首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetanus and botulinum neurotoxins selectively invade neurons following binding to complex gangliosides. Recent biochemical experiments demonstrate that two ganglioside binding sites within the tetanus neurotoxin HC-fragment, originally identified in crystallographic studies to bind lactose or sialic acid, are required for productive binding to target cells. Here, we determine by mass spectroscopy studies that the HC-fragment of botulinum neurotoxins A and B bind only one molecule of ganglioside GT1b. Mutations made in the presumed ganglioside binding site of botulinum neurotoxin A and B abolished the formation of these HC-fragment/ganglioside complexes, and drastically diminished binding to neuronal membranes and isolated GT1b. Furthermore, correspondingly mutated full-length neurotoxins exhibit significantly reduced neurotoxicity, thus identifying a single ganglioside binding site within the carboxyl-terminal half of the HC-fragment of botulinum neurotoxins A and B. These binding cavities are defined by the conserved peptide motif H...SXWY...G. The roles of tyrosine and histidine in botulinum neurotoxins A and B in ganglioside binding differ from those in the analogous tetanus neurotoxin lactose site. Hence, these findings provide valuable information for the rational design of potent botulinum neurotoxin binding inhibitors.  相似文献   

2.
The available amino acid sequences of 150-kDa botulinum and tetanus neurotoxins show the presence of a closely homologous segment in the middle of the light chain (NH2-terminal 50 kDa), which is the intracellularly active portion of the toxin. This segment contains the zinc binding motif of metalloendopeptidases, HEXXH. Atomic adsorption analysis of botulinum neurotoxins (serotypes A, B, and E) made on the basis of this observation demonstrated the presence of one zinc atom/molecule of 150-kDa neurotoxin. Conditions were found for the removal of the zinc ion with chelating agents and for the restoration of the normal metal content. The conserved segment, which includes the zinc binding motif, was synthesized and shown to bind [65Zn]2+. Chemical modification experiments indicated that two histidines and no cysteines are involved in Zn2+ coordination in agreement with a probable catalytic role for the zinc ion. The present findings suggest the possibility that botulinum neurotoxins are zinc proteases.  相似文献   

3.
The seven serotypes of botulinum neurotoxins (A-G) produced by Clostridium botulinum share significant sequence homology and structural similarity. The functions of their individual domains and the modes of action are also similar. However, the substrate specificity and the peptide bond cleavage selectivity of their catalytic domains are different. The reason for this unique specificity of botulinum neurotoxins is still baffling. If an inhibitor leading to a therapeutic drug common to all serotypes is to be developed, it is essential to understand the differences in their three-dimensional structures that empower them with this unique characteristic. Accordingly, high-resolution structures of all serotypes are required, and toward achieving this goal the crystal structure of the catalytic domain of C. botulinum neurotoxin type E has been determined to 2.1 A resolution. The crystal structure of the inactive mutant Glu212-->Gln of this protein has also been determined. While the overall conformation is unaltered in the active site, the position of the nucleophilic water changes in the mutant, thereby causing it to lose its ability to activate the catalytic reaction. The structure explains the importance of the nucleophilic water and the charge on Glu212. The structural differences responsible for the loss of activity of the mutant provide a common model for the catalytic pathway of Clostridium neurotoxins since Glu212 is conserved and has a similar role in all serotypes. This or a more nonconservative mutant (e.g., Glu212-->Ala) could provide a novel, genetically modified protein vaccine for botulinum.  相似文献   

4.
Spinal cord motor neurons control voluntary movement by relaying messages that arrive from upper brain centres to the innervated muscles. Despite the importance of motor neurons in human health and disease, the precise control of their membrane dynamics and its effect on motor neuron homoeostasis and survival are poorly understood. In particular, the molecular basis of the co-ordination of specific endocytic events with the axonal retrograde transport pathway is largely unknown. To study these important vesicular trafficking events, we pioneered the use of atoxic fragments of tetanus and botulinum neurotoxins to follow endocytosis and retrograde axonal transport in motor neurons. These neurotoxins bind specifically to pre-synaptic nerve terminals, where they are internalized. Whereas botulinum neurotoxins remain at the neuromuscular junction, tetanus toxin is retrogradely transported along the axon to the cell body, where it is released into the intersynaptic space and is internalized by adjacent inhibitory interneurons. The high neurospecificity and the differential intracellular sorting make tetanus and botulinum neurotoxins ideal tools to study neuronal physiology. In the present review, we discuss recent developments in our understanding of the internalization and trafficking of these molecules in spinal cord motor neurons. Furthermore, we describe the development of a reliable transfection method for motor neurons based on microinjection, which will be extremely useful for dissecting further the molecular basis of membrane dynamics and axonal transport in these cells.  相似文献   

