首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 548 毫秒
1.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase was purified to homogeneity from rat liver cytoplasm. The active enzyme is a dimer composed of identical subunits of Mr = 53,000. The amino acid composition and the NH2-terminal sequence are presented. Partial cDNA clones for the enzyme were isolated by screening of a rat liver lambda gt11 expression library with antibodies raised against the purified protein. The identity of the clones was confirmed by hybrid selection and translation. When rats were fed diets supplemented with cholesterol, cholestyramine, or cholestyramine plus mevinolin, the hepatic protein mass of cytoplasmic synthase, as determined by immunoblotting, was 25, 160, and 1100%, respectively, of the mass observed in rats fed normal chow. Comparable changes in enzyme activity were observed. Approximately 9-fold increases in both HMG-CoA synthase mRNA mass and synthase mRNA activity were observed when control diets were supplemented with cholestyramine and mevinolin. When rats were fed these two drugs and then given mevalonolactone by stomach intubation, there was a 5-fold decrease of synthase mRNA within 3 h. These results indicate that cytoplasmic synthase regulation occurs primarily at the level of mRNA. This regulation is rapid and coordinate with that observed for HMG-CoA reductase. The chromosomal localization of human HMG-CoA synthase was determined by examining a panel of human-mouse somatic cell hybrids with the rat cDNA probe. Interestingly, the synthase gene resides on human chromosome 5, which has previously been shown to contain the gene for HMG-CoA reductase. Regional mapping, performed by examination of a series of chromosome 5 deletion mutants and by in situ hybridization to human chromosomes indicates that the two genes are not tightly clustered.  相似文献   

2.
In the normal fed rat, both 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) synthase and HMG-CoA reductase are found in high concentrations in hepatocytes that are localized periportally. The majority of the liver cells show little or no evidence of either enzyme. Addition of cholestyramine and mevinolin to the diet resulted in all liver cells showing strong positive staining for both HMG-CoA reductase and HMG-CoA synthase. These two drugs increased the hepatic HMG-CoA reductase and HMG-CoA synthase activities 92- and 6-fold, respectively, and also increased the HMG-CoA reductase activity in intestine, heart, and kidney 3- to 15-fold. We used immunofluorescence and avidin-biotin labeled antibody to localize HMG-CoA reductase in the rat intestine. In rats fed a normal diet, the most HMG-CoA reductase-positive cells were the villi of the ileum greater than jejunum greater than duodenum. Crypt cells showed no evidence of HMG-CoA reductase. Addition of cholestyramine and mevinolin to the diet led to a dramatic increase in the concentration of HMG-CoA reductase in the apical region of the villi of the ileum and jejunum and in the crypt cells of the duodenum. Hence these two drugs affected both the relative concentration and distribution of intestinal HMG-CoA reductase. Cholestyramine and mevinolin feeding induced in the liver, but not intestine, whorls of smooth endoplasmic reticulum that were proximal to the nucleus and contained high concentrations of HMG-CoA reductase. Administration of mevalonolactone led to the rapid dissolution of the hepatic whorls within 15 min, at a time when there is little or no change in the mass of HMG-CoA reductase. We conclude that the whorls are present in the livers of rats fed cholestyramine and mevinolin because the cells are deprived of a cellular product normally synthesized from mevalonate.  相似文献   

3.
4.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the key regulatory enzyme of the isoprenoid pathway, was found to be predominantly microsomal in Ochromonas malhamensis, a chrysophytic alga. Detection of HMG-CoA reductase requires the presence of 1% bovine serum albumin during cell homogenization, and the activity is stimulated by the presence of Triton X-100. The enzyme has a pH optimum of 8.0 and an absolute requirement for NADPH. When grown in 10 micromolar mevinolin, a competitive inhibitor of HMG-CoA reductase, O. malhamensis shows a 10- to 15-fold increase in HMG-CoA reductase activity (after washing) with little or no effect on cell growth rate. Cultures can be maintained in 10 micromolar mevinolin for months. O. malhamensis produces a large amount (1% dry weight) of poriferasterol, a product of the isoprenoid pathway. The addition of 10 micromolar mevinolin initially blocked poriferasterol biosynthesis by >90%; within 2 days the rate of synthesis returned to normal levels. Immediately after mevinolin was washed from the 2-day culture, there was a transient 2.5-fold increase in the rate of poriferasterol biosynthesis. The rate of poriferasterol biosynthesis and the level of HMG-CoA reductase activity both fell to control levels within hours.  相似文献   

