首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we examined the role of specific protein kinase C (PKC) isoforms in the differentiation of PC12 cells in response to nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells express PKC-alpha, -beta, -gamma, -delta, -epsilon, -mu, and -zeta. For PKC-delta, -epsilon, and -zeta, NGF and EGF exerted differential effects on translocation. Unlike overexpression of PKC-alpha and -delta, overexpression of PKC-epsilon caused enhanced neurite outgrowth in response to NGF. In the PKC-epsilon-overexpressing cells, EGF also dramatically induced neurite outgrowth, arrested cell proliferation, and induced a sustained phosphorylation of mitogen-activated protein kinase (MAPK), in contrast to its mitogenic effects on control cells or cells overexpressing PKC-alpha and -delta. The induction of neurite outgrowth by EGF was inhibited by the MAPK kinase inhibitor PD95098. In cells overexpressing a PKC-epsilon dominant negative mutant, NGF induced reduced neurite outgrowth and a more transient phosphorylation of MAPK than in controls. Our results suggest an important role for PKC-epsilon in neurite outgrowth in PC12 cells, probably via activation of the MAPK pathway.  相似文献   

2.
3.
4.
The rat pheochromocytoma PC12 cell line is a widely used system to study neuronal differentiation for which sustained activation of the extracellular signaling related kinase (ERK) pathway is required. Here, we investigate the function of MK-STYX [MAPK (mitogen-activated protein kinase) phosphoserine/threonine/tyrosine-binding protein] in neuronal differentiation. MK-STYX is a member of the MAPK phosphatase (MKP) family, which is generally responsible for dephosphorylating the ERKs. However, MK-STYX lacks catalytic activity due to the absence of the nucleophilic cysteine in the active site signature motif HC(X5)R that is essential for phosphatase activity. Despite being catalytically inactive, MK-STYX has been shown to play a role in important cellular pathways, including stress responses. Here we show that PC12 cells endogenously express MK-STYX. In addition, MK-STYX, but not its catalytically active mutant, induced neurite-like outgrowths in PC12 cells. Furthermore, MK-STYX dramatically increased the number of cells with neurite extensions in response to nerve growth factor (NGF), whereas the catalytically active mutant did not. MK-STYX continued to induce neurites in the presence of a MEK (MAP kinase kinase) inhibitor suggesting that MK-STYX does not act through the Ras-ERK/MAPK pathway but is involved in another pathway whose inactivation leads to neuronal differentiation. RhoA activity assays indicated that MK-STYX induced extensions through the Rho signaling pathway. MK-STYX decreased RhoA activation, whereas RhoA activation increased when MK-STYX was down-regulated. Furthermore, MK-STYX affected downstream players of RhoA such as the actin binding protein cofilin. The presence of MK-STYX decreased the phosphorylation of cofilin in non NGF stimulated cells, but increased its phosphorylation in NGF stimulated cells, whereas knocking down MK-STYX caused an opposite effect. Taken together our data suggest that MK-STYX may be a regulator of RhoA signaling, and implicate this pseudophosphatase as a regulator of neuronal differentiation.  相似文献   

5.
SH2-B is required for nerve growth factor-induced neuronal differentiation   总被引:15,自引:0,他引:15  
Nerve growth factor (NGF) is essential for the development and survival of sympathetic and sensory neurons. NGF binds to TrkA, activates the intrinsic kinase activity of TrkA, and promotes the differentiation of pheochromocytoma (PC12) cells into sympathetic-like neurons. Several signaling molecules and pathways are known to be activated by NGF, including phospholipase Cgamma, phosphatidylinositol-3 kinase, and the mitogen-activated protein kinase cascade. However, the mechanism of NGF-induced neuronal differentiation remains unclear. In this study, we examined whether SH2-Bbeta, a recently identified pleckstrin homology and SH2 domain-containing signaling protein, is a critical signaling protein for NGF. TrkA bound to glutathione S-transferase fusion proteins containing SH2-Bbeta, and NGF stimulation dramatically increased that binding. In contrast, NGF was unable to stimulate the association of TrkA with a glutathione S-transferase fusion protein containing a mutant SH2-Bbeta(R555E) with a defective SH2 domain. When overexpressed in PC12 cells, SH2-Bbeta co-immunoprecipitated with TrkA in response to NGF. NGF stimulated tyrosyl phosphorylation of endogenous SH2-Bbeta as well as exogenously expressed GFP-SH2-Bbeta but not GFP-SH2-Bbeta(R555E). Overexpression of SH2-Bbeta(R555E) blocked NGF-induced neurite outgrowth of PC12 cells, whereas overexpression of wild type SH2-Bbeta enhanced NGF-induced neurite outgrowth. Overexpression of either wild type or mutant SH2-Bbeta(R555E) did not alter tyrosyl phosphorylation of TrkA, Shc, or phospholipase Cgamma in response to NGF or NGF-induced activation of ERK1/2, suggesting that SH2-Bbeta may initiate a previously unknown pathway(s) that is essential for NGF-induced neurite outgrowth. Taken together, these data indicate that SH2-Bbeta is a novel signaling molecule required for NGF-induced neuronal differentiation.  相似文献   