5.
左庭婷  端青 《生物技术通讯》2010,21(1):103-106,144
肉毒毒素是自然界中已知毒性最强的毒素,通常被分为A~G共7个血清型,其中A、B、E型是最常见的人类中毒型别。肉毒中毒的流行特点与菌体的地域分布、各地居民的饮食习惯和社会活动都有一定关系。目前,除南极洲外的世界各大洲均有B型肉毒中毒的报道。我国、日本及欧洲B型肉毒中毒主要为家庭自制食物引发的食源性中毒,而美国则主要为婴儿肉毒中毒。近年来,创口型B型肉毒中毒与"注射型吸毒人员"的关联引起了研究者的注意。为了加深对B型肉毒中毒的了解,我们对我国及部分国家和地区的B型肉毒中毒情况做简要介绍。  相似文献   

6.
The supply of synaptic vesicles in the nerve terminal is maintained by a temporally linked balance of exo- and endocytosis. Tetanus and botulinum neurotoxins block neurotransmitter release by the enzymatic cleavage of proteins identified as critical for synaptic vesicle exocytosis. We show here that botulinum neurotoxin A is unique in that the toxin-induced block in exocytosis does not arrest vesicle membrane endocytosis. In the murine spinal cord, cell cultures exposed to botulinum neurotoxin A, neither K(+)-evoked neurotransmitter release nor synaptic currents can be detected, twice the ordinary number of synaptic vesicles are docked at the synaptic active zone, and its protein substrate is cleaved, which is similar to observations with tetanus and other botulinal neurotoxins. In marked contrast, K(+) depolarization, in the presence of Ca(2+), triggers the endocytosis of the vesicle membrane in botulinum neurotoxin A-blocked cultures as evidenced by FM1-43 staining of synaptic terminals and uptake of HRP into synaptic vesicles. These experiments are the first demonstration that botulinum neurotoxin A uncouples vesicle exo- from endocytosis, and provide evidence that Ca(2+) is required for synaptic vesicle membrane retrieval.  相似文献   

7.
Until recently, all clostridia producing neurotoxins able to cause paralysis symptomatic of botulism were deemed to be Clostridium botulinum. Defining Cl. botulinum on the basis of this single phenotypic trait has resulted in the species encompassing metabolically very diverse organisms, and four distinct phenotypic groups are recognized within this taxon (designated groups I-IV). Nucleic acid hybridization and 16S ribosomal RNA sequencing studies have revealed the presence of four phylogenetically distinct lineages within the species, which correlate with these phenotypic divisions. In addition to marked phenotypic and genotypic heterogeneity between groups, the taxonomy of the species is further complicated by the existence of strains which are closely related, if not genetically identifiable, to members of each Cl. botulinum group, but are non-toxigenic. Furthermore, strains of species other than Cl. botulinum (viz. Cl. baratii, Cl. butyricum) have been found which express botulinum neurotoxin (BoNT). Great advances have been made in recent years in elucidating the nucleotide sequences of genes encoding the various BoNT antigenic types (A through to G). Genealogical trees derived from BoNTs show marked discordance with those depicting 'natural' relationships inferred from 16S rRNA and phenotypic clusters, and strong evidence exists for BoNT gene transfer between some groups of Cl. botulinum (e.g. groups I and II), and with non-botulinum species. Botulinum neurotoxin is produced by Cl. botulinum as a non-covalently bound progenitor toxin complex of two or more protein components. Information on the evolutionary histories of the various non-toxic progenitor proteins is currently limited, although there is evidence of gene recombination. In particular, chimera-like or mosaic non-toxic-non-haemagglutinins (NTNH) genes in group I Cl. botulinum have been described, and it is now apparent that the phylogeny of the NTNHs is not going to 'mirror' that of botulinal neurotoxins, although their genes are physically contiguous. In this article, the current state of knowledge of the phylogenetics of the species Cl. botulinum and its neurotoxins is reviewed, and a view is presented that a nomenclature based rigidly on BoNT production is no longer tenable.  相似文献   

