首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loop-mediated isothermal amplification (LAMP) is a novel DNA amplification method that amplifies a target sequence specifically under isothermal conditions. The product of LAMP is detected by the turbidity of the reaction mixture without electrophoresis. The objective of this study was to develop a rapid sexing method for bovine preimplantation embryos using LAMP. The first experiment was conducted to optimize the DNA extraction method for LAMP-based embryo sexing. The DNA of single blastomeres was extracted using three methods: heat, NaOH, and proteinase K-Tween 20 (PK-TW) treatments. Sexing was performed with two LAMP reactions, male-specific and male-female common reaction, after DNA extraction. The rates of correct determination of sex were 88.9-94.4%, with no difference among methods. The sensitivity and accuracy of LAMP-based embryo sexing were evaluated in the next experiment. The proportion of samples in which the sex was correctly determined was 75-100% for one to five biopsied cells. Lastly, in vivo-derived embryos were examined to verify the usefulness of LAMP-based embryo sexing, and some of these fresh, sexed embryos were transferred into recipient animals. The time needed for sexing was <1 h. The pregnancy rate was 57.4% and all calves born were of the predicted sex (12 male and 21 female). Therefore, LAMP-based embryo sexing accurately determined gender and is suitable for field application.  相似文献   

2.
We have sequenced partial fragments of DBX and DBY genes of the endangered Iberian desman (Galemys pyrenaicus). The sequences were used to design a sex determination protocol for non-invasive samples based on a PCR reaction, using only three primers. This protocol allows the simultaneous amplification of two fragments, one corresponding to the DBX gene and the other to the DBY gene, both differing in size. To increase sensitivity on the detection of positive amplifications and on the determination of fragment size we use a fluorescently labelled primer. The protocol has been tested in DNA samples from hair and stool, revealing major difficulties in sexing faecal samples, but unambiguous sexing of hair samples.  相似文献   

3.
4.
We present a polymerase chain reaction (PCR)-based procedure for rapid bovine embryo sexing and classifying embryos for the presence of exogenous DNA. Fourteen bovine blastocysts microinjected with gene construct DNA at the pronuclear stage were divided into quarters and subjected to amplification with construct-specific and sex gene-specific (ZFY/ZFX) primers in the same initial PCR reaction. Blastocysts carrying microinjected construct DNA could be identified by the presence of construct-specific PCR product in approximately 4 h. Approximately half of the microinjected and two of 16 non-microinjected blastocysts typed PCR-positive for the construct DNA. Owing to erroneous amplifications in the two non-microinjected control blastocysts, and the inability of the system to distinguish integrated from non-integrated copies of the microinjected construct, the number of construct-positive blastocysts determined in our assay most likely overestimates the number of true transgenic embryos. Nevertheless, using this assay, we were able to determine that approximately half of the microinjected embryos were negative for the transgene construct and thus could be eliminated from transfer to a recipient cow. Embryo sexing was achieved in less than 6 h by restriction fragment length polymorphism analysis of nestedZFY/ZFXPCR products reamplified from initial PCR reactions. In 11/14 microinjected blastocysts all sections assayed unambiguously as the same sex. In one embryo, only one section was analysed, while two other blastocysts whowed some discrepancies of sexing results between the sections analysed. The approach employed here to determine the sex and presence of microinjected construct DNA in bovine preimplantation embryos is rapid, accurate among different sections of an embryo and can be used to increase the efficiency of current transgenic cattle production procedures.  相似文献   

5.
Abstract

Sex of preimplantation porcine embryos was determined by DNA amplification using porcine male(Y chromosome)‐specific DNA primers in the polymerase chain reaction (PCR). In order to determine the sensitivity of this sexing method, single porcine embryos ranging from unfertilized ova to the blastocyst stage were amplified in the PCR using the Y‐specific primers, and analyzed by ethidium bromide‐staining of polyacrylamide gels. The 192 bp product which denotes the presence of the Y chromosome was seen in the embryos. The unfertilized ova which is of female origin gave no product. These results are representative of PCR analysis of a total of 34 swine embryos.