5.
The sigmoidal curves observed for rat liver microsomal 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase with NADPH as the varied substrate were markedly affected by feeding the animals diets containing colestipol, mevinolin and colestipol or cholesterol. Feeding of mevinolin and colestipol decreased the S0.5 for NADPH from 270 to 40 microM, while cholesterol feeding increased the value to 1.3 mM. Immuno-blotting analysis revealed that the Mr 100,000 form of HMG-CoA reductase predominated in cases where the S0.5 value was lowest, and the Mr 200,000 species was the major form where the S0.5 values were highest. Activation of HMG-CoA reductase by NADPH was not due to conversion of the Mr 200,000 form to the 100,000 form.  相似文献   

6.
Mutant of Saccharomyces cerevisiae resistant to mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme-A (HMGCoA) reductase (EC1.1.1.34) were isolated and one mutant (MV71) was extensively characterized. While growth of resistant strains in the presence of mevinolin was growth. Diploids produced by mutant/wild-type matings showed levels of mevinolin resistance which indicated incomplete dominance. Sterol synthesis in the presence of mevinolin was inhibited in strain MV71 but to a lesser degree than seen in the wild-type strain. All mevinolin resistant mutants also demonstrated a slight resistance to the antibiotic nystatin. The subcellular location of HMGCoA reductase activity in MV71 and the wild-type strain were determined and it was shown that yeast HMGCoA reductase is not regulated by a dephosphorylation mechanism as has been shown for mammalian reductases. In vivo and in vitro studies of strain MV71 and the wild-type indicated that mevinolin resistance did not result in changes in HNGCoA reductase activity as has been demonstrated in mammalian systems. Based on growth data, sterol analysis, and the lack of detection of HMGCoA reductase activity differences between strain MV71 and the wild-type, mevinolin resistance is concluded to result possibly from a mutation in HMG2, one of the two functional yeast HMGCoA reductase genes, which accounts for a minor (up to 17%) amount of total cellular reductase activity.  相似文献   

7.
The thermostable class I HMG-CoA reductase of Sulfolobus solfataricus offers potential for industrial applications and for the initiation of crystallization trials of a biosynthetic HMG-CoA reductase. However, of the 15 arginine codons of the hmgA gene that encodes S. solfataricus HMG-CoA reductase, 14 (93%) are AGA or AGG, the arginine codons used least frequently by Escherichia coli. The presence of these rare codons in tandem or in the first 20 codons of a gene can complicate expression of that gene in E. coli. Problems include premature chain termination and misincorporation of lysine for arginine. We therefore sought to improve the expression and subsequent yield of S. solfataricus HMG-CoA reductase by expanding the pool size of tRNA(AGA,AGG), the tRNA that recognizes these two rare codons. Coexpression of the S. solfataricus hmgA gene with the argU gene that encodes tRNA(AGA,AGG) resulted in an over 10-fold increase in enzyme yield. This has provided significantly greater quantities of purified enzyme for potential industrial applications and for crystallographic characterization of a stable class I HMG-CoA reductase. It has, in addition, facilitated determination of kinetic parameters and of pH optima for all four catalyzed reactions, for determination of the K(i) for inhibition by the statin drug mevinolin, and for comparison of the properties of the HMG-CoA reductase of this thermophilic archaeon to those of other class I HMG-CoA reductases.  相似文献   

8.
We have characterized the structural changes in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene of 14 UV-induced, 15 γ-ray-induced and 17 spontaneous mutants of human lymphoblastoid cells selected for 6-thioguanine (6TG) resistance. Southern blot analysis using the full-length HPRT cDNA as a probe revealed that 29% (5/17) of the spontaneous mutants contained detectable alterations in their restriction fragment patterns. Among the 15 mutants induced by γ rays, 7 (47%) had such alterations indicative of large deletions in the HPRT gene. In contrast, all 14 UV-induced mutants exhibited hybridization patterns indistinguishable from those of the wild-type cells. These results suggest that UV is likely to induce point mutations at the HPRT locus on the human chromosome and that the molecular mechanism of UV-induced mutation is quite different from that of ionizing radiation-induced mutation or spontaneous mutation in human cells.  相似文献   