6.
S Ihara  K Nakajima  T Fukada  M Hibi  S Nagata  T Hirano    Y Fukui 《The EMBO journal》1997,16(17):5345-5352
IL-6 induces differentiation of PC12 cells pretreated with nerve growth factor (NGF). We explored the signals required for neurite outgrowth of PC12 cells by using a series of mutants of a chimeric receptor consisting of the extracellular domain of the granulocyte-colony stimulating factor (G-CSF) receptor and the cytoplasmic domain of gp130, a signal-transducing subunit of the IL-6 receptor. The mutants incapable of activating the MAP kinase cascade failed to induce neurite outgrowth. Consistently, a MEK inhibitor, PD98059, inhibited neurite outgrowth, showing that activation of the MAP kinase cascade is essential for the differentiation of PC12 cells. In contrast, a mutation that abolished the ability to activate STAT3 did not inhibit, but rather stimulated neurite outgrowth. This mutant did not require NGF pretreatment for neurite outgrowth. Dominant-negative STAT3s mimicked NGF pretreatment, and NGF suppressed the IL-6-induced activation of STAT3, supporting the idea that STAT3 might regulate the differentiation of PC12 cells negatively. These results suggest that neurite outgrowth of PC12 cells is regulated by the balance of MAP kinase and STAT3 signal transduction pathways, and that STAT3 activity can be regulated negatively by NGF.  相似文献   

7.
NF-kappa B has been implicated in the survival and differentiation of PC12 cells. In this study, we examined the effect of the NF-kappa B-inducing kinase (NIK) on these processes. When inducibly expressed in PC12 cells, a kinase-proficient but not -deficient form of NIK promoted neurite process formation and mediated anti-apoptotic signaling. As expected, NIK expression led to I kappa B kinase activation and induced nuclear translocation of NF-kappa B. However, NIK-induced neurite outgrowth was only partially blocked by concomitant expression of a nondegradable form of I kappa B alpha that completely blocks NF-kappa B induction. In search of additional signaling pathways activated by NIK, we now demonstrate that NIK activates MEK1 phosphorylation and induces the Erk1/Erk2 MAPK pathway. Treatment of PC12 cells with PD98059, a MEK1 inhibitor, potently blocked neurite process formation; however, a dominantly interfering mutant of the upstream Shc adapter failed to alter this response. These findings reveal a new function for NIK as a MEK1-dependent activator of the MAPK pathway and implicate both the I kappa B kinase and MAPK signaling cascades in NIK-induced differentiation of PC12 cells.  相似文献   

8.
We recently showed that mouse semaphorin H (MSH), a secreted semaphorin molecule, acts as a chemorepulsive factor on sensory neurites. In this study, we found for the first time that MSH induces neurite outgrowth in PC12 cells in a dose-dependent manner. Comparison of Ras-mitogen-activated protein kinase (MAPK) signaling pathways between MSH and nerve growth factor (NGF) revealed that these pathways are crucial for MSH action as well as NGF. K-252a, an inhibitor of tyrosine autophosphorylation of tyrosine kinase receptors (Trks), did not inhibit the action of MSH, suggesting that MSH action occurs via a different receptor than NGF. L- and N-types of voltage-dependent Ca(2+) channel blockers, diltiazem and omega-conotoxin, inhibited MSH-induced neurite outgrowth and MAPK phosphorylation in a Ca(2+)-dependent manner. A transient elevation in intracellular Ca(2+) level was observed upon MSH stimulation. These findings suggest that extracellular Ca(2+) influx, followed by activation of the Ras-MAPK signaling pathway, is required for MSH induced PC12 cell neurite outgrowth.  相似文献   