Results obtained using the PCR for sexing were validated by karyotyping and confirmed by in situ hybridization with the porcine Y‐chromosome‐specific probe. In order to confirm the sex of the embryos determined by PCR, 10 day‐old porcine preimplantation embryos were biopsied to produce a small number of cells for sex determination via PCR, while the remainder of the embryo was prepared for in situ hybridization using the biotinylated probe. In situ hybridization performed on embryos shown to be male by PCR, showed pinpoint fluorescence within the nuclei, similar to that obtained when male porcine lymphocytes were hybridized. No evidence of fluorescence was seen when in situ hybridization was performed in parallel on embryos determined to be female by the PCR.

The PCR was found to be a relatively fast, accurate and reproducible means of sex determination of swine preimplantation embryos. This capability could have significant impact on animal breeding and production programs by using PCR as a screening tool for traits of economic importance.  相似文献   

6.
Buffalo Y-chromosome specific repetitive DNA (BuRY.I) was cloned and sequenced in order to develop a sensitive method for sexing of buffalo preimplantation stage embryos using polymerase chain reaction (PCR). A highly sensitive and reliable sex determination assay using a primary (BRY.I), nested (BuRYN.I) and multiplex (BuRYN.I, ZFX/ZFY) PCR was developed. The BRY.I and BuRYN.I primers are targeted to amplify Y-specific sequences, while the ZFX/ZFY loci was amplified to serve as a positive control for both male and female samples. Accuracy of the sex determination assay was initially verified with genomic DNA obtained from blood of known gender. Further sensitivity and reproducibility of the assay was examined using DNA obtained from 1 or 2 blastomeres to demi embryos. Altogether, 80 IVF-derived embryos ranging from the 2 to 4 cell to the blastocyst stage were used for sex determination. Definite and clear signals following PCR amplification were obtained from all embryo samples. Accuracy of assays was determined by comparing results from a single cell with those of blastocyst stage embryos, thereby indicating that 1 or 2 blastomeres from a preimplantation buffalo embryo is sufficient for sex determination by PCR. No misidentification was observed within the embryo samples using nested (BuRY.I), primary (BRY.I) and multiplex (BuRYN.I; ZFX/ZFY) PCR, suggesting that this technique is a highly reliable method for sexing buffalo embryos.  相似文献   

7.
Common DNA‐based sexing assays have been widely used for the conservation and management of mammals and birds. However, many fishes do not have genetic sex determination and in those that do, the plasticity of the genes involved means that species‐specific assays are normally required. Such DNA‐sexing markers would be especially valuable in lake sturgeon (Acipenser fulvescens) because of their sexual monomorphism, delayed sexual maturity, and conservation status. We tried to identify genetic differences between male and female lake sturgeon using several different molecular genetic methods, including randomly amplified polymorphic DNA, representational difference analyses, subtractive hybridization, and a candidate gene approach. Ultimately, a number of genes were identified but none was sex‐specific. Although the ultimate mechanism of sex determination is yet unknown, it is possible that sex determination is environmental in lake sturgeon, especially since recent studies have also failed to identify sex determination genes in other sturgeon species.  相似文献   

8.
Molecular sexing is a key component in the investigation of wild populations. In this study, we developed a fast, accurate and reliable amplification refractory mutation system (ARMS) technique for sex determination of red panda based on the exon 4 of the ZFX/ZFY gene. The amplicons were distinguished simply by agarose gel electrophoresis, exhibiting one fragment in females (X: 300 bp) and two in males (X: 300 bp, Y: 166 bp). Robustness of this ARMS system was confirmed by testing both 43 captive red pandas using DNA samples with known-sex and 10 wild red pandas using faecal DNA samples with unknown sex.  相似文献   

9.
An accurate, sensitive, and quick (approximately 3 h) method for determining the sex of ovine embryos was developed using polymerase chain reaction (PCR) primers derived from an ovine-specific Y-chromosome random amplified polymorphic DNA marker ( UcdO43 ). The accuracy and sensitivity of the assay were first tested using genomic DNA from 10 males and 10 females of five different sheep breeds, and then tested using serial dilutions of male-in-female DNA. The assay was 100% accurate in confirming the sex of the individuals and the ovine male-specific fragment was detected in dilutions containing as little as 10 pg of male DNA in 50 ng of female DNA. The assay was also confirmed to be specific for the ovine Y-chromosome as bovine, caprine, porcine, murine, and human DNA did not amplify. The ovine embryo sexing method is a duplex PCR system that also includes ZFY/ZFX primers. ZFY/ZFX provide an internal positive control for amplification as well as a means to confirm the results obtained with the UcdO43 primers. All embryo sexing results (36/36) from our method were in agreement with the ZFY/ZFX assay results. However, while our method requires an internal control to detect PCR failure, it has the advantages of not requiring nested PCR or restriction endonuclease digestion of the PCR product, and concerns about cross-species contamination are eliminated.  相似文献   

