首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: We constructed a genetically modified adenovirus vector incorporating an IgG Fc-binding motif from staphylococcal protein A, Z33 (Adv-FZ33). Adv-FZ33 allows an antibody to redirect the vector to a target molecule on the cell surface. We attempted to search for target antigen candidates and antibodies that allowed highly selective gene transduction into malignant tumors. METHODS: Hybridoma libraries producing monoclonal antibodies (mAbs) were screened that increased transduction efficiency in cancer cell lines after cross-linking with Adv-FZ33. Target antigens of the mAbs were identified by immunoprecipitation and mass spectrometry. Of these mAbs, we noted a clone, F2-27, that recognized the receptor tyrosine kinase EphA2. Next, we generated an adenovirus vector, Ax3CMTK-FZ33, that expressed a herpes simplex virus thymidine kinase (HSV-TK). The therapeutic efficacy of F2-27–mediated HSV-TK gene transduction, followed by ganciclovir (GCV) administration, was studied in vitro. The inhibitory effect of F2-27 on cancer cell invasion was investigated by a three-dimensional spheroid formation assay. RESULTS: In vitro reporter gene expression after Adv-FZ33 infection via F2-27 was 146 times higher than with control mAb in EphA2-expressing cancer cell lines. F2-27–mediated Ax3CMTK-FZ33 infection induced the HSV-TK gene in an F2-27–dependent manner and had a highly effective cytotoxic effect in a GCV-dependent manner. Additionally, F2-27 independently inhibited migration of EphA2-positive breast cancer cell lines in three-dimensional culture. CONCLUSION: Our modified adenovirus and hybridoma screening system is useful for the development of targeted cancer therapy, and F2-27 has the potential to be an antibody-based therapy for various EphA2-positive cancers.  相似文献   

2.
Suicide genes that sensitize cells to drugs that are normally nontoxic at therapeutic levels represent an important approach in human gene therapy research. We have developed an in vitro screening assay to assess the modulation of nucleoside analogs after transfection of a vector expressing the herpes simplex virus thymidine kinase gene (HSV-TK). The thymidine kinase gene enhances nucleoside phosphorylation to nucleotides that kill cells by blocking DNA elongation. Cells lines used are 3T3-NIH fibroblasts (parental cells) and 3T3-TKc3 (HSV-TK gene-transfected 3T3-NIH). Two types of analysis are performed: a cytotoxicity assay, the neutral red uptake assay to assess the IC50 on the two cell lines, and an HPLC analysis coupled to a radiochemical flow detector to evaluate metabolic profiles after incubation of cells with tritiated analogs. Results show that cells expressing the HSV-TK gene are more sensitive than the parent cells to the effect of acyclovir or ganciclovir, the reference purine analog drugs, and also to the effect of pyrimidine analogs, bromodeoxyuridine, bromovinyldeoxyuridine, and ethyldeoxyuridine. Promising nucleoside analogs for gene therapy that can be achieved by HSV-TK could be evaluated using this model.Abbreviations ACV acyclovir - ACV-MP acyclovir monophosphate - ACV-DP acyclovir diphosphate - ACV-TP acyclovir triphosphate - BDU bromodeoxyuridine - BVDU bromovinyldeoxyuridine - EDU ethyldeoxyuridine - FDU fluorodeoxyuridine - GCV ganciclovir - HSV-TK herpes simplex virus thymidine kinase gene - IDU iododeoxyuridine - NA nucleoside analog  相似文献   

3.
Herpes Simplex Virus type 1 (HSV-1) thymidine kinase (TK) is currently the most widely used suicide agent for gene therapy of cancer. Tumor cells that express HSV-1 thymidine kinase are rendered sensitive to prodrugs due to preferential phosphorylation by this enzyme. Although ganciclovir (GCV) is the prodrug of choice for use with TK, this approach is limited in part by the toxicity of this prodrug. From a random mutagenesis library, seven thymidine kinase variants containing multiple amino acid substitutions were identified on the basis of activity towards ganciclovir and acyclovir based on negative selection in Escherichia coli. Using a novel affinity chromatography column, three mutant enzymes and the wild-type TK were purified to homogeneity and their kinetic parameters for thymidine, ganciclovir, and acyclovir determined. With ganciclovir as the substrate, one mutant (mutant SR39) demonstrated a 14-fold decrease in K(m) compared to the wild-type enzyme. The most dramatic change is displayed by mutant SR26, with a 124-fold decrease in K(m) with acyclovir as the substrate. Such new "prodrug kinases" could provide benefit to ablative gene therapy by now making it feasible to use the relatively nontoxic acyclovir at nanomolar concentrations or ganciclovir at lower, less immunosuppressive doses.  相似文献   

