首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tocopherols are lipophilic antioxidants synthesized exclusively by photosynthetic organisms and collectively constitute vitamin E, an essential nutrient for both humans and animals. Tocopherol cyclase (TC) catalyzes the conversion of various phytyl quinol pathway intermediates to their corresponding tocopherols through the formation of the chromanol ring. Herein, the molecular and biochemical characterization of TCs from Arabidopsis (VTE1 [VITAMIN E 1]), Zea mays (SXD1 [Sucrose Export Deficient 1]) and Synechocystis sp. PCC6803 (slr1737) are described. Mutations in the VTE1, SXD1, or slr1737 genes resulted in both tocopherol deficiency and the accumulation of 2,3-dimethyl-6-phytyl-1,4-benzoquinone (DMPBQ), a TC substrate. Recombinant SXD1 and VTE1 proteins are able to convert DMPBQ to gamma-tocopherol in vitro. In addition, expression of maize SXD1 in a Synechocystis sp. PCC6803 slr1737 knockout mutant restored tocopherol synthesis, indicating that TC activity is evolutionarily conserved between plants and cyanobacteria. Sequence analysis identified a highly conserved 30-amino acid C-terminal domain in plant TCs that is absent from cyanobacterial orthologs. vte1-2 causes a truncation within this C-terminal domain, and the resulting mutant phenotype suggests that this domain is necessary for TC activity in plants. The defective export of Suc in sxd1 suggests that in addition to presumed antioxidant activities, tocopherols or tocopherol breakdown products also function as signal transduction molecules, or, alternatively, the DMPBQ that accumulates in sxd1 disrupts signaling required for efficient Suc export in maize.  相似文献   

2.
Maeda H  Song W  Sage TL  DellaPenna D 《The Plant cell》2006,18(10):2710-2732
To test whether tocopherols (vitamin E) are essential in the protection against oxidative stress in plants, a series of Arabidopsis thaliana vitamin E (vte) biosynthetic mutants that accumulate different types and levels of tocopherols and pathway intermediates were analyzed under abiotic stress. Surprisingly subtle differences were observed between the tocopherol-deficient vte2 mutant and the wild type during high-light, salinity, and drought stresses. However, vte2, and to a lesser extent vte1, exhibited dramatic phenotypes under low temperature (i.e., increased anthocyanin levels and reduced growth and seed production). That these changes were independent of light level and occurred in the absence of photoinhibition or lipid peroxidation suggests that the mechanisms involved are independent of tocopherol functions in photoprotection. Compared with the wild type, vte1 and vte2 had reduced rates of photoassimilate export as early as 6 h into low-temperature treatment, increased soluble sugar levels by 60 h, and increased starch and reduced photosynthetic electron transport rate by 14 d. The rapid reduction in photoassimilate export in vte2 coincides with callose deposition exclusively in phloem parenchyma transfer cell walls adjacent to the companion cell/sieve element complex. Together, these results indicate that tocopherols have a more limited role in photoprotection than previously assumed but play crucial roles in low-temperature adaptation and phloem loading.  相似文献   

3.
Tocopherols (vitamin E) are lipophilic antioxidants synthesized by all plants and are particularly abundant in seeds. Despite cloning of the complete suite of tocopherol biosynthetic enzymes and successful engineering of the tocopherol content and composition of Arabidopsis thaliana leaves and seeds, the functions of tocopherols in plants have remained elusive. To address this issue, we have isolated and characterized two VITAMIN E loci (VTE1 and VTE2) in Arabidopsis that when mutated result in tocopherol deficiency in all tissues. vte1 disrupts tocopherol cyclase activity and accumulates a redox-active biosynthetic intermediate, whereas vte2 disrupts homogentisate phytyl transferase activity and does not accumulate pathway intermediates. Mutations at either locus cause significantly reduced seed longevity compared with the wild type, indicating a critical role for tocopherols in maintaining viability during quiescence. However, only vte2 mutants exhibited severe seedling growth defects during germination and contained levels of lipid hydroperoxides and hydroxy fatty acids elevated up to 4- and 100-fold, respectively, relative to the wild type. These data demonstrate that a primary function of tocopherols in plants is to limit nonenzymatic lipid oxidation during seed storage, germination, and early seedling development. The vte mutant phenotypes also explain the strong selection for retention of tocopherol biosynthesis during the evolution of seed-bearing plants.  相似文献   

