首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Leptospirosis, a re-emerging disease of global importance caused by pathogenic Leptospira spp., is considered the world''s most widespread zoonotic disease. Rats serve as asymptomatic carriers of pathogenic Leptospira and are critical for disease spread. In such reservoir hosts, leptospires colonize the kidney, are shed in the urine, persist in fresh water and gain access to a new mammalian host through breaches in the skin.

Methodology/Principal Findings

Previous studies have provided evidence for post-translational modification (PTM) of leptospiral proteins. In the current study, we used proteomic analyses to determine the presence of PTMs on the highly abundant leptospiral protein, LipL32, from rat urine-isolated L. interrogans serovar Copenhageni compared to in vitro-grown organisms. We observed either acetylation or tri-methylation of lysine residues within multiple LipL32 peptides, including peptides corresponding to regions of LipL32 previously identified as epitopes. Intriguingly, the PTMs were unique to the LipL32 peptides originating from in vivo relative to in vitro grown leptospires. The identity of each modified lysine residue was confirmed by fragmentation pattern analysis of the peptide mass spectra. A synthetic peptide containing an identified tri-methylated lysine, which corresponds to a previously identified LipL32 epitope, demonstrated significantly reduced immunoreactivity with serum collected from leptospirosis patients compared to the peptide version lacking the tri-methylation. Further, a subset of the identified PTMs are in close proximity to the established calcium-binding and putative collagen-binding sites that have been identified within LipL32.

Conclusions/Significance

The exclusive detection of PTMs on lysine residues within LipL32 from in vivo-isolated L. interrogans implies that infection-generated modification of leptospiral proteins may have a biologically relevant function during the course of infection. Although definitive determination of the role of these PTMs must await further investigations, the reduced immune recognition of a modified LipL32 epitope suggests the intriguing possibility that LipL32 modification represents a novel mechanism of immune evasion within Leptospira.  相似文献   

2.
Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via fresh water and colonization of the renal tubules of their reservoir hosts or infection of accidental hosts, including humans. Bacterial outer membrane proteins (OMPs), particularly those with surface-exposed regions, play crucial roles in virulence mechanisms of pathogens and the adaptation to various environmental conditions, including those of the mammalian host. Little is known about the surface-exposed OMPs in Leptospira, particularly those with outer membrane-spanning domains. Herein, we describe a comprehensive strategy for identification and characterization of leptospiral transmembrane OMPs. The genomic sequence of L. interrogans serovar Copenhageni strain Fiocruz L1–130 allowed us to employ the β-barrel prediction programs, PRED-TMBB and TMBETA-NET, to identify potential transmembrane OMPs. Several complementary methods were used to characterize four novel OMPs, designated OmpL36, OmpL37, OmpL47 and OmpL54. In addition to surface immunofluorescence and surface biotinylation, we describe surface proteolysis of intact leptospires as an improved method for determining the surface exposure of leptospiral proteins. Membrane integration was confirmed using techniques for removal of peripheral membrane proteins. We also demonstrate deficiencies in the Triton X-114 fractionation method for assessing the outer membrane localization of transmembrane OMPs. Our results establish a broadly applicable strategy for the elucidation of novel surface-exposed outer membrane-spanning proteins of Leptospira, an essential step in the discovery of potential virulence factors, diagnostic antigens and vaccine candidates.  相似文献   

3.
Evaluation of leptospiral vaccines for potency against Leptospira interrogans serovars Pomona, Icterohaemorrhagiae, Canicola, and Grippotyphosa is accomplished using the hamster potency test method described in 9 CFR 113.101-104. Applicability of this method to evaluation of bacterins developed for immunization against infection with L. interrogans serovar Hardjo or Leptospira borgpetersenii serovar Hardjo is complicated by several issues. Information from research on target host animal efficacy studies and evaluation of the immune response elicited using effective whole-cell bacterin formulations have revealed problems in relating these studies to either hamster-based or other potency testing methods. Future work on serovar Hardjo vaccines employing recombinant proteins will require preliminary testing methods in models other than the host animal. These models may also prove applicable to evaluation of potency for protein-based vaccines. Both an acute lethal infection model and a chronic infection model have been developed using two different strains of serovar Hardjo and will be described.  相似文献   

