首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When Streptomyces alboniger spores were grown in Hickey-Tresner broth containing 5 muM ethidium bromide, a high frequency of permanently cured aerial mycelia-negative (am-) colonies was recovered. The appearance an am- colonies was time dependent: a very low frequency (0.3%) at zero time, a maximum (9 to 21%) after 2 to 5 days of growth, and a decline again to low frequencies later in the growth cycle. On agar, cured am- colonies of S. alboniger still produced puromycin. The development of aerial mycelia in S. alboniger, S. scabies, and S. coelicolor was also sensitive to glucose repression. Colonies grown on Hickey-Tresner agar containing 2% glucose remained phenotypically am- throughout the observation period. Adenine (2.5 mM or greater), and to a lesser extent adenosine and guanosine, specifically reversed the repression. The accumulation of undissociated organic acids appears to be involved in glucose repression of aerial mycelia formation. However, this does not appear to be the case with puromycin production in S. alboniger; glucose repression was observed over the pH range 5.0 to 7.5.  相似文献   

2.
Abstract The relationship between endogenous levels of cyclic adenosine 3',5'-monophosphate (cAMP) and the formation of aerial mycelia was investigated in Streptomyces alboniger under conditions of aerial mycelium formation and repression. The relationship between cellular levels of DNA and RNA and aerial mycelium formation was also investigated. In contrast to cellular differentiation in other Streptomyces , neither variations in cAMP, DNA or RNA levels were found to be associated with the development of aerial mycelia in S. alboniger . The regulation of adenylate cyclase in S. alboniger , however, was found to differ from that of Escherichia coli and related organisms in that glucose raised, rather than lowered, endogenous cAMP levels.  相似文献   

3.
The actinomycete Streptomyces scabies 87-22 is the causal agent of common scab, an economically important disease of potato and taproot crops. Sequencing of the S. scabies 87-22 genome revealed the presence of a gene with high homology to the gene encoding the alpha-tomatine-detoxifying enzyme tomatinase found in fungal tomato pathogens. The tomA gene from S. scabies 87-22 was cotranscribed with a putative family 1 glycosyl hydrolase gene, and purified TomA protein was active only on alpha-tomatine and not potato glycoalkaloids or xylans. Tomatinase-null mutants were more sensitive to alpha-tomatine than the wild-type strain in a disk diffusion assay. Interestingly, tomatine affected only aerial mycelium and not vegetative mycelium, suggesting that the target(s) of alpha-tomatine is not present during vegetative growth. Severities of disease for tomato seedlings affected by S. scabies 87-22 wild-type and DeltatomA1 strains were indistinguishable, suggesting that tomatinase is not important in pathogenicity on tomato plants. However, conservation of tomA on a pathogenicity island in S. acidiscabies and S. turgidiscabies suggests a role in plant-microbe interaction.  相似文献   

4.
Ribosomes from Streptomyces alboniger are sensitive in vitro to puromycin and, to a lesser extent, to the puromycin-precursor O-demethyl-puromycin. The puromycin-inactivating enzyme (puromycin N-acetyltransferase) from S. alboniger also N-acetylates O-demethyl-puromycin. This finding indicates that in certain antibiotic-producing organisms the antibiotic-inactivating enzymes may play a role in self-defence against toxic precursor molecules.  相似文献   

5.
The effect of the aerial mycelium-inducing compound, pamamycin-607, on antibiotic production by several Streptomyces spp. was examined. Exposure to 6.6 μM pamamycin-607 stimulated by 2.7 fold the puromycin production by Streptomyces alboniger NBRC 12738, in which pamamycin-607 had first been isolated, and restored aerial mycelium formation. Pamamycin-607 also stimulated the respective production of streptomycin by S. griseus NBRC 12875 and that of cinerubins A and B by S. tauricus JCM 4837 by approximately 1.5, 1.7 and 1.9 fold. The antibiotic produced by Streptomyces sp. 91-a was identified as virginiamycin M(1), and its synthesis was enhanced 2.6 fold by pamamycin-607. These results demonstrate that pamamycin-607 not only restored or stimulated aerial mycelium formation, but also stimulated secondary metabolite production.  相似文献   