4.
Previous studies with the tocopherol‐deficient Arabidopsis thaliana vte2 mutant demonstrated an important role for tocopherols in the development of transfer cell walls and maintenance of photoassimilate export capacity during low‐temperature (LT) adaptation. To further understand the processes linking tocopherol deficiency and the vte2 LT phenotypes, a genetic screen was performed for sve mutations (suppressor of the vte2 low temperature‐induced phenotype). The three strongest sve loci had differing impacts on LT‐induced sugar accumulation, photoassimilate export reduction and vascular‐specific callose deposition in vte2. sve1 completely suppressed all vte2 LT phenotypes and is a new allele of fad2, the endoplasmic reticulum‐localized oleate desaturase. sve2 showed partial suppression, and is a new allele of trigalactosyldiacylglycerol1 (tgd1), a component of the ER‐to‐plastid lipid ATP‐binding cassette (ABC) transporter. Introduction of tgd2, tgd3 and tgd4 mutations into the vte2 background similarly suppressed the vte2 LT phenotypes, indicating a key role for ER‐to‐plastid lipid transport in the vte2 LT phenotype. sve7 partially suppressed all vte2 LT phenotypes by affecting fatty acid and lipid metabolism at low temperatures only. Detailed analyses of acyl lipid composition indicated that all suppressors alleviated the increase in the level of linoleic acid esterified to phosphatidylcholine (PC‐18:2) in LT‐treated vte2, and this alleviation significantly correlated with their extent of suppression of photoassimilate export. Identification and characterization of the sve loci showed that the PC‐18:2 change is an early and key component in vte2 LT‐induced responses, and highlighted the interaction of tocopherols with non‐plastid lipid metabolism.  相似文献   

5.
Tocopherol belongs to the Vitamin E class of lipid soluble antioxidants that are essential for human nutrition. In plants, tocopherol is synthesized in plastids where it protects membranes from oxidative degradation by reactive oxygen species. Tocopherol cyclase (VTE1) catalyzes the penultimate step of tocopherol synthesis, and an Arabidopsis (Arabidopsis thaliana) mutant deficient in VTE1 (vte1) is totally devoid of tocopherol. Overexpression of VTE1 resulted in an increase in total tocopherol of at least 7-fold in leaves, and a dramatic shift from alpha-tocopherol to gamma-tocopherol. Expression studies demonstrated that indeed VTE1 is a major limiting factor of tocopherol synthesis in leaves. Tocopherol deficiency in vte1 resulted in the increase in ascorbate and glutathione, whereas accumulation of tocopherol in VTE1 overexpressing plants led to a decrease in ascorbate and glutathione. Deficiency in one antioxidant in vte1, vtc1 (ascorbate deficient), or cad2 (glutathione deficient) led to increased oxidative stress and to the concomitant increase in alternative antioxidants. Double mutants of vte1 were generated with vtc1 and cad2. Whereas growth, chlorophyll content, and photosynthetic quantum yield were very similar to wild type in vte1, vtc1, cad2, or vte1vtc1, they were reduced in vte1cad2, indicating that the simultaneous loss of tocopherol and glutathione results in moderate oxidative stress that affects the stability and the efficiency of the photosynthetic apparatus.  相似文献   

6.
Alpha-tocopherol (vitamin E) is synthesized from gamma-tocopherol in chloroplasts by gamma-tocopherol methyltransferase (gamma-TMT; VTE4). Leaves of many plant species including Arabidopsis contain high levels of alpha-tocopherol, but are low in gamma-tocopherol. To unravel the function of different forms of tocopherol in plants, an Arabidopsis plant (vte4-1) carrying a functional null mutation in the gene gamma-TMT was isolated by screening a mutant population via thin-layer chromatography. A second mutant allele (vte4-2) carrying a T-DNA insertion in the coding sequence of gamma-TMT was identified in a T-DNA tagged mutant population. In vte4-1 and vte4-2 leaves, high levels of gamma-tocopherol accumulated, whereas alpha-tocopherol was absent indicating that, presumably, these two mutants represents null alleles. Over-expression of the gamma-TMT cDNA in vte4-1 restored wild-type tocopherol composition. Mutant plants were very similar to wild type. During oxidative stress (high light, high temperature, cold treatment) the amounts of alpha-tocopherol and gamma-tocopherol increased in wild type, and gamma-tocopherol in vte4-1. However, chlorophyll content and photosynthetic quantum yield were very similar in wild type and vte4-1, suggesting that alpha-tocopherol can be replaced by gamma-tocopherol in vte4-1 to protect the photosynthetic apparatus against oxidative stress. Fatty acid and lipid composition were very similar in WT, vte4-1 and vte1, an Arabidopsis mutant previously isolated which is completely devoid of tocopherol. Therefore, a shift in tocopherol composition or the absence of tocopherol has no major impact on the amounts of specific fatty acids or on lipid hydrolysis.  相似文献   

