activation are assumed to involve phospholipase C cleavage of phosphatidylinositol 4,5-bisphosphate to generate Ins(1,4,5)P(3). However, in [(3)H]inositol-labeled rat neonatal cardiomyocytes (NCM) both initial and sustained [(3)H]InsP responses to alpha(1)-adrenergic receptor stimulation with norepinephrine (100 microM) were insensitive to the phosphatidylinositol 4,5-bisphosphate-binding agent neomycin (5 mM). Introduction of 300 microM unlabeled Ins(1,4, 5)P(3) into guanosine 5'-3-O-(thio)triphosphate (GTPgammaS)-stimulated, permeabilized [(3)H]inositol-labeled NCM increased [(3)H]Ins(1,4,5)P(3) slightly but did not significantly reduce levels of its metabolites [(3)H]Ins(1,4)P(2) and [(3)H]Ins(4)P, suggesting that these [(3)H]InsPs are not formed principally from [(3)H]Ins(1,4,5)P(3). In contrast, the calcium ionophore A23187 (10 microM) provoked [(3)H]InsP responses in intact NCM which were sensitive to neomycin, and elevation of free calcium in permeabilized NCM led to [(3)H]InsP responses characterized by marked increases in [(3)H]Ins(1,4,5)P(3) (2.9 +/- 0.2% of total [(3)H]InsPs after 20 min of high Ca(2+) treatment in comparison to 0. 21 +/- 0.05% of total [(3)H]InsPs accumulated after 20 min of GTPgammaS stimulation). These data provide evidence that Ins(1,4, 5)P(3) generation is not a major contributor to G protein-coupled InsP responses in NCM, but that substantial Ins(1,4,5)P(3) generation occurs under conditions of Ca(2+) overload. Thus in NCM, Ca(2+)-induced Ins(1,4,5)P(3) generation has the potential to worsen Ca(2+) overload and thereby aggravate Ca(2+)-induced electrophysiological perturbations.  相似文献   

8.
Kerr EM  Fry SC 《Planta》2003,217(2):327-339
Cultured cells of maize ( Zea mays L.) were pulse-labelled with l-[1-(3)H]arabinose (Ara) and then monitored for 7 days. The (3)H-hemicelluloses present in three compartments (protoplasm, cell wall and culture medium) were size-fractionated and the fractions assayed for [(3)H]xyloglucans and [(3)H]xylans. Protoplasmic [(3)H]xylans and [(3)H]xyloglucans initially (15 min after [(3)H]Ara-feeding) had weight-average relative molecular masses ( M(w)) approximately 0.5x10(6) and 0.3x10(6), respectively, both rising to 2x10(6) by 30 min. Thus, newly formed hemicellulose molecules were joined to other polymers, or to each other, presumably within Golgi vesicles. New (3)H-hemicelluloses very rapidly bound to the cell wall; however, after 1 day, some [(3)H]xyloglucan and [(3)H]xylan was sloughed from the wall into the medium. The wall-bound [(3)H]xyloglucans were present in the form of extremely large complexes, of M(w)>17x10(6), even as early as 15 min after [(3)H]Ara-feeding. This M(w) is >70-fold greater than that observed by similar methods in cultures of a dicotyledon ( Rosa sp.). Thus, during wall-binding, newly secreted xyloglucans greatly increased in size, possibly by transglucosylation. Some modest degradation (trimming) of wall-bound [(3)H]xyloglucan occurred later. The earliest wall-bound [(3)H]xylan had M(w) approximately 2x10(6), similar to the protoplasmic [(3)H]xylan; this increased to approximately 4x10(6) by 6 h. For the first 2 days after [(3)H]Ara-feeding, the soluble extracellular (3)H-hemicelluloses present in the culture medium had M(w) approximately 1x10(6)-2x10(6), comparable to the protoplasmic hemicelluloses. However, between 2 and 3 days after [(3)H]Ara-feeding, the M(w) of the soluble extracellular [(3)H]xylans increased abruptly to approximately 10x10(6); the soluble extracellular [(3)H]xyloglucans underwent a similar but more gradual increase in M(w). Maize (3)H-hemicelluloses thus underwent increases in M(w) in three episodes: (i) intra-protoplasmically, (ii) during wall-binding (especially xyloglucans), and (iii) after sloughing into the medium. Possible mechanisms and roles of these increases are discussed.  相似文献   