4.
Spirochetes of the genus Leptospira cause leptospirosis in humans and animals worldwide. Proteins exposed on the bacterial cell surface are implicated in the pathogenesis of leptospirosis. However, the biological role of the majority of these proteins is unknown; this is principally due to the lack of genetic systems for investigating Leptospira and the absence of any structural information on leptospiral antigens. To address this, we have determined the 2.0-Å-resolution structure of the lipoprotein LipL32, the most abundant outer-membrane and surface protein present exclusively in pathogenic Leptospira species. The extracellular domain of LipL32 revealed a compact, globular, “jelly-roll” fold from which projected an unusual extended β-hairpin that served as a principal mediator of the observed crystallographic dimer. Two acid-rich patches were also identified as potential binding sites for positively charged ligands, such as laminin, to which LipL32 has a propensity to bind. Although LipL32 shared no significant sequence identity to any known protein, it possessed structural homology to the adhesins that bind components of the extracellular matrix, suggesting that LipL32 functions in an analogous manner. Moreover, the structure provides a framework for understanding the immunological role of this major surface lipoprotein.  相似文献   

5.
The aim of this project was to identify the best method for the enrichment of plasma membrane (PM) proteins for proteomics experiments. Following tryptic digestion and extended liquid chromatography-tandem mass spectrometry acquisitions, data were processed using MaxQuant and Gene Ontology (GO) terms used to determine protein subcellular localization. The following techniques were examined for the total number and percentage purity of PM proteins identified: (a) whole cell lysate (total number, 84–112; percentage purity, 9–13%); (b) crude membrane preparation (104–111; 17–20%); (c) biotinylation of surface proteins with N-hydroxysulfosuccinimydyl-S,S-biotin and streptavidin pulldown (78–115; 27–31%); (d) biotinylation of surface glycoproteins with biocytin hydrazide and streptavidin pulldown (41–54; 59–85%); or (e) biotinylation of surface glycoproteins with amino-oxy-biotin (which labels the sialylated fraction of PM glycoproteins) and streptavidin pulldown (120; 65%). A two- to threefold increase in the overall number of proteins identified was achieved by using stop and go extraction tip (StageTip)-based anion exchange (SAX) fractionation. Combining technique (e) with SAX fractionation increased the number of proteins identified to 281 (54%). Analysis of GO terms describing these proteins identified a large subset of proteins integral to the membrane with no subcellular assignment. These are likely to be of PM location and bring the total PM protein identifications to 364 (68%). This study suggests that selective biotinylation of the cell surface using amino-oxy-biotin in combination with SAX fractionation is a useful method for identification of sialylated PM proteins.  相似文献   

6.

Background

Leptospirosis is a multisystem disease caused by pathogenic strains of the genus Leptospira. We have reported that Leptospira are able to bind plasminogen (PLG), to generate active plasmin in the presence of activator, and to degrade purified extracellular matrix fibronectin.

Methodology/Principal Findings

We have now cloned, expressed and purified 14 leptospiral recombinant proteins. The proteins were confirmed to be surface exposed by immunofluorescence microscopy and were evaluated for their ability to bind plasminogen (PLG). We identified eight as PLG-binding proteins, including the major outer membrane protein LipL32, the previously published rLIC12730, rLIC10494, Lp29, Lp49, LipL40 and MPL36, and one novel leptospiral protein, rLIC12238. Bound PLG could be converted to plasmin by the addition of urokinase-type PLG activator (uPA), showing specific proteolytic activity, as assessed by its reaction with the chromogenic plasmin substrate, D-Val-Leu-Lys 4-nitroanilide dihydrochloride. The addition of the lysine analog 6-aminocaproic acid (ACA) inhibited the protein-PLG interaction, thus strongly suggesting the involvement of lysine residues in plasminogen binding. The binding of leptospiral surface proteins to PLG was specific, dose-dependent and saturable. PLG and collagen type IV competed with LipL32 protein for the same binding site, whereas separate binding sites were observed for plasma fibronectin.

Conclusions/Significance

PLG-binding/activation through the proteins/receptors on the surface of Leptospira could help the bacteria to specifically overcome tissue barriers, facilitating its spread throughout the host.  相似文献   

7.
Lipopolysaccharide is the major surface antigen of Leptospira. Variation in LPS structure is the basis for the more than 200 serovars that have been identified. Despite the importance of this antigen in immunity and diagnostics, there is relatively little known about the genetics and chemistry of leptospiral LPS, as compared to some members of the Enterobacteriaceae. The nucleotide sequence of the locus encoding enzymes for the biosynthesis of the O-antigen component of leptospiral LPS (rfb locus) has been determined for three serovars namely, L. interrogans serovar Pomona, L. interrogans serovar Hardjo subtype Hardjoprajitno and L. borgpetersenii serovar Hardjo subtype Hardjobovis. In the absence of data relating to the chemical structure or genetic tools to construct isogenic mutants in Leptospira, similarity analysis has been used to provide insight into the mechanisms by which the leptospiral O-antigen is assembled by comparison with characterized systems from other bacteria. In addition, comparison of the gene layout in each of the serovars provides an indication of the genetic basis for serovar diversity.  相似文献   