9.
The importance of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) in the regulation of sesquiterpenoid phytoalexin accumulation in potato (Solanum tuberosum L. cv Kennebec) was examined. Wounding of potato tubers produced a large temporary increase in HMG-CoA reductase activity of the microsomal and organelle fractions. Treatment of wounded tuber tissue with the sesquiterpenoid phytoalexin elicitor arachidonic acid further increased and prolonged the HMG-CoA reductase activity in the microsomal but not the organelle fraction. Incubation of elicitor-treated tuber tissue in white light reduced organelle and microsomal HMG-CoA reductase activity to 50% and 10%, respectively, of the activity of tissues held in darkness. Constant light also reduced overall phytoalexin accumulation 58% by greatly reducing levels of lubimin. Rishitin accumulation was not significantly altered by light. Application of nanomolar amounts of mevinolin, a highly specific inhibitor of HMG-CoA reductase, to elicitor-treated tuber tissue produced a large decline in lubimin accumulation and did not markedly alter rishitin accumulation. These results indicate that HMG-CoA reductase has a role in the complex regulation of sesquiterpenoid phytoalexin accumulation in potato.  相似文献   

10.
Prior work from this laboratory characterized eukaryotic (hamster) and eubacterial (Pseudomonas mevalonii) 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases. We report here the characterization of an HMG-CoA reductase from the third domain, the archaea. HMG-CoA reductase of the halobacterium Haloferax volcanii was initially partially purified from extracts of H. volcanii. Subsequently, a portion of the H. volcanii lovastatin (formerly called mevinolin) resistance marker mev was subcloned into the Escherichia coli expression vector pT7-7. While no HMG-CoA reductase activity was detectable following expression in E. coli, activity could be recovered after extracts were exposed to 3 M KCl. Following purification to electrophoretic homogeneity, the specific activity of the expressed enzyme, 24 microU/mg, equaled that of homogeneous hamster or P. mevalonii HMG-CoA reductase. Activity was optimal at pH 7.3. Kms were 66 microM (NADPH) and 60 microM [(S)-HMG-CoA]. (R)-HMG-CoA and lovastatin inhibited competitively with (S)-HMG-CoA. H. volcanii HMG-CoA reductase also catalyzed the reduction of mevaldehyde [optimal activity at pH 6.0; Vmax 11 microU/mg; Kms 32 microM (NADPH), 550 microM [(R,S)-mevaldehyde]] and the oxidative acylation of mevaldehyde [optimal activity at pH 8.0; Vmax 2.1 microU/mg; Kms 350 microM (NADP+), 300 microM (CoA), 470 microM [(R,S)-mevaldehyde]]. These properties are comparable to those of hamster and P. mevalonii HMG-CoA reductases, suggesting a similar catalytic mechanism.  相似文献   

11.
12.
Radiation inactivation analysis of liver pieces yielded a target size of 210 kDa for hepatic 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase [S)-mevalonate:NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34) from rats fed a normal diet. Feeding a diet containing mevinolin and colestipol, which causes a marked increase in enzyme activity, resulted in a reduction of the target size to 120 kDa. These results are consistent with those obtained by radiation inactivation and immunoblotting analysis of isolated microsomes and suggest that the increase in HMG-CoA reductase activity caused by these dietary agents is accompanied by a change from a dimer to a monomer form of the enzyme.  相似文献   

13.
The two yeast genes for 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, HMG1 and HMG2, each encode a functional isozyme. Although cells bearing null mutations in both genes are inviable, cells bearing a null mutation in either gene are viable. This paper describes a method of screening for recessive mutations in the HMG1 gene, the gene encoding the majority of HMG-CoA reductase activity in the cell. This method should be applicable to the isolation of mutations in other recovered in HMG1. These mutations exhibited intragenic complementation: one allele is in one complementation group and three alleles are in a second complementation group. Assays of HMG-CoA reductase activity indicated that the point mutations destroy most if not all of the activity encoded by HMG1. Intragenic complementation occurred with partial restoration of enzymatic activity. HMG1 was mapped to the left arm of chromosome XIII near SUP79, and HMG2 was mapped to the right arm of chromosome XII near SST2. A slight deleterious effect of a null mutation in either HMG-CoA reductase gene was detected by a co-cultivation experiment involving the wild-type strain and the two single mutants.  相似文献   

