首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MPTP produces clinical, biochemical, and neuropathologic changes reminiscent of those that occur in idiopathic Parkinson's disease (PD). In the present study we show that MPTP treatment led to activation of microglia in the substantia nigra pars compacta (SNpc), which was associated and colocalized with an increase in inducible nitric oxide synthase (iNOS) expression. In iNOS-deficient mice the increase of iNOS expression but not the activation of microglia was blocked. Dopaminergic SNpc neurons of iNOS-deficient mice were almost completely protected from MPTP toxicity in a chronic paradigm of MPTP toxicity. Because the MPTP-induced decrease in striatal concentrations of dopamine and its metabolites did not differ between iNOS-deficient mice and their wild-type littermates, this protection was not associated with a preservation of nigrostriatal terminals. Our results suggest that iNOS-derived nitric oxide produced in microglia plays an important role in the death of dopaminergic neurons but that other mechanisms contribute to the loss of dopaminergic terminals in MPTP neurotoxicity. We conclude that inhibition of iNOS may be a promising target for the treatment of PD.  相似文献   

2.
DNA damage is a proposed pathogenic factor in neurodegenerative disorders such as Parkinson disease. To probe the underpinning mechanism of such neuronal perturbation, we sought to produce an experimental model of DNA damage. We thus first assessed DNA damage by in situ nick translation and emulsion autoradiography in the mouse brain after administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 4 × 20 mg/kg, ip, every 2 h), a neurotoxin known to produce a model of Parkinson disease. Here we show that DNA strand breaks occur in vivo in this mouse model of Parkinson disease with kinetics and a topography that parallel the degeneration of substantia nigra neurons, as assessed by FluoroJade labeling. Previously, nitric oxide synthase and cyclooxygenase-2 (Cox-2) were found to modulate MPTP-induced dopaminergic neuronal death. We thus assessed the contribution of these enzymes to DNA damage in mice lacking neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), or Cox-2. We found that the lack of Cox-2 and nNOS activities but not of iNOS activity attenuated MPTP-related DNA damage. We also found that not only nuclear, but also mitochondrial, DNA is a target for the MPTP insult. These results suggest that the loss of genomic integrity can be triggered by the concerted actions of nNOS and Cox-2 and provide further support to the view that DNA damage may contribute to the neurodegenerative process in Parkinson disease.  相似文献   

3.
Inflammation contributes to the death of dopaminergic neurons in Parkinson disease and can be accompanied by acidification of extracellular pH, which may activate acid-sensing ion channels (ASIC). Accordingly, amiloride, a non-selective inhibitor of ASIC, was protective in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease. To complement these findings we determined MPTP toxicity in mice deficient for ASIC1a, the most common ASIC isoform in neurons. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. We determined the number of dopaminergic neurons in the substantia nigra, assayed by stereological counting 14 days after the last MPTP injection, the number of Nissl positive neurons in the substantia nigra, and the concentration of catecholamines in the striatum. There was no difference between ASIC1a-deficient mice and wildtype controls. We are therefore not able to confirm that ASIC1a are involved in MPTP toxicity. The difference might relate to the subacute MPTP model we used, which more closely resembles the pathogenesis of Parkinson disease, or to further targets of amiloride.  相似文献   

4.
Nitric oxide and reactive oxygen species in Parkinson's disease   总被引:1,自引:0,他引:1  
Parkinson's disease is a neurodegenerative disorder of unknown pathogenesis. Oxidative stress has been proposed as one of several pathogenic hypotheses. Evidence for the participation of oxidative processes in the pathogenesis of Parkinson's disease have been obtained in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model by the use of genetically altered mice. MPTP administration has been shown to increase levels of superoxide both intracellularly, via the inhibition of mitochondrial respiration and other mechanisms and extracellularly, via the activation of NADPH-oxidase in microglia. In addition to superoxide, nitric oxide production by nNOS or by microglial iNOS also contributes to the MPTP neurotoxocity. Mice with endowed defences against superoxide or with deficiency in the nNOS and iNOS are protected from MPTP toxicity suggesting that formation of reactive oxygen and nitrogen intermediates both intracellularly and extracellularly contributes to the demise of dopaminergic neurons. Similar contribution of reactive nitrogen and oxygen species may well underlie the neurodegenerative processes in Parkinson's disease.  相似文献   