8.
Strains of Leptospira serogroup Pomona are known to cause widespread animal infections in many parts of the world. Forty-three isolates retrieved from domestic animals and wild small mammals suggest that serogroup Pomona is epidemiologically relevant in Spain. This is supported by the high prevalence of serovar Pomona antibodies in livestock and wild animals. In this study, the strains were serologically and genetically characterized in an attempt to elucidate their epidemiology. Serological typing was based on the microscopic agglutination test but molecular typing involved species-specific polymerase chain reaction, restriction endonuclease analysis, and multiple-locus variable-number tandem repeat analysis. The study revealed that the infections are caused by two serovars, namely Pomona and Mozdok. Serovar Pomona was derived only from farm animals and may be adapted to pigs, which are recognized as the maintenance host. The results demonstrated that serovar Pomona is genetically heterogeneous and three different types were recognized. This heterogeneity was correlated with different geographical distributions of the isolates. All strains derived from small wild mammals were identified as serovar Mozdok. Some isolates of this serovar retrieved from cattle confirm that this serovar may also be the cause of infections in food-producing animals for which these wild species may be source of infection.  相似文献   

9.
Leptospirosis is recognized as the most widespread zoonosis with a global distribution. In this study, the antigenic variation in Leptospira interrogans and Leptospira borgpetersenii isolated from human urine and field rat kidney was preliminarily confirmed by microscopic agglutination test using monoclonal antibodies, and was further subjected to amplification and identification of outer membrane lipoproteins with structural gene variation. Sequence similarity analysis revealed that these protein sequences, namely OmpL1, LipL32 and LipL41, showed no more homologies to outer membrane lipoproteins of non-pathogenic Leptospira and other closely related Spirochetes, but showed a strong identity within L. interrogans, suggesting intra-specific phylogenetic lineages that might be originated from a common pathogenic leptospiral origin. Moreover, the ompL1 gene showed more antigenic variation than lipL32 and lipL41 due to less conservation in secondary structural evolution within closely related species. Phylogenetically, ompL1 and lipL41 of these strains gave a considerable proximity to L. weilii and L. santarosai. The ompL1 gene of L. interrogans clustered distinctly from other pathogenic and non-pathogenic leptospiral species. The diversity of ompL genes has been analyzed and it envisaged that sequence-specific variations at antigenic determinant sites would result in slow evolutionary changes along with new serovar origination within closely related species. Thus, a crucial work on effective recombinant vaccine development and engineered antibodies will hopefully meet to solve the therapeutic challenges.Key words: Leptospira, ompL1, lipL32, lipL41, phylogeny, antigenic variation  相似文献   

10.
Leptospirosis is one of the most widespread zoonotic diseases in the world. It is caused by the pathogen Leptospira that results in multiple-organ failure, in particular of the kidney. Outer membrane lipoprotein is the suspected virulence factor of Leptospira. In Leptospira spp LipL41 is one major lipoprotein and is highly conserved. Previous study suggests that LipL41 bears hemin-binding ability and might play a possible role in iron regulation and storage. However, the characterization of hemin-binding ability of LipL41 is still unclear. Here the hemin-binding ability of LipL41 was examined, yielding a K d = 0.59 ± 0.14 μM. Two possible heme regulatory motifs (HRMs), C[P/S], were found in LipL41 at 140Cys-Ser and 220Cys-Pro. The mutation study indicates that Cys140 and Cys220 might be cooperatively involved in hemin binding. A supramolecular assembly of LipL41 was determined by transmission electron microscopy. The LipL41 oligomer consists of 36 molecules and folds as a double-layered particle. At the C-terminus of LipL41, there are two tetratricopeptide repeats (TPRs), which might be involved in the protein-protein interaction of the supramolecular assembly.  相似文献   