9.
NMDA receptors regulating hippocampal noradrenaline (NA) and striatal dopamine (DA) release have been compared using superfused synaptosomes prelabelled with the [(3)H]catecholamines. Both receptors mediated release augmentation when exposed to NMDA plus glycine. Quinolinic acid (100 microM or 1 mM) plus glycine (1 microM)-elicited [(3)H]NA, but not [(3)H]DA release. The NMDA (100 microM)-evoked release of [(3)H]NA and [(3)H]DA was similar and concentration-dependently enhanced by glycine or D-serine (0.1-1 microM); in contrast, the HIV-1 envelope protein gp120 potently (30-100 pM) enhanced the NMDA-evoked release of [(3)H]NA, but not that of [(3)H]DA. Gp120 also potentiated quinolinate-evoked [(3)H]NA release. Ifenprodil (0.1-0.5 microM) or CP-101,606 (0.1-10 microM) inhibited the NMDA plus glycine-evoked release of both [(3)H]catecholamines. Zinc (0.1-1 microM) was ineffective. Lowering external pH from 7.4 to 6.6 strongly inhibited the release of [(3)H]NA elicited by NMDA plus glycine, whereas the release of [(3)H]DA was unaffected. The protein kinase C inhibitors GF 109203X (0.1 microM) or H7 (10 microM) selectively prevented the effect of NMDA plus glycine on the release of [(3)H]NA. GF 109203X also blocked the release of [(3)H]NA induced by NMDA or quinolinate plus gp120. It is concluded that the hippocampal NMDA receptor and the striatal NMDA receptor are pharmacologically distinct native subtypes, possibly containing NR2B subunits but different splice variants of the NR1 subunit.  相似文献   

10.
After short preincubations with N-[(3)H]methylscopolamine ([(3)H]NMS) or R(-)-[(3)H]quinuclidinyl benzilate ([(3)H]QNB), radioligand dissociation from muscarinic M(1) receptors in Chinese hamster ovary cell membranes was fast, monoexponential, and independent of the concentration of unlabeled NMS or QNB added to reveal dissociation. After long preincubations, the dissociation was slow, not monoexponential, and inversely related to the concentration of the unlabeled ligand. Apparently, the unlabeled ligand becomes able to associate with the receptor simultaneously with the already bound radioligand if the preincubation lasts for a long period, and to hinder radioligand dissociation. When the membranes were preincubated with [(3)H]NMS and then exposed to benzilylcholine mustard (covalently binding specific ligand), [(3)H]NMS dissociation was blocked in wild-type receptors, but not in mutated (D99N) M(1) receptors. Covalently binding [(3)H]propylbenzilylcholine mustard detected substantially more binding sites than [(3)H]NMS. The observations support a model in which the receptor binding domain has two tandemly arranged subsites for classical ligands, a peripheral one and a central one. Ligands bind to the peripheral subsite first (binding with lower affinity) and translocate to the central subsite (binding with higher affinity). The peripheral subsite of M(1) receptors may include Asp-99. Experimental data on [(3)H]NMS and [(3)H]QNB association and dissociation perfectly agree with the predictions of the tandem two-site model.  相似文献   

11.
While studies with [(3)H]D-aspartate ([(3)H]d-Asp) illustrate specific interactions with excitatory amino acid transporters (EAATs), new insights into the pharmacological characteristics and localization of specific EAAT subtypes depend upon the availability of novel ligands. One such ligand is [(3)H]-(2S,4R)-4-methylglutamate ([(3)H]4MG) which labels astrocytic EAATs in homogenate binding studies. This study examined the utility of [(3)H]4MG for binding and autoradiography in coronal sections of rat brain. Binding of [(3)H]4MG was optimal in 5mM HEPES buffer containing 96 mM NaCl, pH 7.5. Specific binding of [(3)H]4MG exhibited two components, but was to a single site when glutamate receptor (GluR) sites were masked with kainate (KA; 1 microM): t(1/2) approximately 5 min, K(d) 250 nM and B(max) 5.4 pmol/mg protein. Pharmacological studies revealed that [(3)H]4MG, unlike [(3)H]d-Asp, labeled both EAAT and ionotropic GluR sites. Further studies employed 6-cyano-7-nitroquinoxaline (30 microM) to block GluR sites, but selective EAAT ligands displayed lower potency than expected for binding to transporters relative to drugs possessing mixed transporter/receptor activities. Autoradiography in conjunction with densitometry with [(3)H]4MG and [(3)H]d-Asp revealed wide, but discrete distributions in forebrain; significant differences in binding levels were found in hippocampus, nucleus accumbens and cortical sub-areas. Although EAAT1 and EAAT2 components were detectable using 3-methylglutamate and serine-O-sulphate, respectively, the majority of [(3)H]4MG binding was to KA-related sites. Overall, in tissue sections [(3)H]4MG proved unsuitable for studying the autoradiographic localization of EAATs apparently due to its inability to selectively discriminate Na(+)-dependent binding to Glu transporters.  相似文献   

