首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We isolated the cDNA of the fission yeast mitochondrial endonuclease SpNUC1, which consists of 322 amino acids and has a significant homology with the budding yeast NUC1 and mammalian endonuclease G. Comparison of the cDNA sequence with the genomic sequence showed that the gene consists of three exons and two introns and spans 1.31 kb. The enzyme localization in mitochondria was demonstrated by expressing the SpNUC1-green fluorescent protein fusion in the yeast. The endonuclease was activated by truncation of the amino-terminal region of the protein, indicating that the enzyme is encoded as an inactive precursor. The active enzyme degraded single-stranded DNA and RNA, the activity being dependent on Mg(2+) (Mn(2+)).  相似文献   

3.
4.
We have characterized an open reading frame of 2,454 bp on chromosome I of Schizosaccharomyces pombe as the gene encoding trehalose-6P phosphatase (tpp1(+)). Disruption of tpp1(+) caused in vivo accumulation of trehalose-6P upon heat shock and prevented cell growth at 37 to 40 degrees C. Accumulation of trehalose-6P in cells bearing a chromosomal disruption of the tpp1(+) gene and containing a plasmid with tpp1(+) under the control of the thiamine-repressible promotor correlated with tpp1(+) repression. The level of tpp1(+) mRNA rose upon heat shock, osmostress, or oxidative stress and was negatively controlled by cyclic AMP-dependent protein kinase activity. Expression of tpp1(+) during oxidative or osmotic stress, but not during heat shock, was under positive control by the wis1-sty1 (equivalent to phh1 and spc1) mitogen-activated protein kinase pathway. Analysis of Tpp1 protein levels suggests that the synthesis of trehalose-6P phosphatase may also be subjected to translational or posttranslational control.  相似文献   

5.
The Schizosaccharomyces pombe acid phosphatase structural gene (PHO 1) was isolated by complementation of an S. pombe acid phosphatase mutant with a wild type S. pombe DNA recombinant plasmid library. Northern analysis indicates that acid phosphatase is encoded by a 1.4-kilobase mRNA of which approximately 100 bases are 3'-poly(A). The gene contains no introns and the 3' and 5' untranslated regions are short. According to DNA and amino acid sequence data, the S. pombe acid phosphatase has a molecular weight of 50,600. An 18-amino acid sequence at the N terminus was found that is similar to previously identified signal peptides in other eukaryotic secretory proteins. This signal peptide is apparently removed during secretion, since it is absent in the mature secreted acid phosphatase. The gene can be induced 2--3-fold by starvation for phosphate. The signals required for this induction are contained on the isolated DNA clone. Although the gene can be expressed in Saccharomyces cerevisiae, secretion is abnormal.  相似文献   

6.
7.
M J Powell  F Z Watts 《Gene》1990,95(1):105-110
We have isolated cDNA and genomic clones encoding a mitochondrial HSP70 protein from Schizosaccharomyces pombe. Nucleotide sequence analysis indicates that the encoded protein is homologous to the HSP70s of other organisms. The highest degree of amino acid conservation is with the proteins encoded by the Escherichia coli dnaK gene, the SSC1 gene of Saccharomyces cerevisiae and the MTP70 gene of Trypanosoma cruzi, the latter two having recently been shown to be located in the mitochondria. Western-blot analysis with immunoglobulin G raised against a peptide corresponding to the C terminus of the SSP1 protein indicates a 70-kDa protein which is associated with the mitochondria.  相似文献   

8.
9.
《Gene》1997,187(2):259-266
In the course of the Schizosaccharomyces pombe cDNA project, we succeeded in cloning all the genes encoding translation elongation factors EF-1α, EF-1β, EF-1γ, EF-2 and EF-3. With the exception of the EF-1γ gene, the nucleotide (nt) sequence of S. pombe elongation factors has not been previously reported. For EF-1α, we found three genes whose amino acid (aa) sequences are quite homologous each other (99.5%), but whose 3′ untranslated regions (UTRs) are completely different. Southern blot indicated that those three EF-1α genes are located at different loci. Northern analysis indicated that one of three EF-1α genes was inducible with UV-irradiation, while the level of expression for another of three EF-1α genes was repressed by UV and heat-shock (HS) treatments. The aa sequence predicted from the nt sequence of the S. pombe EF-1β cDNA clone covered almost all the coding sequence (CDS) of EF-1β except the first methionine which has 55.4% identity with that of S. cerevisiae. We also identified two copies of S. pombe EF-2 genes. Their aa sequences deduced from nt sequences are identical (100%), but they have different 3′ UTRs. The location of these two EF-2 genes in different loci was proved by Southern analysis. The S. pombe EF-3 cDNA clone encoded only a third of the CDS from the C-terminal and its deduced aa sequence has a 76% identity with those of other yeasts and fungi.  相似文献   

10.
Cysteine synthase catalyzes the formation of cysteine from O-acetylserine, and is the key enzyme for de novo cysteine biosynthesis in Schizosaccharomyces pombe. An examination of the S. pombe database revealed that two gene products are predicted to encode proteins homologous to eukaryotic cysteine synthases. Disruption of one of these candidates, cys1a+ (SPBC36.04), caused an obvious cysteine auxotrophy, while disruption of cys1b+ (SPAC3A12.17c) had no effect on the growth phenotype. Furthermore, overexpression of cys1b+ did not complement the cysteine auxotrophic phenotype of cys1a mutant cells. These results indicated that cys1a+, not cys1b+, primarily functions in the biosynthesis of cysteine in S. pombe cells. We constructed a bacterial-S. pombe shuttle vector containing cys1a+ as a selective marker gene. The combination of the cysteine auxotroph and new vector could be useful for the expression of a heterologous protein.  相似文献   