11.
Transmission of leptospirosis is facilitated by the survival of pathogenic leptospires in moist environments outside their mammalian host. In the present study, the survival mechanisms of Leptospira interrogans serovar Canicola in aqueous conditions and lack of nutrients were investigated. In distilled water, leptospires were able to remain motile for 110 days (pH 7.2). However, when incubated in a semi-solid medium composed of distilled water and 0.5% purified agarose (pH 7.2), they survived 347 days. In this viscous environment, aggregates of live spirochetes were observed. Neither antibiotics (e.g. tetracycline and ampicillin) nor nutrients inhibited leptospiral aggregation. Immunoblot analysis suggested that cells incubated in water down-regulate the expression of LipL31, an inner-membrane protein, but retain expression of other membrane proteins. These studies provide insights into the mechanisms by which pathogenic Leptospira survives for prolonged periods of time in natural aqueous environments, a key stage in the leptospiral lifecycle.  相似文献   

12.
Lipids and lipid-metabolizing esterases/lipases are highly important for the mycobacterial life cycle and, possibly, for mycobacterial virulence. In this study, we expressed 10 members of the Lip family of Mycobacterium tuberculosis. Among the 10 proteins, LipL displayed a significantly high enzymatic activity for the hydrolysis of long-chain lipids. The optimal temperature for the lipase activity of LipL was demonstrated to be 37°C, and the optimal pH was 8.0. The lipase active center was not the conserved motif G-x-S-x-G, but rather the S-x-x-K and GGG motifs, and the key catalytic amino acid residues were identified as G50, S88, and K91, as demonstrated through site-directed mutagenesis experiments. A three-dimensional modeling structure of LipL was constructed, which showed that the GGG motif was located in the surface of a pocket structure. Furthermore, the subcellular localization of LipL was demonstrated to be on the mycobacterial surface by Western blot analysis. Our results revealed that the LipL protein could induce a strong humoral immune response in humans and activate a CD8+ T cell-mediated response in mice. Overall, our study identified and characterized a novel lipase denoted LipL from M. tuberculosis, and demonstrated that LipL functions as an immunogen that activates both humoral and cell-mediated responses.  相似文献   

13.
Leptospirosis, a widespread zoonosis, is a re-emerging infectious disease caused by pathogenic Leptospira species. In Taiwan, Leptospira santarosai serovar Shermani is the most frequently isolated serovar, causing both renal and systemic infections. This study aimed to generate a L. santarosai serovar Shermani genome sequence and categorize its hypothetical genes, particularly those associated with virulence. The genome sequence consists of 3,936,333 nucleotides and 4033 predicted genes. Additionally, 2244 coding sequences could be placed into clusters of orthologous groups and the number of genes involving cell wall/membrane/envelope biogenesis and defense mechanisms was higher than that of other Leptospira spp. Comparative genetic analysis based on BLASTX data revealed that about 73% and 68.8% of all coding sequences have matches to pathogenic L. interrogans and L. borgpetersenii, respectively, and about 57.6% to saprophyte L. biflexa. Among the hypothetical proteins, 421 have a transmembrane region, 172 have a signal peptide and 17 possess a lipoprotein signature. According to PFAM prediction, 32 hypothetical proteins have properties of toxins and surface proteins mediated bacterial attachment, suggesting they may have roles associated with virulence. The availability of the genome sequence of L. santarosai serovar Shermani and the bioinformatics re-annotation of leptospiral hypothetical proteins will facilitate further functional genomic studies to elucidate the pathogenesis of leptospirosis and develop leptospiral vaccines.  相似文献   

14.
This study identified major surface proteins of the plague bacterium Yersinia pestis. We applied a novel surface biotinylation method, followed by NeutrAvidin (NA) bead capture, on-bead digestion, and identification by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The use of stachyose during biotinylation focused the reaction to the surface. Coupled with NA pulldown and immunoblot analysis, this method determined whether a protein was accessible to the surface. We applied the method to test the hypothesis that the catalase KatY is a surface protein of the plague bacterium Y. pestis. A rabbit serum recognized the catalase KatY as a major putative outer membrane-associated antigen expressed by Y. pestis cells grown at 37°C. Similar findings by other groups had led to speculations that this protein might be exposed to the surface and might be a candidate for evaluation as a protective antigen for an improved plague vaccine. KatY was obtained only in the total membrane fraction, and stachyose greatly reduced its biotinylation as well as that of the periplasmic maltose binding protein, indicating that KatY is not on the bacterial surface. LC-MS-MS analysis of on-bead digests representing ca. 109 cells identified highly abundant species, including KatY, Pal, and OmpA, as well as the lipoprotein Pcp, all of which bound in a biotin-specific manner. Pla, Lpp, and OmpX (Ail) bound to the NA beads in a non-biotin-specific manner. There was no contamination from abundant cytoplasmic proteins. We hypothesize that OmpX and Pcp are highly abundant and likely to be important for the Y. pestis pathogenic process. We speculate that a portion of KatY associates with the outer membrane in intact cells but that it is located on the periplasmic side. Consistent with this idea, it did not protect C57BL/6 mice against bubonic plague.  相似文献   