8.
Several neuronal disorders require drug treatment using drug delivery systems for specific delivery of the drugs for the targeted tissues, both at the peripheral and central nervous system levels. We describe a review of information currently available on the potential use of appropriate domains of clostridial neurotoxins, tetanus and botulinum, for effective drug delivery to neuronal systems. While both tetanus and botulinum neurotoxins are capable of delivering drugs the neuronal cells, tetanus neurotoxin is limited in clinical use because of general immunization of population against tetanus. Botulinum neurotoxin which is also being used as a therapeutic reagent has strong potential for drug delivery to nervous tissues.  相似文献   

9.
The interaction of botulinum neurotoxin serotypes A, B and E with membranes of different lipid compositions was examined by photolabelling with two photoreactive phosphatidylcholine analogues that monitor the polar region and the hydrophobic core of the lipid bilayer. At neutral pH the neurotoxins interacted both with the polar head groups and with fatty acid chains of phospholipids. At acidic pHs the neurotoxins underwent structural changes characterized by a more extensive interaction with lipids. Both the heavy and light chain subunits of the neurotoxins were involved in the process. The change in the nature and extent of toxin-lipid interaction occurred in the pH range 4-6 and was not influenced by the presence of polysialogangliosides. The present data are in agreement with the idea that botulinum neurotoxins enter into nerve cells from a low pH intracellular compartment.  相似文献   

10.
A novel mechanism for Clostridium botulinum neurotoxin inhibition   总被引:1,自引:0,他引:1  
Clostridium botulinum neurotoxins are zinc endopeptidase proteins responsible for cleaving specific peptide bonds of proteins of neuroexocytosis apparatus. The ability of drugs to interfere with toxin's catalytic activity is being evaluated with zinc chelators and metalloprotease inhibitors. It is important to develop effective pharmacological treatment for the intact holotoxin before the catalytic domain separates and enters the cytosol. We present here evidence for a novel mechanism of an inhibitor binding to the holotoxin and for the chelation of zinc from our structural studies on Clostridium botulinum neurotoxin type B in complex with a potential metalloprotease inhibitor, bis(5-amidino-2-benzimidazolyl)methane, and provide snapshots of the reaction as it progresses. The binding and inhibition mechanism of this inhibitor to the neurotoxin seems to be unique for intact botulinum neurotoxins. The environment of the active site rearranges in the presence of the inhibitor, and the zinc ion is gradually removed from the active site and transported to a different site in the protein, probably causing loss of catalytic activity.  相似文献   

11.
Botulinum neurotoxins are responsible for botulism, a flaccid muscular paralysis caused by inhibition of acetylcholine release at the neuromuscular junction. This occurs by cleavage of conserved proteins involved in exocytosis such as synaptobrevin by the zinc metallopeptidase activity of the light chain of some botulinum neurotoxins. Botulism, for which there is presently no therapy available, is a relatively widespread disease that may result in death. Consequently, the development of drugs able to inhibit the hydrolytic activity of these neurotoxins is of great interest. Design and screening of such inhibitors could be largely facilitated by using high-throughput assays. With this aim, a novel in vitro test for quantifying the proteolytic activity of botulinum type B neurotoxin was developed. The substrate is the 60--94 fragment of human synaptobrevin-1 which was modified by introduction of the fluorescent amino acid l-pyrenylalanine in position 74 and a p-nitrophenylalanyl residue as quenching group in position 77. The cleavage of Syb 60-94 [Pya(74), Nop(77)] by the toxin active chain occurs selectively between residues 76 and 77 as in the case of the unmodified synaptobrevin and is directly quantified by measuring the strong fluorescence of the formed metabolite Syb 60-76 [Pya(74)]. This is the easiest, quickest, and cheapest assay described to date for measuring the proteolytic activity of botulinum type B neurotoxin. It can be easily automated for high-throughput screening. Moreover, amounts of about 3.5 pg/ml of botulinum type B neurotoxin could be detected by this method.  相似文献   

12.
Botulinum ADP-ribosyltransferase C3 modified 21-24 kDa proteins in a guanine nucleotide-dependent manner similar to that described for botulinum neurotoxin C1 and D. Whereas GTP and GTP gamma S stimulated C3-catalyzed ADP-ribosylation in the absence of Mg2+, in the presence of added Mg2+ ADP-ribosylation was impaired by GTP gamma S. C3 was about 1000-fold more potent than botulinum C1 neurotoxin in ADP-ribosylation of the 21-24 kDa protein(s) in human platelet membranes. Antibodies raised against C3 blocked ADP-ribosylation of the 21-24 kDa protein by C3 and neurotoxin C1 but neither cross reacted with neurotoxin C1 immunoblots nor neutralized the toxicity of neurotoxin C1 in mice. The data indicate that the ADP-ribosylation of low molecular mass GTP-binding proteins in various eukaryotic cells is not caused by botulinum neurotoxins but is due to the action of botulinum ADP-ribosyltransferase C3. The weak enzymatic activities described for botulinum neurotoxins appear to be due to the contamination of C1 and D preparations with ADP-ribosyltransferase C3.  相似文献   