6.
Diversity among Streptomyces Strains Causing Potato Scab   总被引:1,自引:0,他引:1  
Eighty Streptomyces isolates, including 35 potato scab-inducing strains and 12 reference strains of Streptomyces scabies, were physiologically characterized by a total of 329 miniaturized tests. Overall similarities of all strains were determined by numerical taxonomy, with the unweighted average linkage (UPGMA) algorithm and simple matching (S(sm)) and Jaccard (S(j)) coefficients used as measures for similarity. Three cluster groups (A to C) were defined at a similarity level of 80.1% (S(sm)); these groups contained 14 clusters and 24 unclustered strains defined at a similarity level of 86.5% (S(sm)). Cluster group A contained strains phenotypically related to S. griseus or S. exfoliatus, whereas cluster group B contained strains which were phenotypically related to S. violaceus or S. rochei. The majority of the pathogenic isolates and reference strains were assigned to S. violaceus (57%) and S. griseus (22%). A DNA probe derived from the rRNA operon of S. coelicolor IMET 40271 was used to detect restriction fragment length polymorphisms (RELPs) among 40 pathogenic and nonpathogenic Streptomyces isolates. Southern blots revealed a high degree of diversity among the pathogenic strains tested. No significant correlation between numerical classification and RFLP grouping of Streptomyces strains could be revealed. The results obtained suggest that RFLP data are of minor importance in classification of Streptomyces species and that genes for pathogenicity determinants are spread among different Streptomyces species by mobilizable elements.  相似文献   

7.
Common scab is an important disease of potato caused by Streptomyces scabies and other closely related species. In this study, the genetic diversity of Streptomyces spp. causing common scab of potato in eastern Canada was for the first time investigated. Forty-one Streptomyces spp. isolates were retrieved from necrotic lesions of potato tubers harvested from different regions of the Canadian provinces New-Brunswick, Nova Scotia and Prince-Edward-Island. Most isolates were closely related to known pathogenic S. scabies strains on the basis of partial 16S ribosomal (r) RNA and rpoB gene sequence analyses. Two isolates were identified as pathogenic species of Streptomyces acidiscabies. To our knowledge, this species has never been previously isolated in these areas. Genome fingerprinting studies using repetitive elements (rep) polymerase chain reactions (PCR) revealed 10 distinct genetic groups in eastern Canada. The geographical distribution of the genetic groups was region-dependant. Pathogenicity- and virulence-related genes (txtA, txtC, and tomA) were PCR-amplified from each isolate, and nucleotide sequence analysis of partial gene fragments revealed slight polymorphisms in both txtA and txtC genes. No genetic variation was noted in the partial tomA gene sequences.  相似文献   

8.
Puromycin is a potent inhibitor of bacterial protein synthesis, but puromycin-producing Streptomyces alboniger KCC S-0309 is tolerant to the antibiotic in vivo. Puromycin bound to both 30S and 50S ribosomal subunits from S. alboniger and inhibited polyuridylate-directed polyphenylalanine synthesis by the ribosomes. However, the organism possessed a novel puromycin-inactivating enzyme which acetylated the antibiotic at the 2'-NH2 group of the O-methyltyrosine moiety.  相似文献   

9.
In this study 97 soil samples from different soil ecosystems were collected. The initial screening was performed on modified glycerol arginine agar (MGAA) to isolate common actinomycetes and on modified MGA-SE (MMGA-SE) to isolate rare actinomycetes. Sixty-seven isolates potentially producing extracellular phytate-degrading activity were identified. The potential to dephosphorylate phytate was confirmed in liquid culture for 46.3 % of the isolates. 12 strains were selected for a direct determination of their phytate-degrading capacity. The results highlighted that the selected isolates produced extracellular phytate-degrading activity; however their capacity in InsP(6) degradation was different. In addition the fermentation medium had an effect on the extent of phytate degradation. Some enzymatic properties of the phytases from isolate No. 43 and isolate No. 63 were determined after obtaining phytase-enriched samples. The enzymes had maximum phytate-degrading capability at 55 °C and pH 5 (isolate No. 43) and 37 °C and pH 7 (isolates No. 63), respectively. Due to their properties, the phytase of isolate No. 43 behaves like a histidine acid phytase, whereas the phytase of No. 63 showed similar enzymatic properties to the phytase of lily. To our knowledge, the results from this study demonstrated for the first time that actinomycetes produce extracellular phytate-degrading activity. By 16SrRNA sequencing, the more closely studied phytase producers were identified as Streptomyces sp. Isolate No. 43 showed 98 % identity to Streptomyces alboniger and S. venezuelae, while isolate No. 63 exhibited 98 % sequence identity to S. ambofaciens and S. lienomycini.  相似文献   

10.
Synthesis of the southern C1'-C11' and eastern C8-C18 fragments of pamamycin-607, an aerial mycelium-inducing substance of Streptomyces alboniger, was achieved. The southern fragment was synthesized by using the Evans aldol reaction and cis-selective iodoetherification as the key steps in a 9.6% overall yield (7 steps). The eastern fragment was constructed via the Julia coupling reaction and cis-selective iodoetherification in a 3.0% overall yield (8 steps from the known epoxide).  相似文献   