10.
Many lemur species are arboreal, elusive, and/or nocturnal and are consequently difficult to approach, observe and catch. In addition, most of them are endangered. For these reasons, non‐invasive sampling is especially useful in primates including lemurs. A key issue in conservation and ecological studies is to identify the sex of the sampled individuals to investigate sex‐biased dispersal, parentage, social organization and population sex ratio. Several molecular tests of sex are available in apes and monkeys, but only a handful of them work in the lemuriform clade. Among these tests, the coamplification of the SRY gene with the amelogenin X gene using strepsirhine‐specific X primers seems particularly promising, but the reliability and validity of this sexing test have not been properly assessed yet. In this study, we (i) show that this molecular sexing test works on three additional lemur species (Microcebus tavaratra, Propithecus coronatus and P. verreauxi) from two previously untested genera and one previously untested family, suggesting that these markers are likely to be universal among lemurs and other strepsirrhines; (ii) provide the first evidence that this PCR‐based sexing test works on degraded DNA obtained from noninvasive samples; (iii) validate the approach using a large number of known‐sex individuals and a multiple‐tubes approach, and show that mismatches between the field sex and the final molecular consensus sex occur in less than 10% of all the samples and that most of these mismatches were likely linked to incorrect sex determinations in the field rather than genotyping errors. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
ABSTRACT.   Feathers are increasingly collected as a nondestructive source of DNA for avian genetic research. Although feather samples are not optimal in some important ways than more robust blood or tissue samples, feather sampling requires less training for field workers, results in shorter handling times for the organism, generates no hazardous wastes, and requires simpler storage procedures. Along with these largely positive attributes comes a set of challenges, particularly the relatively low copy number of DNA present in feather samples. We compared the utility and reliability of feathers to the more traditional blood samples as sources of DNA for polymerase chain reaction (PCR)-based molecular sexing of Black-capped Chickadees ( Poecile atricapilla ). DNA from 102 individuals was extracted separately from both single rectrices and from blood samples, and the sex of each bird was then determined using standard PCR-based methods. We found complete agreement between sex determinations based on feather versus blood DNA extractions. Slight variations in lab protocols were necessary to obtain consistent results from these two DNA sources; and we briefly discuss other sources of error that could occur in feather-based molecular sexing studies. This controlled comparison of feather versus blood samples demonstrates that plucked rectrices provide a highly reliable source of DNA for molecular sexing of wild birds.  相似文献   

12.
We have developed new specific primers for sex determination from forensic samples of wolves (Canis lupus), such as hair, saliva, faecal, tooth and urine samples. In order to improve molecular sexing, we performed a multiplex semi-nested polymerase chain reaction (PCR) and several replicated amplifications per sample to avoid errors in low quantity DNA samples, such as allelic dropout and false alleles. The sex of individuals is automatically determined by capillary electrophoresis with a fluorescently labelled internal sex-specific primer from each pair. Our method yielded sex identification on 100% of invasive samples and 93% of forensic samples, being one of the highest success rates obtained from wild animals.  相似文献   

13.
Sex identification provides important information for ecological and evolutionary studies, as well as benefiting snake conservation management. Traditional methods such as cloacal probing or cloacal popping are counterproductive for sex identification concerning very small species, resulting in difficulties in the management of their breeding programs. In this study, the nucleotide sequences of gametologous genes (CTNNB1 and WAC genes) were used for the development of molecular sexing markers in caenophidian snakes. Two candidate markers were developed with the two primer sets, and successfully amplified by a single band on the agarose gel in male (ZZ) and two bands, differing in fragment sizes, in female (ZW) of 16 caenophidian snakes for CTNNB1 and 12 caenophidian snakes for WAC. Another candidate marker was developed with the primer set to amplify the specific sequence for CTNNB1W homolog, and the PCR products were successfully obtained in a female‐specific 250‐bp DNA bands. The three candidate PCR sexing markers provide a simple sex identification method based on the amplification of gametologous genes, and they can be used to facilitate effective caenophidian snake conservation and management programs.  相似文献   