15.
During the 10-year survey (1996–2005), a total of 868 blood samples from different game species in Croatia were analyzed for the presence of leptospiral antibodies. The specific antibodies (AB) were detected in 242 samples (27.88%). According to the species in red deer (Cervus elaphus), the antibodies against six different leptospiral serovars were found in 43 of 226 analyzed sera (19.02%). The most frequent antigen serovars in the deer population were Pomona and Ballum (with the same frequency of 23.6%), whereas the highest titer was recorded for serovar Sejroe (1:800). In the analyzed roe deer (Capreolus capreolus) serum samples, a low level of leptospiral antibodies (6.07%) was determined, with just two AB for antigen serovars—Australis and Sejroe. In wild boar (Sus scrofa), leptospiral antibodies were detected in 151 of 431 samples analyzed (35.03%), with AB for nine antigen serovars. The serovars most frequently found were Australis (48.70%) and Pomona (22.70%), and these serovars also recorded the highest titer (1:3,200). Among brown bear (Ursus arctos) samples, leptospiral antibodies were detected in 25.00% of the samples, with four AB for antigen serovars, of which the most frequent was Icterohaemorrhagiae (>40%). This serovar had the highest recorded titer (1:400). From 112 analyzed red fox (Vulpes vulpes) samples, leptospiral antibodies were found in 35 samples (31.25%). The determined antibodies were specific for four antigen serovars, of which the most frequent (46.2%) and with highest titer (1:1600) was serovar Australis. No antibodies (28/0) were recorded in mouflon (Ovis musimon). The most important game species from an epizootiological point of view in the studied area were certainly wild boar and red foxes. With strong serological reactions, these two species could be emphasized as important hosts for Leptospira interrogans sv. Australis in Croatia, but for their declaration as ‘maintaining hosts,’ isolation of sv. Australis is needed. According to aerial distribution, the highest number of positive samples from different game species was recorded in the central and eastern parts of Croatia, known as the ‘historical natural foci’ of leptospirosis—the regions of Posavina, Podravina, Slavonija, and Baranja. In contrast, the areas of Kordun and Gorski Kotar are declared as leptospira low-risk regions for the game species studied.  相似文献   

16.
As part of a prospective study of leptospirosis and biodiversity of Leptospira in the Peruvian Amazon, a new Leptospira species was isolated from humans with acute febrile illness. Field trapping identified this leptospire in peridomestic rats (Rattus norvegicus, six isolates; R. rattus, two isolates) obtained in urban, peri-urban, and rural areas of the Iquitos region. Novelty of this species was proven by serological typing, 16S ribosomal RNA gene sequencing, pulsed-field gel electrophoresis, and DNA-DNA hybridization analysis. We have named this species "Leptospira licerasiae" serovar Varillal, and have determined that it is phylogenetically related to, but genetically distinct from, other intermediate Leptospira such as L. fainei and L. inadai. The type strain is serovar Varillal strain VAR 010(T), which has been deposited into internationally accessible culture collections. By microscopic agglutination test, "Leptospira licerasiae" serovar Varillal was antigenically distinct from all known serogroups of Leptospira except for low level cross-reaction with rabbit anti-L. fainei serovar Hurstbridge at a titer of 1:100. LipL32, although not detectable by PCR, was detectable in "Leptospira licerasiae" serovar Varillal by both Southern blot hybridization and Western immunoblot, although on immunoblot, the predicted protein was significantly smaller (27 kDa) than that of L. interrogans and L. kirschneri (32 kDa). Isolation was rare from humans (2/45 Leptospira isolates from 881 febrile patients sampled), but high titers of MAT antibodies against "Leptospira licerasiae" serovar Varillal were common (30%) among patients fulfilling serological criteria for acute leptospirosis in the Iquitos region, and uncommon (7%) elsewhere in Peru. This new leptospiral species reflects Amazonian biodiversity and has evolved to become an important cause of leptospirosis in the Peruvian Amazon.  相似文献   