13.
Abstract The neurotoxin gene from Clostridium barati ATCC43756 was cloned as a series of overlapping polymerase chain reaction (PCR) generated fragments using primers designed to conserve toxin sequences previously published. The toxin gene has an open reading frame (ORF) of 1268 amino acids giving a calculated molecular mass of 141049 Da. The sequence identity between the C. barati ATCC43756 and non-proteolytic C. botulinum 202F neurotoxins is 64.2% for the light chain and 73.6% for the heavy chain. This is much lower than reported identities for the type E neurotoxins from C. botulinum and C. butyricum (96% identity between light chains and 98.8% between the heavy chains). Previously identified conserved regions in other botulinal neurotoxins were also conserved in that of C. barati . An ORF upstream of the toxin coding region was revealed. This shows strong homology to the 3' end of the gene coding for the nontoxic-nonhemagglutinin (NTNH) component of the progenitor toxin from C. botulinum type C neurotoxin.  相似文献   

14.
Botulism is a neuroparalytic disease caused by Clostridium botulinum, which produces seven (A-G) antigenically diverse neurotoxins (BoNTs). BoNTs are the most poisonous substances known to humans, with a median lethal dose (LD??) of approximately 1 ng/kg of body weight. Owing to their extreme potency and lethality, they have the potential to be used as a bioterrorism agent. The mouse bioassay is the gold standard for the detection of botulinum neurotoxins; however, it requires at least 3-4 days for completion. Attempts have been made to develop an ELISA-based detection system, which is potentially an easier and more rapid method of botulinum neurotoxin detection. The present study was designed using a synthetic gene approach. The synthetic gene encoding the catalytic domain of BoNT serotype B from amino acids 1-450 was constructed with PCR overlapping primers (BoNT/B LC), cloned in a pQE30 UA vector, and expressed in an E. coli M15 host system. Recombinant protein production was optimized at 0.5 mM IPTG final concentration, 4 h post induction, resulting in a maximum yield of recombinant proteins. The immunogenic nature of the recombinant BoNT/B LC protein was evaluated by ELISA. Antibodies were raised in BALB/c mice using various adjuvants. A significant rise in antibody titer (p<0.05) was observed in the Alum group, followed by the Titermax Classic group, Freund's adjuvant, and the Titermax Gold group. These developed high-titer antibodies may prove useful for the detection of botulinum neurotoxins in food and clinical samples.  相似文献   

15.
Tetanus neurotoxin and botulinum neurotoxins are the causative agents of tetanus and botulism. They block the release of neurotransmitters from synaptic vesicles in susceptible animals and man and act in nanogram quantities because of their ability to specifically attack motoneurons. They developed an ingenious strategy to enter neurons. This involves a concentration step via complex polysialo gangliosides at the plasma membrane and the uptake and ride in recycling synaptic vesicles initiated by binding to a specific protein receptor. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had misused before to enter their target cells, via specific cleavage of protein core components of the cellular membrane fusion machinery. The uptake of four out of seven known botulinum neurotoxins into synaptic vesicles has been demonstrated to rely on binding to intravesicular segments of the synaptic vesicle proteins synaptotagmin or synaptic vesicle protein 2. This review summarizes the present knowledge about the cell receptor molecules and the mode of toxin-receptor interaction that enables the toxins' sophisticated access to their site of action.  相似文献   