9.
Substantial evidence exists supporting the notion that Csk and CHK, two negative regulatory kinases of the Src tyrosine kinase family, play distinct roles during development of the nervous system. One of the differences relies on the effects of both kinases on the MAPK transduction pathway. Specifically, CHK was shown to enhance MAPK signaling, while the role of Csk was unclear. In this work, we compared the effect of CHK versus Csk on MAPK signaling and elucidated the signaling pathway mediated by CHK leading to the activation of Erk1/2. Exogenous expression of wild-type CHK, but not Csk or a dead-kinase mutant of CHK, resulted in enhanced Erk1/2 phosphorylation in PC12 cells. CHK inhibited Src activity following stimulation of the cells with NGF. However, stimulation of Erk1/2 activation by CHK was independent of the NGF stimulation or the inhibition of Src kinase by CHK. CHK induced a complex formation between SHP-2 and Grb2, subsequently leading to the increased activity of Ras as well as Erk1/2 activation via the Raf/MEK1/2 pathway. Down-regulation of the expression of endogenous CHK by RNAi in PC12 cells led to a significant decrease in MAPK activation following NGF stimulation. Stimulation of CHK-overexpressing PC12 cells with EGF induced neurite outgrowth in the majority of cells. Taken together, this study describes for the first time the Src-independent actions of CHK and provides novel insights into CHK function in neural cells.  相似文献   

10.
In PC12 cells, a well studied model for neuronal differentiation, an elevation in the intracellular cAMP level increases cell survival, stimulates neurite outgrowth, and causes activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). Here we show that an increase in the intracellular cAMP concentration induces tyrosine phosphorylation of two receptor tyrosine kinases, i.e. the epidermal growth factor (EGF) receptor and the high affinity receptor for nerve growth factor (NGF), also termed Trk(A). cAMP-induced tyrosine phosphorylation of the EGF receptor is rapid and correlates with ERK1/2 activation. It occurs also in Panc-1, but not in human mesangial cells. cAMP-induced tyrosine phosphorylation of the NGF receptor is slower and correlates with Akt activation. Inhibition of EGF receptor tyrosine phosphorylation, but not of the NGF receptor, reduces cAMP-induced neurite outgrowth. Expression of dominant-negative Akt does not abolish cAMP-induced survival in serum-free media, but increases cAMP-induced ERK1/2 activation and neurite outgrowth. Together, our results demonstrate that cAMP induces dual signaling in PC12 cells: transactivation of the EGF receptor triggering the ERK1/2 pathway and neurite outgrowth; and transactivation of the NGF receptor promoting Akt activation and thereby modulating ERK1/2 activation and neurite outgrowth.  相似文献   

11.
The signaling pathway that triggers morphological differentiation of PC12 cells is mediated by extracellular signal-regulated kinase (ERK), the classic mitogen-activated protein (MAP) kinase. However, mediators of the pathway downstream of ERK have not been identified. We show here that phospholipase D2 (PLD2), which generates the pleiotropic signaling lipid phosphatidic acid (PA), links ERK activation to neurite outgrowth in nerve growth factor (NGF)-stimulated PC12 cells. Increased expression of wild type PLD2 (WT-PLD2) dramatically elongated neurites induced by NGF stimulation or transient expression of the active form of MAP kinase-ERK kinase (MEK-CA). The response was activity-dependent, because it was inhibited by pharmacological suppression of the PLD-mediated PA production and by expression of a lipase-deficient PLD2 mutant. Furthermore, PLD2 was activated by MEK-CA, whereas NGF-stimulated PLD2 activation and hypertrophic neurite extension were blocked by an MEK-specific inhibitor. Taken together, these results provide evidence that PLD2 functions as a downstream signaling effector of ERK in the NGF signaling pathway, which leads to neurite outgrowth by PC12 cells.  相似文献   

12.
The current paradigm for the role of nerve growth factor (NGF) or FGF-2 in the differentiation of neuronal cells implies their binding to specific receptors and activation of kinase cascades leading to the expression of differentiation specific genes. We examined herein the hypothesis that FGF receptors (FGFRs) are involved in NGF-induced neuritogenesis of pheochromocytoma-derived PC12 cells. We demonstrate that in PC12 cells, FGFR expression and activity are modulated upon NGF treatment and that a dominant negative FGFR-2 reduces NGF-induced neuritogenesis. Moreover, FGF-2 expression is modulated by NGF, and FGF-2 is detected at the cell surface. Oligonucleotides that specifically inhibit FGF-2 binding to its receptors are able to significantly reduce NGF-induced neurite outgrowth. Finally, the duration of mitogen-activated protein kinase (MAPK) activity upon FGF or NGF stimulation is shortened in FGFR-2 dominant negative cells through inactivation of signaling from the receptor to the Ras/MAPK pathway. In conclusion, these results demonstrate that FGFR activation is involved in neuritogenesis induced by NGF where it contributes to a sustained MAPK activity in response to NGF.  相似文献   