5.
The present study aimed to elucidate visual evoked potentials (VEP) changes in MPTP induced Parkinson’s disease (PD) and investigate the possible benefical effects of neuronal (n) and inducible (i) nitric oxide synthase (NOS) inhibitors on altered VEPs, lipid peroxidation and apoptosis. 3 months old C57BL/6 mice were randomly divided into 6 groups which included control (C), 7-nitra indazole treated (7-NI), S-methylisothiourea (SMT) treated, 1,2,3,6-tetrahydropyridine (MPTP) treated, 7-NI + MPTP treated and SMT + MPTP treated. Motor activity of mice was evaluated via the pole test. At the end of the experimental period VEPs were recorded, brain and retina tissues were removed for biochemical analysis. Dopaminergic neuron death at substantia nigra (SN) was determined by immunohistochemical analysis of tyrosine hydroxylase (TH). Immunohistochemical staining was also performed to determine iNOS and nNOS in all tissue sections. Mice with experimental PD exhibited decreased motor activity. Dopaminergic cell death at pars compacta of SN (SNpc) was significantly increased in MPTP treated group compared to control. Diminished Parkinsonism symptoms were observed in 7-NI + MPTP and SMT + MPTP groups. Treatment with 7-NI and SMT decreased dopaminergic cell death in MPTP treated mice. Caspase-3 activity, nitrite/nitrate and 4-hydroxynonenal (4-HNE) levels were significantly increased in SN of MPTP treated mice compared to control. Treatment with 7-NI and SMT significantly decreased elevated caspase-3 activity, nitrite/nitrate and 4-HNE levels in SN of MPTP treated mice. No significant difference in above parameters were observed in the retina. VEP latencies were significantly prolonged in MPTP group compared to control group. 7-NI and SMT treatment caused a significant decrease in VEP latencies in MPTP treated mice compared to none treated MPTP group. This data shows that 7-NI and SMT improves prolonged VEP latencies. The protective effects of 7-NI and SMT on VEP alterations can be related to decreased dopaminergic cell death and reduced lipid peroxidation.  相似文献   

6.
Overexpression of calbindin-D28k (CaBP-28 k) induces neurite outgrowth in dopaminergic neuronal cells and could provide some protection to dopaminergic neurons against the pathological process in Parkinson’s disease. Transgenic mice CaBP-28 k overexpression and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse models were generated, and the effect of midbrain dopamine neurons in ethology was also assessed. Tyrosine hydroxylase (TH)-immunoreactive neurons were counted, and the concentration of total protein and dopamine (DA) of striatum corpora was measured in four animal models. Results showed that the positive TH cells, content of DA, and ability of ethology in MPTP-induced transgenic mice were significantly higher than that in MPTP-induced wild-type mice. The findings demonstrate that overexpression of CaBP-28 k could provide protection for DA neurons from neurodegeneration. It would provide a potential strategy in the treatment of Parkinson’s diseases.  相似文献   

7.
8.
The neuroprotective effects of granulocyte colony-stimulating factor (G-CSF) were reported in several neurological disease models, including Parkinson’s disease (PD). In the present study, we investigated the therapeutic effect of G-CSF after the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD was established. G-CSF was subcutaneously administered into C57BL/6 mice that had undergone systemic MPTP injections. We found that G-CSF treatment markedly increased the number of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the G-CSF-treated group. Consistent with this finding, we found a significant increase in dopamine release under high K+ stimulation in the striatum of the G-CSF-treated animals compared to the MPTP-exposed mice. Finally, we observed a persistent recovery of locomotor function in the G-CSF-treated animals. These results suggest the potential therapeutic value of G-CSF in treating PD. However, our bromodeoxyuridine labeling experiment failed to identify any newly generated dopaminergic neurons in SNpc. This might indicate an indirect effect of G-CSF on cell proliferation. The underlying mechanism of G-CSF is under further investigation.  相似文献   