11.
The biologically inactive compound N-acetylpuromycin is the last intermediate of the puromycin antibiotic biosynthetic pathway in Streptomyces alboniger. Culture filtrates from either this organism or Streptomyces lividans transformants harboring the puromycin biosynthetic gene cluster cloned in low-copy-number cosmids contained an enzymic activity which hydrolyzes N-acetylpuromycin to produce the active antibiotic. A gene encoding the deacetylase enzyme was located at one end of this cluster, subcloned in a 2.5-kb DNA fragment, and expressed from a high-copy-number plasmid in S. lividans.  相似文献   

12.
13.
Synthesis of the southern C1'-C11' and eastern C8-C18 fragments of pamamycin-607, an aerial mycelium-inducing substance of Streptomyces alboniger, was achieved. The southern fragment was synthesized by using the Evans aldol reaction and cis-selective iodoetherification as the key steps in a 9.6% overall yield (7 steps). The eastern fragment was constructed via the Julia coupling reaction and cis-selective iodoetherification in a 3.0% overall yield (8 steps from the known epoxide).  相似文献   

14.
Puromycin N-acetyltransferase from Streptomyces alboniger inactivates puromycin by acetylating the amino position of its tyrosinyl moiety. This enzyme has been partially purified by column chromatography through DEAE-cellulose and Affigel Blue and characterized. It has an Mr of 23 000, as determined by gel filtration. In addition to puromycin, the enzyme N-acetylates O-demethylpuromycin, a toxic precursor of the antibiotic, and chryscandin, a puromycin analogue antibiotic. The Km values for puromycin and O-demethylpuromycin are 1.7 and 4.6 microM, respectively. The O-demethylpuromycin O-methyltransferase from S. alboniger, which apparently catalyzes the last step in the biosynthesis of puromycin [Rao, M. M., Rebello, P. F., & Pogell, B. M. (1969) J. Biol. Chem. 244, 112-118], also O-methylates N-acetyl-O-demethylpuromycin. The Km values of the methylating enzyme for O-demethylpuromycin and N-acetyl-O-demethylpuromycin are 260 and 2.3 microM, respectively. These findings suggest that O-demethylpuromycin, if present in S. alboniger, would be N-acetylated and then O-methylated to be converted into N-acetylpuromycin. It might even be possible that N-acetylation of the puromycin backbone takes place at an earlier precursor.  相似文献   

15.
To study the effect of plant growth on potato-associated bacteria, the composition and properties of bacteria colonizing the endosphere of field-grown potato were analyzed by a multiphasic approach. The occurrence and diversity of potato-associated bacteria were monitored by a cultivation-independent approach, using terminal restriction fragment length polymorphism analysis of 16S rDNA. The patterns obtained revealed a high heterogeneity of community composition and suggested the existence of plant-specific communities. However, endophytic populations correlated to a certain extent with plant growth performance. Endophytes were also isolated from plants that grew well or grew poorly and were identified by partial sequencing of the 16S rRNA genes. A broad phylogenetic spectrum was found among isolates and differently growing plants hosted different bacterial populations. In an approach to investigate the plant-growth-promoting potential of potato-associated bacteria, a total of 35 bacteria were screened by dual testing for in vitro antagonism towards (i) the fungal pathogens Verticillium dahliae, Rhizoctonia solani, Sclerotinia sclerotiorum, and Phytophthora cactorum and (ii) the bacterial pathogens Erwinia carotovora, Streptomyces scabies, and Xanthomonas campestris. The proportion of isolates with antagonistic activity was highest against Streptomyces sp. (43%) followed by those against Xanthomonas sp. (29%). As all plants showed more or less severe disease symptoms of scab disease caused by Streptomyces scabies, we assume that the presence of the pathogen induced the colonization of antagonists. The antifungal activity of the isolates was generally low. The biotechnological potential of endophytic isolates assessed by their antagonistic activity and by in vitro production of enzymes, antibiotics, siderophores, and the plant growth hormone indole-1,3-acetic acid was generally high. Overall, seven endophytes were found to antagonize fungal as well as bacterial pathogens and showed a high production of active compounds and were therefore considered promising biological control agents.  相似文献   