12.
Nicotinic acetylcholine receptors (nAChRs) are targets for insect-selective neonicotinoid insecticides exemplified by imidacloprid (IMI) and mammalian-selective nicotinoids including nicotine and epibatidine (EPI). Despite their importance, insect nAChRs are poorly understood compared with their vertebrate counterparts. This study characterizes the [(3)H]IMI, [(3)H]EPI, and [(3)H]alpha-bungarotoxin (alpha-BGT) binding sites in hybrid nAChRs consisting of Drosophila melanogaster (fruit fly) or Myzus persicae (peach-potato aphid) alpha2 coassembled with rat beta2 subunits (Dalpha2/Rbeta2 and Mpalpha2/Rbeta2) and compares them with native insect and vertebrate alpha4beta2nAChRs. [(3)H]IMI and [(3)H]EPI bind to Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 hybrids but [(3)H]alpha-BGT does not. In native Drosophila receptors, [(3)H]EPI has a single high-affinity binding site that is independent from that for [(3)H]IMI and, interestingly, overlaps the [(3)H]alpha-BGT site. In the Mpalpha2/Rbeta2 hybrid, [(3)H]IMI and [(3)H]EPI bind to the same site and have similar pharmacological profiles. On considering both neonicotinoids and nicotinoids, the Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 receptors display intermediate pharmacological profiles between those of native insect and vertebrate alpha4beta2 receptors, limiting the use of these hybrid receptors for predictive toxicology. These findings are consistent with the agonist binding site being located at the nAChR subunit interface and indicate that both alpha and beta subunits influence the pharmacological properties of insect nAChRs.  相似文献   

13.
Radioactive compounds incorporated in tissues can have biological effects resulting from energy deposition in subcellular compartments. We addressed the genetic consequences of [(3)H] or [(14)C]thymidine incorporation into mammalian DNA. Low doses of [(3)H]thymidine in CHO cells led to enhanced sensitivity compared with [(14)C]thymidine. Compared with wild-type cells, homologous recombination (HR)-deficient cells were more sensitive to lower doses of [(3)H]thymidine but not to any dose of [(14)C]thymidine. XRCC4-defective cells, however, were sensitive to both low and high doses of [(3)H] and [(14)C]thymidine, suggesting introduction of DNA double-strand breaks, which were confirmed by gamma-H2AX focus formation. While gamma rays induced measurable HR only at toxic doses, sublethal levels of [(3)H] or [(14)C]thymidine strongly induced HR. The level of stimulation was in an inverse relationship to the emitted energies. The RAD51 gene conversion pathway was involved, because [(3)H]thymidine induced RAD51 foci, and [(3)H]thymidine-induced HR was abrogated by expression of dominant negative RAD51. In conclusion, both HR and non-homologous end-joining pathways were involved after labeled nucleotide incorporation (low doses); genetic effects were negatively correlated with the energy emitted but were positively correlated with the energy deposited in the nucleus, suggesting that low-energy beta-particle emitters, at non-toxic doses, may induce genomic instability.  相似文献   