14.
15.
The gene (hmgA) for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) from the thermophilic archaeon Sulfolobus solfataricus P2 was cloned and sequenced. S. solfataricus HMG-CoA reductase exhibited a high degree of sequence identity (47%) to the HMG-CoA reductase of the halophilic archaeon Haloferax volcanii. Phylogenetic analyses of HMG-CoA reductase protein sequences suggested that the two archaeal genes are distant homologs of eukaryotic genes. The only known bacterial HMG-CoA reductase, a strictly biodegradative enzyme from Pseudomonas mevalonii, is highly diverged from archaeal and eukaryotic HMG-CoA reductases. The S. solfataricus hmgA gene encodes a true biosynthetic HMG-CoA reductase. Expression of hmgA in Escherichia coli generated a protein that both converted HMG-CoA to mevalonate and cross-reacted with antibodies raised against rat liver HMG-CoA reductase. S. solfataricus HMG-CoA reductase was purified in 40% yield to a specific activity of 17.5 microU per mg at 50 degrees C by a sequence of steps that included heat treatment, ion-exchange chromatography, hydrophobic interaction chromatography, and affinity chromatography. The final product was homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The substrate was (S)- not (R)-HMG-CoA; the reductant was NADPH not NADH. The Km values for HMG-CoA (17 microM) and NADPH (23 microM) were similar in magnitude to those of other biosynthetic HMG-CoA reductases. Unlike other HMG-CoA reductases, the enzyme was stable at 90 degrees C and was optimally active at pH 5.5 and 85 degrees C.  相似文献   

16.
17.
A key enzyme in the regulation of mammalian cellular cholesterol biosynthesis is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase). It is well established that treatment with the compound 25-hydroxycholesterol lowers HMG-CoA reductase activity in cultured Chinese hamster ovary (CHO-K1) cells. After brief incubation (0-4 h) with 25-hydroxycholesterol (0.5 microgram/ml), cellular HMG-CoA reductase activity is decreased to 40% of its original level. This also occurs in the presence of exogenous mevinolin, a competitive inhibitor of HMG-CoA reductase which has previously been shown to inhibit its degradation. The inhibition of HMG-CoA reductase activity by 25-hydroxycholesterol is complete after 2 h. Radio-immune precipitation analysis of the native enzyme under these conditions shows a degradation half-life which is considerably longer than that of the observed inhibition. Studies with sodium fluoride, phosphatase 2A, bacterial alkaline phosphatase and calf alkaline phosphatase indicate that the observed loss of activity is not due to phosphorylation. These data are not consistent with described mechanisms of HMG-CoA reductase activity regulation by phosphorylation or degradation but are consistent with a novel mechanism that regulates the catalytic efficiency of this enzyme.  相似文献   

18.
19.
In hypophysectomized rats, hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, immunoreactive 97-kilodalton (97-kDa) protein, and mRNA were all reduced to undetectable levels. Administration of triiodothyronine (T3) resulted in large increases in all three after a 36-h lag period. HMG-CoA reductase activity, immunoreactive 97-kDa protein levels, and reductase mRNA levels were tightly correlated. Feeding hypophysectomized rats diets containing the bile acid sequestrant colestipol, together with the potent reductase inhibitor mevinolin, resulted in an increase in HMG-CoA reductase activity similar to that seen with T3 but a lesser stimulation of reductase mRNA levels. These results suggest that agents which cause depletion of mevalonate-derived products may share in part with T3 a common mechanism for increasing levels of HMG-CoA reductase activity in order to satisfy cellular needs for these products. Dexamethasone treatment, which is known to prevent the T3-mediated stimulation of reductase activity, caused a marked decrease in 97-kDa immunoreactive material but had little effect on reductase mRNA levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号