16.
A total of nine isolates of streptomycetes were isolated from scab lesions on potato tubers. Five out of them were pathogenic on potato minitubers and four of the pathogenic isolates produced thaxtomin A in infected tubers tissues. The lesion surface areas induced by thaxtomin A were highest in treatment of the minitubers with extract of OMB inoculated with S-6 and S-7, intermediate with that inoculated with S-4 and lowest with S-3. The pathogenic isolates were identified by their colour of aerial mycelia, melanin pigment productivity (+ or -), the type of spore chains morphology and carbon utilization as either S. scabies strains S-3, S-4 and S-8, or S. acidiscabies strains S-6 and S-7. S-3 and S-4 produced 0.65 and 1.60 micrograms thaxtomin A per milliliter of OMB, respectively, whereas S-6 and S-7 produced similar amounts of thaxtomin A, 2.36 and 2.10 micrograms per ml of OMB, respectively. The optimal temperature for production of thaxtomin A by S. scabies and S. acidiscabies was 28 degrees C. Production of thaxtomin A by S. scabies strain S-4 and S. acidiscabies strain S-6 was suppressed at least 50-fold at 0.5 and 0.3% of glucose, respectively. Fructose enhanced the production of thaxtomin A by both S. scabies and S. acidiscabies.  相似文献   

17.
Puromycin, produced by Streptomyces alboniger, is a member of the large group of aminonucleoside antibiotics. The genes pac and dmpM, encoding a puromycin N-acetyl transferase and an O-demethyl puromycin O-methyltransferase, respectively, are tightly linked in the DNA of S. alboniger. The entire set of genes encoding the puromycin biosynthesis pathway was cloned by screening a gene library from S. alboniger, raised in the low copy number cosmid pKC505, with a DNA fragment containing pac and dmpM. Puromycin was identified by biochemical and physicochemical methods, including 1H NMR, in the producing transformants. This pathway was located in a single DNA fragment of 15 kb which included the resistance, structural and regulatory genes and was expressed when introduced into two heterologous hosts Streptomyces lividans and Streptomyces griseofuscus. In addition to pac and dmpM, two other genes have been identified in the pur cluster: pacHY, which determines an N-acetylpuromycin hydrolase and prg1, whose deduced amino acid sequence is significantly similar to that of degT, a Bacillus stearothermophilus pleiotropic regulatory gene.  相似文献   

18.
Streptomyces alboniger ATCC 12461 grown in brain heart infusion (BHI) medium produced two extracellular serine-proteinases, denoted SP I and SP II, which were purified by ammonium sulfate precipitation and aprotinin-agarose affinity chromatography. SP I was purified 88,9-fold and SP II 66,7- fold, with 33.4% and 10.4% yield, respectively. The optimum pH for the proteinases activity, using a-N-p-tosyl-L-arginine-methyl ester (TAME) as substrate, was 9-10 and the optimum temperature was 37 degrees C. The proteolytic activity of SP I and SP II was inhibited by aprotinin and SP I was partially inhibited by leupeptin, both serine-proteinase inhibitors. S. alboniger growth in BHI-liquid medium decreased when 5 mg/ml, 10 mg/ml of aprotinin was used, being completely inhibited with 20 mg/ml and 40 mg/ml. At the ultrastructural level, aprotinin-treated S. alboniger cells showed swelling of the bacterial body and condensation of the genetic material, probably related to the inhibition of its growth.  相似文献   

19.
Streptomyces scabies causes common scab, an economical disease affecting potato crops world-wide, for which no effective control measure exists. This pathogen produces the plant toxin thaxtomin A, which is involved in symptom development on potato tubers. A biological control approach that can limit S. scabies growth and repress thaxtomin production represents an attractive alternative to classical control strategies. Pseudomonas sp. LBUM 223 produces phenazine-1-carboxylic acid (PCA), an antibiotic that inhibits the growth of plant pathogens and contributes to the biological control of plant diseases. In this study, the involvement of LBUM 223's PCA-producing ability in the growth inhibition of S. scabies, repression of thaxtomin biosynthesis genes (txtA and txtC) and the biological control of common scab of potato was investigated using a mutant defective in PCA production (LBUM 223phzC(-) ). Streptomyces scabies growth was inhibited to a significantly lesser degree by LBUM 223phzC(-) than by the wild type. LBUM 223 also significantly repressed txtA and txtC expression in S. scabies and protected potato against disease, whereas LBUM 223phzC(-) did not. These results suggest that PCA production is central to the ability of LBUM 223 to limit pathogen growth, repress the expression of key pathogenicity genes and control common scab of potato.  相似文献   

20.
Streptomyces scabies, a causal agent of common scab, produces both melanin and a secondary metabolite called thaxtomin A. To establish a possible relation between melanin and thaxtomin A production in S. scabies, we carried out N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis and isolated 11 melanin-negative mutants of S. scabies EF-35. These mutants were characterized for thaxtomin A production, pathogenicity, sporulation, and stress resistance. Nine of these mutants showed a significant reduction in thaxtomin A production when compared with the wild strain. However, only a few mutants exhibited a reduced level of virulence or a loss in their ability to induce common scab symptoms on potato tubers. Other pleiotrophic effects, such as higher sensitivity to heavy metals and incapacity to sporulate under certain stress conditions, were also associated with a deficiency in melanin production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号