11.
Summary We isolated mutants of Schizosaccharomyces pombe which have deformed cell morphology, are deficient in conjugation and poor in sporulation. This phenotype is characteristic of the ras1 defective mutant previously identified. Tests of the mutants for allelism using cell fusion showed that they define five complementation groups, one of which is ras1 itself. The others are named ral1 through ral4 (ras like). Mutants in ral3 or ral4 conjugate at a very low frequency, while the others apparently do not conjugate at all. Plasmid clones complementing ral1, ral2 or ral3, which apparently carry the respective gene, were isolated from S. pombe genomic libraries. Multiple copies of either the ral2 or the ral3 gene could partially restore mating ability in ral1 strains. Multiple copies of the ras1 gene could partially restore mating ability in ral1 and ral2 strains. These results suggest that the ral1, ral2 and ras1 genes may function in a common pathway in that order. The ral3 gene may influence this pathway. Analysis of these gene products will aid identification of factors which interact with Ras proteins.  相似文献   

12.
13.
14.
The global genome repair (GGR) subpathway of nucleotide excision repair (NER) is capable of removing lesions throughout the genome. In Saccharomyces cerevisiae the RAD7 and RAD16 genes are essential for GGR. Here we identify rhp7 (+), the RAD7 homolog in Schizosaccharomyces pombe. Surprisingly, rhp7 (+)and the previously cloned rhp16 (+)are located very close together and are transcribed in opposite directions. Upon UV irradiation both genes are induced, reaching a maximum level after 45-60 min. These observations suggest that the genes are co-regulated. Schizo-saccharomyces pombe rhp7 or rhp16 deficient cells are, in contrast to S.cerevisiae rad7 and rad16 mutants, not sensitive to UV irradiation. In S.pombe an alternative repair mechanism, UV damage repair (UVDR), is capable of efficiently removing photolesions from DNA. In the absence of this UVDR pathway both rhp7 and rhp16 deficient cells display an enhanced UV sensitivity. Epistatic analyses show that rhp7 (+)and rhp16 (+)are only involved in NER. Repair analyses at nucleotide resolution demonstrate that both Rhp7 and Rhp16, probably acting in a complex, are essential for GGR in S.pombe.  相似文献   

15.
We have isolated 14 different Schizosaccharomyces pombe mutants that synthesize invertase enzyme constitutively. Analyses of invertase activities revealed that the degrees of resistance to glucose repression were not similar among different complementation groups. One of the complementation groups appeared to be associated with functional and/or regulatory defects in hexose transport. Another complementation group appeared to be specific for the regulation of the inv1 gene alone, implying that these mutations might be associated with different genes acting on the glucose sensing and signaling pathway. In addition, we found that the wild-type level glucose uptake is essential for the full-level repression of inv1 expression.  相似文献   

16.
17.
Histidine-containing phosphotransfer (HPt) proteins play an essential role in multistep histidine-aspartate phosphorelay signal transduction systems in prokaryotes and eukaryotes. The putative HPt protein in Schizosaccharomyces pombe, Mpr1p (also known as Spy1p), is a 295 amino acid protein that appears to be composed of more than one functional domain. The amino acid sequence of the N-terminal region of Mpr1p lacks homology to other known proteins, whereas the C-terminal domain is predicted to have structural similarity to the Ypd1p HPt protein from Saccharomyces cerevisiae. This study provides both in vitro and in vivo evidence that the C-terminal domain of Mpr1p indeed functions as an HPt protein in shuttling phosphoryl groups from one response regulator domain to another. Furthermore, we find that various deletions of the N-terminal region diminish both the phosphotransfer activity of Mpr1p and its affinity for response regulator domains, suggesting a possible role for the N-terminal domain in HPt-response regulator domain interactions.  相似文献   

18.
19.
T Dandekar  D Tollervey 《Gene》1989,81(2):227-235
Schizosaccharomyces pombe contains a group of five relatively abundant small nuclear RNAs (snRNAs) which are immunoprecipitated by human autoimmune antibodies of Sm serotype. The S. pombe RNAs hybridise to probes specific for human U1, U2, U4, U5 and U6 and in each case are similar in size to the human species. A further group of snRNAs from S. pombe are precipitated by antibodies against U3 containing ribonucleoprotein; the most abundant of these species hybridises to a probe specific for human U3. We have cloned the genes encoding U1, U2, U3 and U4 from S. pombe, together with that encoding another abundant snRNA, previously designated SPU43. U2 and U4 are encoded by single-copy genes, while two genes encode U3. The latter are not clustered, since a chromosomal Southern transfer shows them to lie on different chromosomes.  相似文献   

20.
Eukaryotic Isa1 is one of several mitochondrial proteins that have been implicated in Fe-S cluster assembly paths in vivo. We report the first biochemical characterization of an eukaryotic member of this family and discuss this in the context of results from in vivo studies and studies of bacterial homologues. Schizosaccharomyces pombe Isa1 is a multimeric protein carrying [2Fe-2S](2+) clusters that have been characterized by M?ssbauer and optical spectroscopic studies. Complex formation with a redox-active ferredoxin has been identified through crosslinking experiments and the coordination chemistry and stability of the native clusters has been investigated through site-directed mutagenesis and spectroscopic analysis. Electronic supplementary material to this paper, containing M?ssbauer and UV-visible spectra for mutant Isa1 proteins, can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-001-0330-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号