14.
The objective of this study was to establish a rapid and reliable PCR method for the sexing of 8- to 16-cell stage bovine embryos. The BOV97M and bovine 1.715 satellite DNA sequences were selected for amplification of male- and bovine-specific DNA, respectively. But the unequal number of copies of these two repetitive sequences required some modification of the multiplex PCR method. In consecutive and multiplex PCR, the first 10 PCR cycles were done with male-specific primer followed by an additional 23 cycles with bovine-specific primer. In this PCR method, the appearance of male- and bovine-specific bands was independent of the DNA concentration. This PCR method was applied successfully using groups of 8, 4, 2, and 1 blastomeres dissociated from the embryos, and the sexing efficiency was 100.0, 96.3, 94.3 and 92.1%, respectively. The coincident rate of sex determination between biopsied single blastomere and matched blastocyst was 90.0%. Therefore the developmental potential from 8- to 16-cell stage embryos to the blastocyst stage was not significantly different (P>0.2) for intact embryo (42.3%) than for demi-embryos (53.8%), suggesting that trauma to the demi-embryo caused by single-blastomere aspiration using a bevelled micropipette was very small. In conclusion, we developed a rapid (within 2 hours) and effective PCR method for the sexing of 8- to 16-cell stage bovine embryos using a single blastomere.  相似文献   

15.
Sex determination of bovine embryo blastomeres by fluorogenic probes   总被引:7,自引:0,他引:7  
One of the major challenges of using genetic information in marker assisted selection (MAS) is the detection of multiple marker loci from a small biopsy sample of a preimplantation stage embryo. The objective of this study was to develop a fast, nested, multiplex preamplification, polymerase chain reaction (PCR) method for the determination of sex in bovine embryo blastomeres. For this aim, ZFX/ZFY sequences were preamplified simultaneously with other genomic regions. The preamplification product was used as a template in an allelic discrimination assay, with nested primers and sex specific fluorogenic probes for ZFX and ZFY. Fluorogenic probes were used to eliminate the need for time consuming electrophoresis. Compared to sexing with Bovy/kappa-casein co-amplification method and other replicates from the same embryo, the accuracy of sexing with the use of fluorogenic probes after preamplification was 99% (112/113 blastomeres). The amplification efficiency was 96% (113/117 blastomeres).  相似文献   

16.
Molecular‐based methods for identifying sex in mammals have a wide range of applications, from embryo manipulation to ecological studies. Various sex‐specific or homologous genes can be used for this purpose, PCR amplification being a common method. Over the years, the number of reported tests and the range of tested species have increased greatly. The aim of the present analysis was to retrieve PCR‐based sexing assays for a range of mammalian species, gathering the gene sequences from either the articles or online databases, and visualize the molecular design in a uniform manner. For nucleotide alignment and diagnostic test visualization, the following genomic databases and tools were used: NCBI, Ensembl Nucleotide BLAST, ClustalW2, and NEBcutter V2.0. In the 45 gathered articles, 59 different diagnostic tests based on eight different PCR‐based methods were developed for 114 mammalian species. Most commonly used genes for the analysis were ZFX, ZFY, AMELX, and AMELY. The tests were most commonly based on sex‐specific insertions and deletions (SSIndels) and sex‐specific sequence polymorphisms (SSSP). This review provides an overview of PCR‐based sexing methods developed for mammals. This information will facilitate more efficient development of novel molecular sexing assays and reuse of previously developed tests. Development of many novel and improvement of previously developed tests is also expected with the rapid increase in the quantity and quality of available genetic information.  相似文献   