13.
We investigated the role of Rsk proteins in the nerve growth factor (NGF) signaling pathway in PC12 cells. When rat Rsk1 or murine Rsk2 proteins were transiently expressed, NGF treatment (100 ng/ml for 3 days) caused three- and fivefold increases in Rsk1 and Rsk2 activities, respectively. Increased activation of both wild-type Rsk proteins could be achieved by coexpression of a constitutively active (CA) mitogen-activated protein kinase (MAPK) kinase, MEK1-DD, which is known to cause differentiation of PC12 cells even in the absence of NGF. Rsk1 and Rsk2 mutated in the PDK1-binding site were not activated by either NGF or MEK1-DD. Expression of constitutively active Rsk1 or Rsk2 in PC12 cells resulted in highly active proteins whose levels of activity did not change either with NGF treatment or after coexpression with MEK1-DD. Rsk2-CA expression had no detectable effect on the cells. However, expression of Rsk1-CA led to differentiation of PC12 cells even in the absence of NGF, as evidenced by neurite outgrowth. Differentiation was not observed with a nonactive Rsk1-CA that was mutated in the PDK1-binding site. Expression of Rsk1-CA did not lead to activation of the endogenous MAPK pathway, indicating that Rsk1 is sufficient to induce neurite outgrowth and is the only target of MAPK required for this effect. Collectively, our data demonstrate a key role for Rsk1 in the differentiation process of PC12 cells.  相似文献   

14.
Neu differentiation factor (NDF; also known as neuregulin) induces a pleiotropic cellular response that is cell type-dependent. NDF and its receptor ErbB-4 are highly expressed in neurons, implying important roles in neuronal cell functions. In the present study we demonstrate that ErbB-4 receptors expressed in PC12 cells mediate NDF-induced signals and neurite outgrowth that are indistinguishable from those mediated by the nerve growth factor-activated Trk receptors. In PC12-ErbB-4 cells but not in PC12 cells, NDF induced an initial weak mitogenic signal and subsequently neurite outgrowth. The NDF-induced differentiation in PC12-ErbB-4 cells was mimicked by the pan-ErbB ligand betacellulin but not by other epidermal growth factor-like ligands. Thus, NDF and betacellulin mediate similar activities through the ErbB-4 receptor. Indeed, only these ligands induced strong phosphorylation of the ErbB-4 receptors. Neurite outgrowth induced by NDF in PC12-ErbB-4 cells was accompanied by sustained activation of mitogen-activated protein kinase (MAPK) and induction of the neural differentiation marker GAP-43. Inhibition of the MAPK kinase MEK or of protein kinase C (PKC) blocked NDF-induced differentiation, whereas elevation of cyclic AMP levels enhanced the response. Taken together, these results indicate that neurite outgrowth induced by ErbB-4 in PC12 cells requires MAPK and PKC signaling networks.  相似文献   

15.
LAMTOR2 (p14), a part of the larger LAMTOR/Ragulator complex, plays a crucial role in EGF-dependent activation of p42/44 mitogen-activated protein kinases (MAPK, ERK1/2). In this study, we investigated the role of LAMTOR2 in nerve growth factor (NGF)-mediated neuronal differentiation. Stimulation of PC12 (rat adrenal pheochromocytoma) cells with NGF is known to activate the MAPK. Pharmacological inhibition of MEK1 as well as siRNA–mediated knockdown of both p42 and p44 MAPK resulted in inhibition of neurite outgrowth. Contrary to expectations, siRNA–mediated knockdown of LAMTOR2 effectively augmented neurite formation and neurite length of PC12 cells. Ectopic expression of a siRNA-resistant LAMTOR2 ortholog reversed this phenotype back to wildtype levels, ruling out nonspecific off-target effects of this LAMTOR2 siRNA approach. Mechanistically, LAMTOR2 siRNA treatment significantly enhanced NGF-dependent MAPK activity, and this effect again was reversed upon expression of the siRNA-resistant LAMTOR2 ortholog. Studies of intracellular trafficking of the NGF receptor TrkA revealed a rapid colocalization with early endosomes, which was modulated by LAMTOR2 siRNA. Inhibition of LAMTOR2 and concomitant destabilization of the remaining members of the LAMTOR complex apparently leads to a faster release of the TrkA/MAPK signaling module and nuclear increase of activated MAPK. These results suggest a modulatory role of the MEK1 adapter protein LAMTOR2 in NGF-mediated MAPK activation required for induction of neurite outgrowth in PC12 cells.  相似文献   