9.
We examined the effect of pioglitazone, a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist of the thiazolidinedione class, on dopaminergic nerve cell death and glial activation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. The acute intoxication of C57BL/6 mice with MPTP led to nigrostriatal injury, as determined by tyrosine hydroxylase (TH) immunocytochemistry, and HPLC detection of striatal dopamine and metabolites. Damage to the nigrostriatal dopamine system was accompanied by a transient activation of microglia, as determined by macrophage antigen-1 (Mac-1) and inducible nitric oxide synthase (iNOS) immunoreactivity, and a prolonged astrocytic response. Orally administered pioglitazone (approximately 20 mg/kg/day) attenuated the MPTP-induced glial activation and prevented the dopaminergic cell loss in the substantia nigra pars compacta (SNpc). In contrast, there was little reduction of MPTP-induced dopamine depletion, with no detectable effect on loss of TH immunoreactivity and glial response in the striatum of pioglitazone-treated animals. Low levels of PPARgamma expression were detected in the ventral mesencephalon and striatum, and were unaffected by MPTP or pioglitazone treatment. Since pioglitazone affects primarily the SNpc in our model, different PPARgamma-independent mechanisms may regulate glial activation in the dopaminergic terminals compared with the dopaminergic cell bodies after acute MPTP intoxication.  相似文献   

10.
Sirtuins are NAD-dependent protein deacetylases that were shown to have beneficial effects against age-related diseases. SIRT2 is a strong deacetylase that is highly expressed in brain. It has been associated with neurodegenerative diseases. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a dopaminergic neurotoxin that replicates most of the clinical features of Parkinson disease (PD) and produces a reliable and reproducible lesion of the nigrostriatal dopaminergic pathway and neurodegeneration after its systemic administration. Chronic administration of MPTP induces lesion via apoptosis. We show here that SIRT2 deacetylates Foxo3a, increases RNA and protein levels of Bim, and as a result, enhances apoptosis in the MPTP model of PD. We also show that neurodegeneration induced by chronic MPTP regimen is prevented by genetic deletion of SIRT2 in mouse. Deletion of SIRT2 leads to the reduction of apoptosis due to an increase in acetylation of Foxo3a and a decrease in Bim levels. We demonstrate that SIRT2 deacetylates Foxo3a, activates Bim, and induces apoptosis only in 1-methyl-4-phenylpyridinium-treated cells. Therefore, designing SIRT2 inhibitors might be helpful to develop effective treatments for PD.  相似文献   

11.
Mutations in the mitochondrial PTEN-induced kinase 1 (Pink1) gene have been linked to Parkinson disease (PD). Recent reports including our own indicated that ectopic Pink1 expression is protective against toxic insult in vitro, suggesting a potential role for endogenous Pink1 in mediating survival. However, the role of endogenous Pink1 in survival, particularly in vivo, is unclear. To address this critical question, we examined whether down-regulation of Pink1 affects dopaminergic neuron loss following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the adult mouse. Two model systems were utilized: virally delivered shRNA-mediated knockdown of Pink1 and germ line-deficient mice. In both instances, loss of Pink1 generated significant sensitivity to damage induced by systemic MPTP treatment. This sensitivity was associated with greater loss of dopaminergic neurons in the Substantia Nigra pars compacta and terminal dopamine fiber density in the striatum region. Importantly, we also show that viral mediated expression of two other recessive PD-linked familial genes, DJ-1 and Parkin, can protect dopaminergic neurons even in the absence of Pink1. This evidence not only provides strong evidence for the role of endogenous Pink1 in neuronal survival, but also supports a role of DJ-1 and Parkin acting parallel or downstream of endogenous Pink1 to mediate survival in a mammalian in vivo context.  相似文献   