17.
18.
More than 50 Helicobacter pylori genes are predicted to encode outer membrane proteins (OMPs), but there has been relatively little experimental investigation of the H. pylori cell surface proteome. In this study, we used selective biotinylation to label proteins localized to the surface of H. pylori, along with differential detergent extraction procedures to isolate proteins localized to the outer membrane. Proteins that met multiple criteria for surface-exposed outer membrane localization included known adhesins, as well as Cag proteins required for activity of the cag type IV secretion system, putative lipoproteins, and other proteins not previously recognized as cell surface components. We identified sites of nontryptic cleavage consistent with signal sequence cleavage, as well as C-terminal motifs that may be important for protein localization. A subset of surface-exposed proteins were highly susceptible to proteolysis when intact bacteria were treated with proteinase K. Most Hop and Hom OMPs were susceptible to proteolysis, whereas Hor and Hof proteins were relatively resistant. Most of the protease-susceptible OMPs contain a large protease-susceptible extracellular domain exported beyond the outer membrane and a protease-resistant domain at the C terminus with a predicted β-barrel structure. These features suggest that, similar to the secretion of the VacA passenger domain, the N-terminal domains of protease-susceptible OMPs are exported through an autotransporter pathway. Collectively, these results provide new insights into the repertoire of surface-exposed H. pylori proteins that may mediate bacterium-host interactions, as well as the cell surface topology of these proteins.  相似文献   

19.
Infections by opportunistic bacteria have significant contributions to morbidity and mortality of hospitalized patients and also lead to high expenses in healthcare. In this setting, one of the major clinical problems is caused by Gram-positive bacteria such as enterococci and staphylococci. In this study we extract, purify, identify and characterize immunogenic surface-exposed proteins present in the vancomycin resistant enterococci (VRE) strain Enterococcus faecium E155 using three different extraction methods: trypsin shaving, biotinylation and elution at high pH. Proteomic profiling was carried out by gel-free and gel-nanoLC-MS/MS analyses. The total proteins found with each method were 390 by the trypsin shaving, 329 by the elution at high pH, and 45 using biotinylation. An exclusively extracytoplasmic localization was predicted in 39 (10%) by trypsin shaving, in 47 (15%) by elution at high pH, and 27 (63%) by biotinylation. Comparison between the three extraction methods by Venn diagram and subcellular localization predictors (CELLO v.2.5 and Gpos-mPLoc) allowed us to identify six proteins that are most likely surface-exposed: the SCP-like extracellular protein, a low affinity penicillin-binding protein 5 (PBP5), a basic membrane lipoprotein, a peptidoglycan-binding protein LysM (LysM), a D-alanyl-D-alanine carboxypeptidase (DdcP) and the peptidyl-prolyl cis-trans isomerase (PpiC). Due to their close relationship with the peptidoglycan, we chose PBP5, LysM, DdcP and PpiC to test their potential as vaccine candidates. These putative surface-exposed proteins were overexpressed in Escherichia coli and purified. Rabbit polyclonal antibodies raised against the purified proteins were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Passive immunization with rabbit antibodies raised against these proteins reduced significantly the colony counts of E. faecium E155 in mice, indicating the effectiveness of these surface-related proteins as promising vaccine candidates to target different enterococcal pathogens.  相似文献   

20.
Leptospira is a genus of spirochaetes that includes organisms with a variety of lifestyles ranging from aquatic saprophytes to invasive pathogens. Adaptation to a wide variety of environmental conditions has required leptospires to acquire a large genome and a complex outer membrane with features that are unique among bacteria. The most abundant surface‐exposed outer membrane proteins are lipoproteins that are integrated into the lipid bilayer by amino‐terminal fatty acids. In contrast to many spirochaetes, the leptospiral outer membrane also includes lipopolysaccharide and many homologues of well‐known beta‐barrel transmembrane outer membrane proteins. Research on leptospiral transmembrane outer membrane proteins has lagged behind studies of lipoproteins because of their aberrant behaviour by Triton X‐114 detergent fractionation. For this reason, transmembrane outer membrane proteins are best characterized by assessing membrane integration and surface exposure. Not surprisingly, some outer membrane proteins that mediate host–pathogen interactions are strongly regulated by conditions found in mammalian host tissues. For example, the leptospiral immunoglobulin‐like (Lig) repeat proteins are dramatically induced by osmolarity and mediate interactions with host extracellular matrix proteins. Development of molecular genetic tools are making it possible to finally understand the roles of these and other outer membrane proteins in mechanisms of leptospiral pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号