7.
Tocopherols (α-, β-, γ- and δ-tocopherols) represent a group of lipophilic antioxidants which are synthesized only by photosynthetic organisms. It is widely believed that protection of pigments and proteins of photosynthetic system and polyunsaturated fatty acids from oxidative damage caused by reactive oxygen species (ROS) is the main function of tocopherols. The wild type Columbia and two mutants of Arabidopsis thaliana with T-DNA insertions in tocopherol biosynthesis genes – tocopherol cyclase (vte1) and γ-tocopherol methyltransferase (vte4) – were analyzed after long-term outdoor growth. The concentration of total tocopherol was up to 12-fold higher in outdoor growing wild type and vte4 plant lines than in plants grown under laboratory conditions. The vte4 mutant plants had a lower concentration of chlorophylls and carotenoids, whereas the mutant plants had a higher level of total glutathione than of wild type. The activities of antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate oxidase (AO, EC 1.10.3.3) were lower in both mutants, whereas activities of catalase (EC 1.11.1.6) and ascorbate peroxidase (APx, EC 1.11.1.11) were lower only in vte1 mutant plants in comparison to wild type plants. However, the activity of guaiacol peroxidase (GuPx, EC 1.11.1.7) was higher in vte1 and vte4 mutants than that in wild type. Additionally, both mutant plant lines had higher concentration of protein carbonyl groups and oxidized glutathione compared to the wild type, indicating the development of oxidative stress. These results demonstrate in plants that tocopherols play a crucial role for growth of plants under outdoor conditions by preventing oxidation of cellular components.  相似文献   

8.
Vitamin E is considered a major antioxidant in biomembranes, but little evidence exists for this function in plants under photooxidative stress. Leaf discs of two vitamin E mutants, a tocopherol cyclase mutant (vte1) and a homogentisate phytyl transferase mutant (vte2), were exposed to high light stress at low temperature, which resulted in bleaching and lipid photodestruction. However, this was not observed in whole plants exposed to long-term high light stress, unless the stress conditions were extreme (very low temperature and very high light), suggesting compensatory mechanisms for vitamin E deficiency under physiological conditions. We identified two such mechanisms: nonphotochemical energy dissipation (NPQ) in photosystem II (PSII) and synthesis of zeaxanthin. Inhibition of NPQ in the double mutant vte1 npq4 led to a marked photoinhibition of PSII, suggesting protection of PSII by tocopherols. vte1 plants accumulated more zeaxanthin in high light than the wild type, and inhibiting zeaxanthin synthesis in the vte1 npq1 double mutant resulted in PSII photoinhibition accompanied by extensive oxidation of lipids and pigments. The single mutants npq1, npq4, vte2, and vte1 showed little sensitivity to the stress treatments. We conclude that, in cooperation with the xanthophyll cycle, vitamin E fulfills at least two different functions in chloroplasts at the two major sites of singlet oxygen production: preserving PSII from photoinactivation and protecting membrane lipids from photooxidation.  相似文献   