14.
The aim of the present research was to study the uptake of DHEAS, and to establish the intracrine capacity of human platelets to produce sex steroid hormones. The DHEAS transport was evaluated through the uptake of [(3)H]-DHEAS in the presence or absence of different substrates through the organic anion transporting polypeptide (OATP) family. The activity of sulfatase enzyme was evaluated, and the metabolism of DHEAS was measured by the conversion of [(3)H]-DHEAS to [(3)H]-androstenedione, [(3)H]-testosterone, [(3)H]-estrone and [(3)H]-17beta-estradiol. Results indicated the existence in the plasma membrane of an OATP with high affinity for DHEAS and estrone sulphate (E(1)S). The platelets showed the capacity to convert DHEAS to active DHEA by the steroid-sulfatase activity. The cells resulted to be a potential site for androgens production, since they have the capacity to produce androstenedione and testosterone; in addition, they reduced [(3)H]-estrone to [(3)H]-17beta-estradiol. This is the first demonstration that human platelets are able to import DHEAS and E(1)S using the OATP family and to convert DHEAS to active DHEA, and to transform E(1)S to 17beta-estradiol.  相似文献   

15.
Peripheral blood mononuclear cells (PMBCs) are readily available for sampling and are a useful model for studying biotin metabolism in human cells. To better understand biotin handling by PMBCs, we investigated the mechanism(s) and kinetics of biotin efflux from PMBCs. Human PMBCs were incubated with [(3)H]biotin at 475 pmol/L to load the cells. The [(3)H]biotin-loaded cells were then harvested and incubated in [(3)H]biotin-free media for up to 20 hours. At various intervals, aliquots of the PMBC suspensions were collected and analyzed for intracellular [(3)H]biotin. [(3)H]Biotin efflux from cells at 37 degrees C was fast and triphasic; the half-lives for the three elimination phases were 0.2 +/- 0.02 hours, 1.2 +/- 0.1 hours, and 21.9 +/- 13.6 hours. Such a triphasic [(3)H]biotin efflux could reflect (1) rapid efflux of free biotin, (2) slower release of biotin bound to intracellular molecules, and (3) even slower release from carboxylases in cellular organelles. Incubation at 4 degrees C rather than 37 degrees C increased the [(3)H]biotin retained at 20 hours from 27% to 85%. This observation is consistent with transporter-mediated efflux. When cellular glucose utilization was reduced by 2-deoxy-d-glucose and sodium fluoride, [(3)H]biotin efflux was similar to controls, suggesting that biotin efflux does not directly require metabolic energy. When [(3)H]biotin-loaded cells were incubated in external medium containing unlabeled biotin analogs, [(3)H]biotin efflux was accelerated approximately two times compared with incubation in a biotin-free medium. This observation suggests that biotin efflux is mediated by the same transporter that mediates biotin uptake from the extracellular medium (i.e., classic countertransport).  相似文献   

16.
The effect of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), a selective glutamate receptor agonist, on the release of previously incorporated [(3)H]GABA was examined in superfused striatal slices of the rat. The slices were loaded with [(3)H]GABA in the presence of beta-alanine (1 mM) and superfused with Krebs-bicarbonate buffer containing nipecotic acid (0.1 mM) and aminooxyacetic acid (0.1 mM) to inhibit GABA uptake and metabolism. AMPA (0.01 to 3 mM) increased basal [(3)H]GABA outflow and nipecotic acid potentiated this effect. The [(3)H]GABA releasing effect of AMPA was an external Ca(2+)-dependent process in the absence but not in the presence of nipecotic acid. Cyclothiazide (0.03 mM), a positive modulator of AMPA receptors, failed to evoke [(3)H]GABA release by itself, but it dose-dependently potentiated the [(3)H]GABA releasing effect of AMPA. The AMPA (0.3 mM)-induced [(3)H]GABA release was antagonized by NBQX (0.01 mM) in a competitive fashion (pA(2) 5.08). The negative modulator of AMPA receptors, GYKI-53784 (0.01 mM) reversed the AMPA-induced [(3)H]GABA release by a non-competitive manner (pD'(2) 5.44). GYKI-53784 (0. 01-0.1 mM) also decreased striatal [(3)H]GABA outflow on its own right, this effect was stereoselective and was not influenced by concomitant administration of 0.03 mM cyclothiazide. GYKI-52466 (0. 03-0.3 mM), another negative modulator at AMPA receptors, also inhibited basal [(3)H]GABA efflux whereas NBQX (0.1 mM) by itself was ineffective in alteration of [(3)H]GABA outflow.The present data indicate that AMPA evokes GABA release from the vesicular pool in neostriatal GABAergic neurons. They also confirm that multiple interactions may exist between the agonist binding sites and the positive and negative modulatory sites but no such interaction was detected between the positive and negative allosteric modulators. Since GYKI-53784, but not NBQX, inhibited [(3)H]GABA release by itself, AMPA receptors located on striatal GABAergic neurons may be in sensitized state and phasically controlled by endogenous glutamate. It is also postulated that these AMPA receptors are located extrasynaptically on GABAergic striatal neurons.  相似文献   