12.
Inflammation has been implicated in the pathogenesis of Parkinson's disease (PD). In the chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD, inducible NO synthase (iNOS) derived nitric oxide (NO) is an important mediator of dopaminergic cell death. Ligands of the peroxisome proliferator-activated receptor (PPAR) exert anti-inflammatory effects. We here investigated whether pioglitazone, a PPARgamma agonist, protected mice from MPTP-induced dopaminergic cell loss, glial activation, and loss of catecholamines in the striatum. As shown by western blot, PPARgamma was expressed in the striatum and the substantia nigra of vehicle- and MPTP-treated mice. Oral administration of 20 mg/(kg day) of pioglitazone protected tyrosine hydroxylase (TH)-positive substantia nigra neurons from death induced by 5 x 30 mg/kg MPTP. However, the decrease of dopamine in the striatum was only partially prevented. In mice treated with pioglitazone, there were a reduced activation of microglia, reduced induction of iNOS-positive cells and less glial fibrillary acidic protein positive cells in both striatum and substantia nigra pars compacta. In addition, treatment with pioglitazone almost completely blocked staining of TH-positive neurons for nitrotyrosine, a marker of NO-mediated cell damage. Because an increase in inhibitory protein-kappa-Balpha (IkappaBalpha) expression and inhibition of translocation of the nuclear factor kappaB (NFkappaB) subunit p65 to the nucleus in dopaminergic neurons, glial cells and astrocytes correlated with the protective effects of pioglitazone, our results suggest that pioglitazone sequentially acts through PPARgamma activation, IkappaBalpha induction, block of NFkappaB activation, iNOS induction and NO-mediated toxicity. In conclusion, treatment with pioglitazone may offer a treatment opportunity in PD to slow the progression of disease that is mediated by inflammation.  相似文献   

13.
Mice treated with MPTP had a marked decrement in their neostriatal content of dopamine and its metabolites compared to controls and a severe loss of nerve cells in the zona compacta of the substantia nigra. Furthermore, neostriatal synaptosomal preparations from MPTP-treated mice had a greatly diminished capacity to take up 3H-dopamine compared to control. These biochemical and histological changes seen in MPTP-treated mice are similar to those observed in Parkinson patients. In mice treated with the specific MAO-B inhibitor deprenil prior to MPTP, these changes were not observed. It thus follows that deprenil is able to protect against the MPTP-induced dopaminergic neurotoxicity in mice. These data suggest a critical role for MAO-B in MPTP-induced neurotoxicity.  相似文献   

14.
The development of Parkinson’s disease is accompanied by concurrent activation of caspase-3 and apoptosis of dopaminergic neurons of human patients and rodent models. The role of caspase-3, a final executioner of apoptosis, in the pathogenesis of Parkinson’s disease, however, remains to be determined. Here, we show that gene disruption of caspase-3 protects mice from 1-methyle-4-phenyl-1,2,3,6-tetrahmydropyridine (MPTP)-induced Parkinsonian syndrome, as reflected by reversal of MPTP-induced bradykinesia and decreased tyrosine hydroxylase expression in the nigra-striatum. MPTP treatment resulted in increased caspase-3 activation and apoptosis in the substantia nigra of wild-type mice at 24 h after the inception of MPTP treatment, as compared with vehicle-treated control animals. Gene disruption of caspase-3 prevented MPTP-induced apoptosis in the substantia nigra. At 7 days after MPTP treatment, tyrosine hydroxylase expression was suppressed and infiltration of activated microglia and astrocytes was markedly increased in the nigra-striatum of wild-type mice. All of these alterations following MPTP treatment were blocked by disruption of caspase-3 in mice. These results clearly indicate that caspase-3 activation is required for the development of MPTP-induced Parkinson’s disease in mice. These findings suggest that activation of caspase-3-mediated apoptosis of dopaminergic neurons in the early stage may play an important role in the pathogenesis of Parkinson’s disease.  相似文献   