9.
10.
Most studies on the function of tocopherols in plants have focused on their photo-protective and antioxidant properties, and it has been recently suggested, though not yet demonstrated, that they may also play a role in cellular signaling. By using vte1 mutants of Arabidopsis thaliana, with an insertion in the promoter region of the gene encoding tocopherol cyclase, we demonstrate here for the first time that tocopherol deficiency may alter endogenous phytohormone levels in plants, thereby reducing plant growth and triggering anthocyanin accumulation in leaves. In plants grown under a combination of high light and low temperature conditions to induce anthocyanin accumulation, we evaluated age-dependent changes in tocopherols, indicators of photo-oxidative stress, phytohormone levels, plant growth and anthocyanin levels in wild type and vte1 mutants. These mutants showed lower tocopherol levels, reduced growth and enhanced anthocyanin accumulation compared with the wild type, while both the maximum and relative efficiencies of PSII, chlorophylls, and carotenoids were not significantly altered. Analyses of phytohormone levels revealed that reduced growth and enhanced anthocyanin accumulation in tocopherol-deficient plants were preceded by increased jasmonic acid levels. This is the first study suggesting a direct effect of tocopherols on phytohormones levels in plants and will undoubtedly help us to better understand the multiple functions tocopherols play in plants, as well as the cellular signaling mechanisms responsible for the phenotypes thus far described in tocopherol-deficient plants.  相似文献   

11.
Sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO) were used as a source of exogenous nitric oxide (NO) to investigate their effects on biochemical parameters and antioxidant enzyme response in leaves of wild type Columbia and tocopherol-deficient vte4 and vte1 mutant lines of Arabidopsis thaliana plants and possible tocopherol involvement in regulation of antioxidant response under NO-induced stress. SNP enhanced the activity of the enzymes, that scavenge hydrogen peroxide in leaves of all studied lines, and increased glutathione reductase and glutathione-S-transferase activity there. In addition, it decreased the intensity of lipid peroxidation in vte1 mutant line leaves. At the same time, GSNO increased the levels of protein carbonyls and inactivated enzymes ascorbate peroxidase, guaiacol peroxidase and dehydroascorbate reductase in almost all investigated plant lines. In contrast to wild type, GSNO increased superoxide dismutase activity and decreased catalase activity and chlorophyll a/b ratio in the leaves of two mutant lines. It can be assumed that tocopherols in some way are responsible for plant protection against NO-induced stress. However the mechanisms of this protection remain unknown.  相似文献   

12.
Vitamin E biosynthesis: biochemistry meets cell biology   总被引:10,自引:0,他引:10  
Vitamin E is thought to be involved in many essential processes in plants, but no functional proof has been reported. To study vitamin E deficiency in plants, a high-throughput biochemical screen for vitamin E quantification in Arabidopsis mutants has been developed, which has led to the identification of VTE1-encoding tocopherol cyclase. Interestingly, the corresponding maize mutation, sxd1, causes plasmodesmata malfunction, suggesting a link between tocopherol cyclase and plasmodesmata function.  相似文献   

13.
Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocopherol deficient. The vte6 mutant plants are incapable of photoautotrophic growth. Phytol and phytyl-phosphate accumulate, and the phytyl-diphosphate content is strongly decreased in vte6 leaves. Phytol feeding and enzyme assays with Arabidopsis and recombinant Escherichia coli cells demonstrated that VTE6 has phytyl-P kinase activity. Overexpression of VTE6 resulted in increased phytyl-diphosphate and tocopherol contents in seeds, indicating that VTE6 encodes phytyl-phosphate kinase. The severe growth retardation of vte6 mutants was partially rescued by introducing the phytol kinase mutation vte5. Double mutant plants (vte5 vte6) are tocopherol deficient and contain more chlorophyll, but reduced amounts of phytol and phytyl-phosphate compared with vte6 mutants, suggesting that phytol or phytyl-phosphate are detrimental to plant growth. Therefore, VTE6 represents the missing phytyl-phosphate kinase, linking phytol release from chlorophyll with tocopherol synthesis. Moreover, tocopherol synthesis in leaves depends on phytol derived from chlorophyll, not on de novo synthesis of phytyl-diphosphate from geranylgeranyl-diphosphate.  相似文献   