16.
The biochemical mechanisms involved in neurite outgrowth in response to nerve growth factor (NGF) have yet to be completely resolved. Several recent studies have demonstrated that protein kinase activity plays a critical role in neurite outgrowth. However, little information exists about the role of protein phosphatases in the process. In the present study, okadaic acid, a phosphatase inhibitor (specific for types 2A and 1) and tumor promoter, was used to investigate the role of protein phosphatases in neurite outgrowth in PC12 cells. PC12 cells cultured in the presence of 50 ng/ml of NGF started to extend neurites after 1 day. After 3 days, 20-25% of the cells had neurites. Okadaic acid inhibited the rate of neurite outgrowth elicited by NGF with an IC50 of approximately 7 nM. This inhibition was rapidly reversed after washout of okadaic acid. Okadaic acid also enhanced the neurite degeneration of NGF-primed PC12 cells, indicating that continual phosphatase activity is required to maintain neurites. Taken together, these results reveal the presence of an okadaic acid-sensitive pathway in neurite outgrowth and imply that protein phosphatase plays a positive role in regulating the neuritogenic effects of NGE.  相似文献   

17.
The Sprouty (Spry) family of proteins represents endogenous regulators of downstream signaling pathways induced by receptor tyrosine kinases (RTKs). Using real time PCR, we detect a significant increase in the expression of Spry4 mRNA in response to NGF, indicating that Spry4 could modulate intracellular signaling pathways and biological processes induced by NGF and its receptor TrkA. In this work, we demonstrate that overexpression of wild-type Spry4 causes a significant reduction in MAPK and Rac1 activation and neurite outgrowth induced by NGF. At molecular level, our findings indicate that ectopic expression of a mutated form of Spry4 (Y53A), in which a conserved tyrosine residue was replaced, fail to block both TrkA-mediated Erk/MAPK activation and neurite outgrowth induced by NGF, suggesting that an intact tyrosine 53 site is required for the inhibitory effect of Spry4 on NGF signaling. Downregulation of Spry4 using small interference RNA knockdown experiments potentiates PC12 cell differentiation and MAPK activation in response to NGF. Together, these findings establish a new physiological mechanism through which Spry4 regulates neurite outgrowth reducing not only the MAPK pathway but also restricting Rac1 activation in response to NGF.  相似文献   

18.
Song EJ  Yoo YS 《BMB reports》2011,44(3):182-186
Exogenous stimuli such as nerve growth factor (NGF) exert their effects on neurite outgrowth via Trk neurotrophin receptors. TrkA receptors are known to be ubiquitinated via proteasome inhibition in the presence of NGF. However, the effect of proteasome inhibition on neurite outgrowth has not been studied extensively. To clarify these issues, we investigated signaling events in PC12 cells treated with NGF and the proteasome inhibitor MG132. We found that MG132 facilitated NGF-induced neurite outgrowth and potentiated the phosphorylation of the extracellular signal-regulated kinase/mitogen- activated protein kinase (ERK/MAPK) and phosphatidylinositol- 3-kinase (PI3K)/AKT pathways and TrkA receptors. MG132 stimulated internalization of surface TrkA receptor and stabilized intracellular TrkA receptor, and the Ub(K63) chain was found to be essential for stability. These results indicate that the ubiquitin-proteasome system potentiated neurite formation by regulating the stability of TrkA receptors.  相似文献   

19.
Activation of phosphatidylinositol 3-kinase (PI3-K) is considered to be a key event upon stimulation of cells with growth factors. Akt is known to be a downstream target of PI3-K when it is activated by nerve growth factor (NGF). NGF induces cell differentiation of PC12 cells as indicated by neurite outgrowth. In order to investigate the role of PI3-K/Akt in NGF-induced differentiation of PC12 cells, we generated cells ectopically expressing constitutively activated (CA), wild type (WT) and dominant negative (DN) forms of Akt. NGF-induced neurite outgrowth was greatly accelerated in the cells expressing CA-Akt, and dramatically inhibited in those expressing DN-Akt. Pre-treatment with an Akt inhibitor, ML-9 [1-(5-chloronaphthalene-1-sulfonyl)-1H- hexahydro-1,4-diazepine], inhibited NGF-induced Akt phosphorylation as well as neurite outgrowth but did not markedly affect the activities of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). The PI3-K inhibitors wortmannin and LY294002 blocked NGF-induced Akt phosphorylation as well as neurite outgrowth. These results indicate that PI3-K/Akt is a positive regulator of NGF-induced neuronal differentiation in PC12 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号