17.
Abstract: We evaluated the ability of a set of published trans-species molecular sexing primers and a set of walrus-specific primers, which we developed, to accurately identify sex of 235 Pacific walruses (Odobenus rosmarus divergens). The trans-species primers were developed for mammals and targeted the X- and Y-gametologs of the zinc finger protein genes (ZFX, ZFY). We extended this method by using these primers to obtain sequence from Pacific and Atlantic walrus (O. r. rosmarus) ZFX and ZFY genes to develop new walrus-specific primers, which yield polymerase chain reaction products of distinct lengths (327 and 288 base pairs from the X- and Y-chromosome, respectively), allowing them to be used for sex determination. Both methods yielded a determination of sex in all but 1–2% of samples with an accuracy of 99.6–100%. Our walrus-specific primers offer the advantage of small fragment size and facile application to automated electrophoresis and visualization.  相似文献   

18.
Loop-mediated isothermal amplification (LAMP) is a novel DNA amplification method that amplifies a target sequence specifically under isothermal conditions. The objective of this study was to identify a Y chromosome-specific sequence in water buffalo and to establish an efficient procedure for embryo sexing by LAMP. The homologues of a Y chromosome-specific sequence, bovine repeat Y-associated.2, in swamp and river buffalo were cloned, and designated swamp buffalo repeat Y-associated.2 and river buffalo repeat Y-associated.2, respectively. Sexing by LAMP was performed using primers for swamp buffalo repeat Y-associated.2. A 12S rRNA was also amplified by LAMP as a control reaction in both male and female. The minimal amount of the template DNA required for LAMP appeared to be 0.1-10 pg. The sensitivity was further examined using swamp buffalo fibroblasts as templates. When fibroblasts were lysed with NaOH, the minimal cell number required for detection of both male-specific and male-female common DNA appeared to be two cells, whereas correct determination of sex could not be achieved using fibroblasts lysed by heat denaturation. Embryo sexing was also performed using blastomeres from interspecies nuclear transfer embryos. The sex determined by LAMP for blastomeres corresponded with the sex of nuclear donor cells in analyses using four or five blastomeres as templates. The LAMP reaction required only about 45 min, and the total time for embryo sexing, including DNA extraction, was about 1 h. In conclusion, the present procedure without thermal cycling and electrophoresis was reliable and applicable for water buffalo embryos.  相似文献   

19.
Many bird species are sexually monomorphic and cannot be sexed based on phenotypic traits. Rapid sex determination is often a necessary component of avian studies focusing on behavior, ecology, evolution, and conservation. While PCR‐based methods are the most common technique for molecularly sexing birds in the laboratory, a simpler, faster, and cheaper method has emerged, which can be used in the laboratory, but importantly also in the field. Herein, we used loop‐mediated isothermal amplification (LAMP) for rapid sex determination of blood samples from juvenile European blackcaps, Sylvia atricapilla, sampled in the wild. We designed LAMP primers unique to S. atricapilla based on the sex chromosome‐specific gene, chromo‐helicase‐DNA‐binding protein (CHD), optimized the primers for laboratory and field application, and then used them to test a subset of wild‐caught juvenile blackcaps of unknown gender at the time of capture. Sex determination results were fast and accurate. The advantages of this technique are that it allows researchers to identify the sex of individual birds within hours of sampling and eliminates the need for direct access to a laboratory if implemented at a remote field site. This work adds to the increasing list of available LAMP primers for different bird species and is a new addition within the Passeriformes order.  相似文献   

20.
We present two new avian molecular sexing techniques for nonpasserine and passerine birds (Neognathae), which are more suitable for use with museum specimens than earlier methods. The technique for nonpasserines is based on a new primer (M5) which, in combination with the existing P8 primer, targets a smaller amplicon in the CHD1 sex-linked gene than previously. Primers targeting ATP5A1, an avian sex-linked gene not previously used for sex identification, were developed for passerines. Comprehensive testing across species demonstrated that both primer pairs sex a range of different species within their respective taxonomic groups. Rigorous evaluation of each method within species showed that these permitted sexing of specimens dating from the 1850s. For corn bunting museum specimens, the ATP5A1 method sexed 98% of 63 samples (1857-1966). The M5/P8 CHD1 method was similarly successful, sexing 90% of 384 moorhen specimens from six different museum collections (1855-2001). In contrast, the original P2/P8 CHD1 sexing method only identified the sex of less than half of 111 museum moorhen samples. In addition to dried skin samples, these methods may be useful for other types of material that yield degraded or damaged DNA, and are hence potential new sexing tools for avian conservation genetics, population management and wildlife forensics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号