14.
15.
Background and Aims Vitamin E helps to control the cellular redox state by reacting with singlet oxygen and preventing the propagation of lipid peroxidation in thylakoid membranes. Both plant ageing and phosphorus deficiency can trigger accumulation of reactive oxygen species, leading to damage to the photosynthetic apparatus. This study investigates how phosphorus availability and vitamin E interact in the control of plant longevity in the short-lived annual Arabidopsis thaliana.Methods The responses of tocopherol cyclase (VTE1)- and γ-tocopherol methyltransferase (VTE4)-null mutants to various levels of phosphorus availability was compared with that of wild-type plants. Longevity (time from germination to rosette death) and the time taken to pass through different developmental stages were determined, and measurements were taken of photosynthetic efficiency, pigment concentration, lipid peroxidation, vitamin E content and jasmonate content.Key Results The vte1 mutant showed accelerated senescence under control conditions, excess phosphorus and mild phosphorus deficiency, suggesting a delaying, protective effect of α-tocopherol during plant senescence. However, under severe phosphorus deficiency the lack of α-tocopherol paradoxically increased longevity in the vte1 mutant, while senescence was accelerated in wild-type plants. Reduced photoprotection in vitamin E-deficient mutants led to increased levels of defence chemicals (as indicated by jasmonate levels) under severe phosphorus starvation in the vte4 mutant and under excess phosphorus and mild phosphorus starvation in the vte1 mutant, indicating a trade-off between the capacity for photoprotection and the activation of chemical defences (jasmonate accumulation).Conclusions Vitamin E increases plant longevity under control conditions and mild phosphorus starvation, but accelerates senescence under severe phosphorus limitation. Complex interactions are revealed between phosphorus availability, vitamin E and the potential to synthesize jasmonates, suggesting a trade-off between photoprotection and the activation of chemical defences in the plants.  相似文献   

16.
During the past decade, the genes required for tocopherol (vitamin E) synthesis in plants and cyanobacteria have been identified. A series of mutants in which specific pathway steps are disrupted have been generated, providing new insights into tocopherol functions in photosynthetic organisms. Tocopherols are essential for controlling non-enzymatic lipid peroxidation during seed dormancy and seedling germination. Their absence results in elevated levels of malondialdehyde and phytoprostanes, and in inappropriate activation of plant defense responses. Surprisingly, tocopherol deficiency in mature leaves has limited consequences under most abiotic stresses, including high intensity light stress. The cell wall development of phloem transfer cells under cold conditions is, however, severely impaired in mature leaves of tocopherol-deficient mutants, indicating that tocopherols are required for proper adaptation of phloem loading at low temperatures.  相似文献   

17.
Havaux M  Lütz C  Grimm B 《Plant physiology》2003,132(1):300-310
The phototolerance of three chlP transgenic tobacco (Nicotiana tabacum) lines, affected in geranylgeranyl reductase and, hence, deficient in tocopherols (vitamin E), was estimated by in vivo luminescence and fluorescence measurements and was compared with that of the wild type (WT). Exposure of leaf discs to high light (1 mmol photon m(-2) s(-1)) and low temperature (10 degrees C) led to a rapid inhibition of photosystem II (PSII) photochemistry that showed little dependence on the tocopherol level. PSII photo-inhibition was followed by lipid peroxidation with a time delay of about 4 h, and this phenomenon was exacerbated in the tocopherol-deficient leaves. A linear correlation was observed in these short-term experiments between resistance to photooxidation and tocopherol content. When whole plants were exposed to the same treatment, PSII was severely photo-inhibited in mature leaves of all genotypes. Lipid peroxidation was also observed in all plants, but it occurred much more rapidly in tocopherol-deficient transgenic plants relative to WT plants. The time at which extensive lipid peroxidation occurred was correlated with the tocopherol content of the leaves. The present results show that tocopherols protect thylakoid membranes against photodestruction through lipid peroxidation. However, tocopherol deficiency was compensated in young, developing leaves that were able to photo-acclimate in the long term and did not suffer from photooxidative damage. Soluble antioxidants (glutathione and ascorbate) did not accumulate in photo-acclimated chlP transgenic leaves relative to WT leaves. In contrast, a selective accumulation of xanthophyll cycle pigments was observed in young transgenic leaves, and this could represent a compensatory mechanism for tocopherol deficiency.  相似文献   