17.
Photoperiodic control of gibberellin metabolism in spinach   总被引:7,自引:7,他引:0       下载免费PDF全文
[(3)H]GA(20) applied to spinach plants (Spinacia oleracea L.) was metabolized to several products. Two of these were identified by combined gasliquid chromatography-radio counting as [(3)H]GA(29) and [(3)H]3-epi-GA(1). Inasmuch as both GA(20) and GA(29) are endogenous gibberellins in spinach (Metzger, Zeevaart 1980 Plant Physiol 65: 623-626), it was concluded that the conversion of GA(20) to GA(29) is a natural process. However, 3-epi-GA(1) was not detected in extracts of spinach shoots analyzed by combined gas chromatography-mass spectrometry. This indicates that the conversion of exogenous [(3)H]GA(20) to [(3)H]3-epi-GA(1) may be an artifact.Long-day pretreatment of spinach shoots caused a 2-fold increase in the rate of [(3)H]GA(20) metabolism over the rate of metabolism in plants maintained under short-day conditions. Furthermore, [(3)H]GA(29) accumulated more rapidly under long than under short days, whereas photoperiodic treatment had no effect on the accumulation of [(3)H]3-epi-GA(1). Thus, the long-day-induced increase in the level of endogenous GA(29) in spinach shoots (Metzger, Zeevaart 1980 Plant Physiol 66: 844-846) appears to be the result of an increased capability to convert GA(20) to GA(29).  相似文献   

18.
Allicin (diallylthiosulfinate), the active substance of garlic, has been shown to possess a variety of biological activities. Mechanistic and pharmacokinetic studies of allicin and its derivatives raise the need for a labeled compound. However, labeling of this volatile and unstable liquid requires delicate handling. Here, we describe a simple method for the preparation of (3)H-labeled allicin. This was achieved by applying synthetic [(3)H]alliin ([2,3-(3)H]allylcysteine sulfoxide) to a column containing immobilized alliinase [EC 4.1.1.4.] from garlic. Purification of [(3)H]allicin was done by differential adsorbtion of the reaction components on a neutral polystyrene resin, Porapak Q. Thiol-containing compounds are known to be the main target of allicin. In this work we demonstrated that [(3)H]allicin can be used for the synthesis of labeled [(3)H]allylmercapto derivatives of SH peptides and proteins. Thus, we prepared [(3)H]S-allylmercaptoglutathione which can be used in metabolic studies. Moreover, we showed that incubation of alliinase with [(3)H]allicin led to modification of 1.4 cysteine residues per subunit of the enzyme.  相似文献   

19.
20.
The aim of this study was to determine the capacity of some progesterone derivatives, to inhibit the conversion of labeled androstenedione ([(3)H] 4-dione) to [(3)H]dihydrotestosterone ([(3)H]DHT) in prostate nuclear membrane fractions, where the 5α-reductase activity is present. The enzyme 5α-reductase catalyzes the 5α-reduction of 4-dione whereas the 17β-hydroxysteroid dehydrogenase catalyzes the transformation of 4-dione to testosterone or 5α-dione to dihydrotestosterone (DHT). Moreover, we also investigated the role of unlabeled 5α-dione in these pathways. In order to determine the inhibitory effect of different concentrations of the progesterone derivatives in the conversion of [(3)H] 4-dione to [(3)H]DHT, homogenates of human prostate were incubated with [(3)H] 4-dione, NADPH and increasing concentrations of non-labeled 5α-dione. The incubating mixture was extracted and purified using thin layer chromatography. The fraction of the chromatogram corresponding to the standard of DHT was separated and the radioactivity determined. The results showed that the presence of [(3)H] 4-dione plus unlabelled 5α-dione produced similar levels of DHT as compared to [(3)H] 4-dione. On the other hand, the results indicated that 17α-hydroxypregn-4-ene-3,20-dione 5 and 4-bromo-17α-hydroxypregn-4-ene-3,20-dione 7b, were the most potent steroids to inhibit the conversion of [(3)H] 4-dione to [(3)H]DHT, showing IC(50) values of 2 and 1.6?nM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号