16.
Botulism is a neuroparalytic disease caused by Clostridium botulinum, which produces seven (A-G) neurotoxins (BoNTs). The mouse bioassay is the gold standard for the detection of botulinum neurotoxins, however it requires at least 3-4 days for completion. Most of the studies were carried out in botulinum toxin A and less on type B. Attempts have been made to develop an ELISA based detection system, which is potentially an easier and more rapid method of botulinum neurotoxin detection. In the present study, the synthetic BoNT/B LC gene was constructed using PCR overlapping primers, cloned in a pET28a+ vector and expressed in E. coli BL21DE3. The maximum yield of recombinant proteins was optimized after 16 hrs of post induction at 21°C and purified the recombinant protein in soluble form. Antibodies were raised in Mice and Rabbit. The IgG antibody titer in the case of Mice was 1: 1,024,000 and Rabbit was 1: 512,000 with alum as adjuvant via intramascular route. The biological activity of the recombinant protein was confirmed by in-vitro studies using PC12 cells by the synaptobrevin cleavage, the rBoNT/B LC protein showed the maximum blockage of acetylcholine release at a concentration of 150nM rBoNT/B LC in comparison to the control cells. When the cells were incubated with rBoNT/B LC neutralized by the antisera raised against it, the acetylcholine release was equivalent to the control. IgG specific to rBoNT/B LC was purified from raised antibodies. The results showed that the developed antibody against rBoNT/B LC protein were able to detect botulinum toxin type B approximately up to 1 ng/ml. These developed high titer antibodies may prove useful for the detection of botulinum neurotoxins in food and clinical samples.  相似文献   

17.
An amplified enzyme-linked immunosorbent assay (ELISA) for the detection of Clostridium botulinum complex neurotoxins was evaluated for its ability to detect these toxins in food. The assay was found to be suitable for detecting type A, B, E, and F botulinum neurotoxins in a variety of food matrices representing liquids, solid, and semisolid food. Specific foods included broccoli, orange juice, bottled water, cola soft drinks, vanilla extract, oregano, potato salad, apple juice, meat products, and dairy foods. The detection sensitivity of the test for these botulinum complex serotypes was found to be 60 pg/ml (1.9 50% lethal dose [LD50]) for botulinum neurotoxin type A (BoNT/A), 176 pg/ml (1.58 LD50) for BoNT/B, 163 pg/ml for BoNT/E (4.5 LD50), and 117 pg/ml for BoNT/F (less than 1 LD50) in casein buffer. The test could also readily detect 2 ng/ml of neurotoxins type A, B, E, and F in a variety of food samples. For specificity studies, the assay was also used to test a large panel of type A C. botulinum, a smaller panel of proteolytic and nonproteolytic type B, E, and F neurotoxin-producing Clostridia, and nontoxigenic organisms using an overnight incubation of toxin production medium. The assay appears to be an effective tool for large-scale screening of the food supply in the event of a botulinum neurotoxin contamination event.  相似文献   

18.
The action of type A and type B botulinum neurotoxin on neurotransmitter release was studied on identified ganglionic synapses of Aplysia. Using this model, we have shown that botulinum neurotoxins at concentrations used in vertebrate preparations had the same specificity of action and that both heavy and light chains of these toxins are intracellularly required to inhibit neurotransmitter release.  相似文献   

19.
Clostridial neurotoxins are the most powerful toxins known. There are no available antidotes to neutralize neurotoxins after they have been internalized by neuronal cells. Enzymatic domains of clostridial neurotoxins are zinc-endopeptidases specific for protein components of the neuroexocytosis apparatus. Thus, attempts were made to find such antidotes among molecules possessing chelating properties. Subsequently, it was proposed that the process of interaction between clostridial neurotoxins and their substrates might be more complex than viewed previously and may include several separate regions of interaction. Phage display technology is free from bias toward any particular model. This technology in combination with recombinantly produced light chains of botulinum neurotoxins serotypes A, B, and C was used to identify potential inhibitors of clostridial neurotoxins. Identified sequences did not show substantial similarity with substrate proteins of clostridial neurotoxins. Nevertheless, three peptides chosen for further analysis were able to inhibit enzymatic activity of all clostridial neurotoxins tested. This work demonstrates that at least one of these peptides could not be cleaved by clostridial neurotoxin. Attempts to delete amino acid residues from this peptide resulted in dramatic loss of its inhibitory activity. Finally, this work presents a novel approach to searching for inhibitors of clostridial neurotoxins.  相似文献   

20.
The dichain type E botulinum neurotoxin, a product of nicking the single chain protein by trypsin, is composed of a heavy and light chains. Sequence of the first 13 and 20 N-terminal residues of these two chains were determined. Also, proof is provided here that (i) the light chain of the nicked (dichain) is derived from the N-terminal one-third of the parent single chain neurotoxin, and (ii) molecular events leading to the activation, of the single chain neurotoxin cannot involve tryptic cleavage at or very close to the N-terminal of the single chain protein. The partial amino acid sequence of the light chain of botulinum type E and tetanus neurotoxins show significant similarity between the two clostridial neurotoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号