18.
The biosynthesis of the tocotrienol and tocopherol forms of vitamin E is initiated by prenylation of homogentisate. Geranylgeranyl diphosphate (GGDP) is the prenyl donor for tocotrienol synthesis, whereas phytyl diphosphate (PDP) is the prenyl donor for tocopherol synthesis. We have previously shown that tocotrienol synthesis is initiated in monocot seeds by homogentisate geranylgeranyl transferase (HGGT). This enzyme is related to homogentisate phytyltransferase (HPT), which catalyzes the prenylation step in tocopherol synthesis. Here we show that monocot HGGT is localized in the plastid and expressed primarily in seed endosperm. Despite the close structural relationship of monocot HGGT and HPT, these enzymes were found to have distinct substrate specificities. Barley (Hordeum vulgare cv. Morex) HGGT expressed in insect cells was six times more active with GGDP than with PDP, whereas the Arabidopsis HPT was nine times more active with PDP than with GGDP. However, only small differences were detected in the apparent Km values of barley HGGT for GGDP and PDP. Consistent with its in vitro substrate properties, barley HGGT generated a mixture of tocotrienols and tocopherols when expressed in the vitamin E-null vte2-1 mutant lacking a functional HPT. Relative levels of tocotrienols and tocopherols produced in vte2-1 differed between organs and growth stages, reflective of the composition of plastidic pools of GGDP and PDP. In addition, HGGT was able to functionally substitute for HPT to rescue vte2-1-associated phenotypes, including reduced seed viability and increased fatty acid oxidation of seed lipids. Overall, we show that monocot HGGT is biochemically distinct from HPT, but can replace HPT in important vitamin E-related physiological processes.  相似文献   

19.
Vitamin E (tocopherol) is a powerful antioxidant essential for human health and synthesized only by photosynthetic organisms. The effects of over-expression of tocopherol biosynthetic enzymes have been studied in leaves and seeds, but not in a non-photosynthetic, below-ground plant organ. Genetic and molecular approaches were used to determine if increased levels of tocopherols can be accumulated in potato (Solanum tuberosum L.) tubers through metabolic engineering. Two transgenes were constitutively over-expressed in potato: Arabidopsis thaliana p-hydroxyphenylpyruvate dioxygenase (At-HPPD) and A. thaliana homogentisate phytyltransferase (At-HPT). α-Tocopherol levels in the transgenic plants were determined by high-performance liquid chromatography. In potato tubers, over-expression of At-HPPD resulted in a maximum 266% increase in α-tocopherol, and over-expression of At-HPT yielded a 106% increase. However, tubers from transgenic plants still accumulated approximately 10- and 100-fold less α-tocopherol than leaves or seeds, respectively. The results indicate that physiological and regulatory constraints may be the most limiting factors for tocopherol accumulation in potato tubers. Studying regulation and induction of tocopherol biosynthesis should reveal approaches to more effectively engineer crops with enhanced tocopherol content.  相似文献   

20.
SUMMARY: Tocopherols are synthesized and accumulated by all plants and many cyanobacteria. The quenching and scavenging of reactive oxygen species and lipid peroxy radicals by tocopherols can result in the formation of various tocopherol oxidation compounds. A targeted GC/MS profiling method was developed to quantify all tocopherols and pathway intermediates, and 23 potential alpha- and gamma-tocopherol oxidation products. This method was used to study the response of wild-type Arabidopsis (Col) and the tocopherol biosynthetic mutants vte1, vte2 and vte4 during 12 h low- and high-light treatments (LL and HL, 90 and 1500 mumol photon m(-2) sec(-1), respectively) and a subsequent 12 h dark recovery period. All tocopherols and pathway intermediates exhibited HL-dependent increases except 2,3-dimethyl-6-phytyl-1,4-benzoquinone (DMPBQ) in vte1 and beta-tocopherol in Col. Profiling of potential tocopherol oxidation products during HL treatment indicated the presence of only alpha-tocopherolquinol (alpha-TQH(2)) in Col and only gamma-tocopherolquinol (gamma-TQH(2)) in vte4, both of which accumulated to similar levels and with similar kinetics the two genotypes. However, during dark recovery, the level of alpha-TQH(2) in Col decreased several times faster than that of gamma-TQH(2) in vte4, suggesting the presence of biochemical processes with higher specificity for alpha-TQH(2). (14)C-labeled alpha-tocopherolquinone (alpha-TQ) applied to isolated Col chloroplasts was converted to (14)C-alpha-tocopherol, demonstrating the existence of a plastid-based system for recycling oxidized alpha-tocopherol. The accumulation of (14)C-trimethylphytylbenzoquinone (TMPBQ) by isolated vte1 plastids treated with (14)C-labeled alpha-TQ is consistent with the tocopherolquinone-recycling pathway utilizing a yet to be identified plastid-localized dehydratase that converts tocopherolquinone to TMPBQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号