15.
Ceruloplasmin is a protective ferroxidase. Although some studies suggest that plasma ceruloplasmin levels are raised by exercise, the impact of exercise on brain ceruloplasmin is unknown. We have examined whether striatal ceruloplasmin is raised with treadmill exercise and/or is correlated with spontaneous physical activity in rhesus monkeys. Parkinson??s disease is characterized by a loss in ceruloplasmin and, similarly, Parkinson??s models lead to a loss in antioxidant defenses. Exercise might protect against Parkinson??s disease and is known to prevent antioxidant loss in experimental models. We have therefore examined whether treadmill exercise prevents ceruloplasmin loss in monkeys treated unilaterally with the dopaminergic neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). We found that exercise raised ceruloplasmin expression in the caudate and accumbens but not the putamen of intact monkeys. However, putamen ceruloplasmin was correlated with spontaneous activity in a home pen. MPTP alone did not cause unilateral loss of ceruloplasmin but blocked the impact of exercise on ceruloplasmin. Similarly, the correlation between putamen ceruloplasmin and activity was also lost with MPTP. MPTP elicited loss of tyrosine hydroxylase in the treated hemisphere; the remaining tyrosine hydroxylase was correlated with overall daily activity (spontaneous activity plus that induced by the treadmill). Thus, treadmill activity can raise ceruloplasmin but this impact and the link with spontaneous activity are both diminished in Parkinsonian primates. Furthermore, low overall physical activity predicts greater loss of dopaminergic phenotype in MPTP-treated primates. These data have implications for the maintenance of active lifestyles in both healthy and neurodegenerative conditions.  相似文献   

16.
Parkinson’s disease (PD) is a neurodegenerative disease characterized by degeneration of dopaminergic neurons. Aging is a major risk factor for idiopathic PD. Several prior studies examined the neuroprotective effects of palmitoylethanolamide (PEA), alone or combined with antioxidants, in a model of PD induced by the dopaminergic toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Here, we analyzed the pretreatment effect of micronized PEA (PEAm) on neuroinflammation and neuronal cell death in the MPTP model. Male CD mice (21 months of age) were pre-treated for 60 days with PEAm. After this time, they received four intraperitoneal injections of MPTP over a 24-h period and were killed 7 days later. On the 8th day, brains were processed. Pretreatment with PEAm ameliorated behavioral deficits and the reductions in expression of tyrosine hydroxylase and dopamine transporter, while blunting the upregulation of α-synuclein and β3-tubulin in the substantia nigra after MPTP induction. Moreover, PEAm reduced proinflammatory cytokine expression and showed a pro-neurogenic effect in hippocampus. These findings propose this strategy as a valid approach to prevent neurodegenerative diseases associated with old age.  相似文献   

17.
According to one hypothesis, Parkinson’s disease pathogenesis is largely caused by dopamine catabolism that is catalyzed on mitochondrial membranes by monoamine oxidase. Reactive oxygen species are formed as a byproduct of these reactions, which can lead to mitochondrial damage followed by cell degeneration and death. In this study, we investigated the effects of administration of the mitochondrial antioxidant SkQ1 on biochemical, immunohistochemical, and behavioral parameters in a Parkinson-like condition caused by protoxin MPTP injections in C57BL/6 mice. SkQ1 administration increased dopamine quantity and decreased signs of sensory-motor deficiency as well as destruction of dopaminergic neurons in the substantia nigra and ventral tegmental area in mice with the Parkinson-like condition.  相似文献   