4.
5.
Xing W  Wu S  Yuan X  Chen Q  Shen X  He F  Bian J  Lei P  Zhu H  Wang S  Shen G 《Cellular immunology》2009,254(2):135-141
Herpes simplex virus thymidine kinase (HSV-TK) gene and dendritic cells (DC) have been used as the pioneering in cancer therapy. HSV-TK gene can induce apoptosis and necrosis in tumor cells in the presence of the non-toxic prodrug ganciclovir (GCV). We investigated the anti-tumor effect of DC vaccination by introducing dying cells from HSV-TK gene treatment as an adjuvant. HepG2-TK cell line was established by transfecting human hepatoma cell line HepG2 (HLA-A2 positive) with HSV-TK gene. Dying tumor cells were generated by culturing HepG2-TK cells with GCV. After engulfed dying cells efficiently, immature DCs (imDC) derived from human monocytes were fully matured and elicited marked proliferation and cytotoxicity against HLA matched HepG2 cells in autologous peripheral blood mononuclear cells (PBMC). It also implied that HepG2 specific CTLs played an important role in the cytotoxicity which was primarily depended on Th1 responses. Given the feasibility of inducing dying cells by HSV-TK/GCV in vivo, our results suggest an effective method in clinical human hepatocellular carcinoma (HCC) treatment by an in vitro model of applying HSV-TK gene modified human tumor cells integrated with DC vaccination.  相似文献   

6.
The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55–60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier.  相似文献   

7.
8.
Abstract

Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus (i.e. HSV-1, HSV-2, VZV and HCMV) infections. In recent years, several new guanosine analogues have been developed, including the 3-membered (cyclopropyl) sugar derivative A-5021 and the 6-membered D- and L-cyclohexenyl derivatives. Prominent features shared by all guanosine analogues are the following. They depend for their phosphorylation on the virus-encoded thymidine kinase (TK), which makes them particularly effective against those viruses (HSV-1, HSV-2 and VZV) that encoded for such TK. They are also active against HCMV, whether or not they are subject of phosphorylation by the HCMV-induced UL97 protein kinase. Their antiviral activity can be markedly potentiated by mycophenolic acid, an IMP dehydrogenase inhibitor, and they hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also as antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transfected by the viral TK gene.  相似文献   

9.
《Gene》1998,222(2):319-327
In this study, we describe the efficiency of second gene translation in bicistronic constructs containing either a short (36 bp) synthetic intercistron or known internal ribosomal entry sites (IRES). Experiments were performed using two different gene combinations: Herpes simplex virus-thymidine kinase (HSV-TK) and neomycine (NEO) or human glucocerebrosidase (hGC) and a methotrexate (MTX) resistant mutant dihydrofolate reductase (DHFR). We demonstrate that upon transfection, second gene translation is efficient using either an IRES or a 36-bp intercistron. Infection with retrovirus carrying the TK and NEO genes linked via a 36-bp intercistron resulted in both G418R (NEO expression) and gancyclovir (GCV) sensitivity (TK expression), indicating that both genes were expressed and thus that the genomic DNA and RNA of this bicistronic construct were intact. Likewise, retrovirus carrying the hGC and mutant DHFR gene separated by a short intercistron was harvested from MTXR murine ΨCRE cells. However, infection of PA317 cells with this virus supernatant did not result in the presence of hGC enzyme activity in these murine cells. Proviral DNA and RNA analyses indicated that the hGC coding region was lost from the original construct in the infected PA317 cells. In contrast, retrovirus carrying the hGC and DHFR cDNAs was linked via an IRES functioned as expected. Based on these results, we conclude that the efficiency of second gene translation using short synthetic intercistrons might prove useful in bicistronic constructs, depending on the gene combination used.  相似文献   

10.
The C-X-C motif chemokine 12 (CXCL12, SDF1a) and its receptor, CXCR4, play a fundamental role in several biological processes, including hematopoiesis, cardiogenesis, cancer progression, and stem cell migration. Noninvasive monitoring of CXCL12 is highly desirable for optimizing strategies that combine mobilization of therapeutic cells to combat cancer or to assist in cardiac tissue repair after myocardial infarction. Here, we report on an MRI reporter gene system for directly monitoring CXCL12 expression in vivo. Glioma cells and human adipose-derived stem cells (hADSC) were transduced with the herpes simplex virus type-1-thymidine kinase (HSV1- tk) reporter gene expressed under the CXCL12 promoter. HSV1-tk expression resulted in accumulation of the PET tracer [125I]FIAU in vitro and in vivo and induced cell death after ganciclovir treatment. Furthermore, the results show that conditional expression of the reporter gene can be induced by hypoxia in transduced cells. Transduced hADSC were incubated with the CEST MRI probe 5-methyl-5, 6- dihydrothymidine (5-MDHT) and transplanted into swine heart. Transplanted cells were clearly visible on Chemical Exchange Saturation Transfer (CEST) MRI using a 3T clinical scanner. Therefore, we conclude that it is possible to image CXCL12 expression with MRI in a large animal model, opening up a possible route to clinical translation.  相似文献   