18.
Activated microglia are implicated in the pathogenesis of disease-, trauma- and toxicant-induced damage to the CNS, and strategies to modulate microglial activation are gaining impetus. A novel action of the tetracycline derivative minocycline is the ability to inhibit inflammation and free radical formation, factors that influence microglial activation. Minocycline is therefore being tested as a neuroprotective agent to alleviate CNS damage, although findings so far have yielded mixed results. Here, we showed that administration of a single low dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or methamphetamine (METH), a paradigm that causes selective degeneration of striatal dopaminergic nerve terminals without affecting the cell body in substantia nigra, increased the expression of mRNAs encoding microglia-associated factors F4/80, interleukin (IL)-1alpha, IL-6, monocyte chemoattractant protein-1 (MCP-1, CCL2) and tumor necrosis factor (TNF)-alpha. Minocycline treatment attenuated MPTP- or METH-mediated microglial activation, but failed to afford neuroprotection. Lack of neuroprotection was shown to be due to the inability of minocycline to abolish the induction of TNF-alpha and its receptors, thereby failing to modulate TNF signaling. Thus, TNF-alpha appeared to be an obligatory component of dopaminergic neurotoxicity. To address this possibility, we examined the effects of MPTP or METH in mice lacking genes encoding IL-6, CCL2 or TNF receptor (TNFR)1/2. Deficiency of either IL-6 or CCL2 did not alter MPTP neurotoxicity. However, deficiency of both TNFRs protected against the dopaminergic neurotoxicity of MPTP. Taken together, our findings suggest that attenuation of microglial activation is insufficient to modulate neurotoxicity as transient activation of microglia may suffice to initiate neurodegeneration. These findings support the hypothesis that TNF-alpha may play a role in the selective vulnerability of the nigrostriatal pathway associated with dopaminergic neurotoxicity and perhaps Parkinson's disease.  相似文献   

19.
The noradrenergic neurons of the locus coeruleus (LC) are damaged in Parkinson's disease (PD). Neurotoxin ablation of the LC noradrenergic neurons has been shown to exacerbate the dopaminergic toxicity of MPTP, suggesting that the noradrenergic system protects dopamine neurons. We utilized mice that exhibit elevated synaptic noradrenaline (NA) by genetically deleting the noradrenaline transporter (NET), a key regulator of the noradrenergic system (NET KO mice). NET KO and wild-type littermates were administered MPTP and striatal dopamine terminal integrity was assessed by HPLC of monoamines, immmunoblotting for dopaminergic markers and tyrosine hydroxylase (TH) immunohistochemistry. MPTP significantly reduced striatal dopamine in wild-type mice, but not in the NET KO mice. To confirm that the protection observed in the NET KO mice was due to the lack of NET, we treated wild-type mice with the specific NET inhibitor, nisoxetine, and then challenged them with MPTP. Nisoxetine conferred protection to the dopaminergic system. These data indicate that NA can modulate MPTP toxicity and suggest that manipulation of the noradrenergic system may have therapeutic value in PD.  相似文献   

20.
Parkinson’s disease (PD) is the result of dopaminergic (DA) neuronal death in the substantianigra pars compacta (SNc). Current treatments for PD such as L-dopa are limited in effectiveness and fail to address the cause. Targeted anti-inflammatory therapies, particularly directed at nuclear factor kappa B (NF‐κB) activity in alleviating degeneration of DA-neurons is of evolving interest. In the present study, we hypothesised that dexmedetomidine (DEX), an alpha-2 receptor adrenergic agonist, suppress the inflammatory responses associated with PD and restores dopaminergic levels by alleviating substantia nigral degeneration. Male mice (C57Bl/10, 8–11 months old and of 34–40 g of weight) were divided into: the control, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and MPTP + dexmedetomidine (MPTP + DEX) (n = 26 each group). Dex restored dopamine levels in SNpc of MPTP-induced PD mice model. Results of immunohisto staining revealed that Dex treatment post-MPTP induction restored TH-positive cells, with only 12.37% increase (##p < 0.01 vs MPTP) on the third day and a steep 55% increase (###p < 0.001 vs MPTP) following the seventh day of Dex treatment. Moreover, the expressions of proinflammatory markers regulated by NF-κB were diminished in Dex + MPTP group. In addition, cylinder test revealed that Dex treatment improved asymmetric limb usage pattern in MPTP induced mice over the course of 7 days. Hence, in this study, we provided insight on the effect of Dex in the inhibition of NF-κB1 regulated proinflammatory mediators to improve dopamine levels and reduce SNpc dopaminergic neuronal degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号