11.
Abstract

During the last few years, many gene therapy strategies have been developed for various disease targets. The development of anticancer gene therapy strategies to selectively generate cytotoxic nucleoside or nucleotide analogs is an attractive goal. One such approach involves the delivery of herpes simplex virus thymidine kinase followed by the acyclic nucleoside analog ganciclovir. We have developed another gene therapy methodology for the treatment of cancer that has several significant attributes. Specifically, our approach involves the delivery of E. coli purine nucleoside phosphorylase, followed by treatment with a relatively non-toxic nucleoside prodrug that is cleaved by the enzyme to a toxic compound. This presentation describes the concept, details our search for suitable prodrugs, and summarizes the current biological data.  相似文献   

12.
Background aimsCancer is one of the greatest health challenges facing the world today with >10 million new cases of cancer every year. The self-renewal, tumor-homing ability and low immunogenicity of mesenchymal stromal cells (MSCs) make them potential delivery candidates for suicide genes for anti-tumor therapy. However, unstable supply and short life span of adult MSCs in vitro have limited this therapeutic potential. In this study, we aimed to evaluate if immortalization of human fetal bone marrow-derived mesenchymal stromal cells by simian virus 40 (SV40-hfBMSCs) could be a stable source of MSCs for clinical application of suicide gene therapy.Methods and ResultsTransduction of SV40 and herpes simplex virus thymidine kinase-IRES-green fluorescent protein (TK-GFP) did not cause significant change in the stem cell properties of hfBMSCs. The anti-tumor effect of SV40-TK-hfBMSCs in the presence of the prodrug ganciclovir was demonstrated in vitro and in nude mice bearing human prostate cancer cells, DU145 and PC3, which had been transduced with luciferase and GFP for imaging evaluation by an in vivo live imaging system (IVIS 200 imaging system; Caliper Life Sciences). Repeated injection of low doses (1 × 106 cells/kg) of SV40-TK-hfBMSCs was as effective as previously reported and did not cause observable harmful side effects in multiple organs. Mixed lymphocyte reaction showed that SV40-TK-hfBMSCs did not induce significant proliferation of lymphocytes isolated from healthy adults.ConclusionsTaken together, immortalized hfBMSCs represent a reliable and safe source of MSCs for further clinical translational study.  相似文献   

13.
Background aimsIdentifying patients who spontaneously resolve cytomegalovirus (CMV) reactivation could spare these patients from the toxicity of antiviral drugs such as ganciclovir. The role of CMV-specific T cells in clearing CMV viremia in patients who do not receive ganciclovir has not been evaluated. We assessed this in patients with CMV viremia between 50 and 50 000 genome copies/mL, because our threshold for initiating ganciclovir is 50 000 copies/mLMethodsWe enumerated CMV-specific T cells in 39 CMV seropositive hematopoietic cell transplantation (HCT) recipients within 4 days of the first positive CMV polymerase chain reaction (PCR). CMV-specific T cells were defined as cells that upon stimulation with CMV lysate or pp65 overlapping peptides produced interferon (IFN)-γ, tumor necrosis factor (TNF)-α or interleukin (IL)-2, alone or in combinationResultsAmong Donor (D+), Recipient (R+) patients, unifunctional CMV-specific CD4 T-cells were higher in patients who spontaneously resolved CMV viremia (did not receive ganciclovir) versus those who progressed (received ganciclovir) (median 0.20 versus 0.02/μL lysate-stimulated cells, P < 0.05, and 0.26 versus 0.05/μL pp65 peptide-stimulated cells, P<0.05). Among D? R+ patients, there was no difference between patients with spontaneous resolution or progression; all subsets of CMV-specific T cells measured were barely detectable, in both patients with spontaneous resolution and those with progression.ConclusionsAmong D+ R+ patients (but not D? R+ patients), high CMV-specific CD4 T-cell counts identify patients who can spontaneously resolve CMV reactivation. In D? R+ patients, immune mechanisms other than T cells may control the progression from reactivation to high-level viremia/disease.  相似文献   

14.

Introduction

Despite recent improvements in the survival rates for nasopharyngeal carcinoma (NPC), novel treatment strategies are required to improve distant metastasis-free survival. The sodium iodine symporter (NIS) gene has been applied for in vivo imaging and cancer therapy. In this study, we examined the potential of NIS gene therapy as a therapeutic approach in NPC by performing non-invasive imaging using 125I and 131I therapy in vivo.

Methods

We constructed a lentiviral vector expressing NIS and enhanced green fluorescent protein (EGFP) under the control of the human elongation factor-1α (EF1α) promoter, and stably transfected the vector into CNE-2Z NPC cells to create CNE-2Z-NIS cells. CNE-2Z and CNE-2Z-NIS tumor xenografts were established in nude mice; 125I uptake, accumulation and efflux were measured using micro-SPECT/CT imaging; the therapeutic effects of treatment with 131I were assessed over 25 days by measuring tumor volume and immunohistochemical staining of the excised tumors.

Results

qPCR, immunofluorescence and Western blotting confirmed that CNE-2Z-NIS cells expressed high levels of NIS mRNA and protein. CNE-2Z-NIS cells and xenografts took up and accumulated significantly more 125I than CNE-2Z cells and xenografts. In vitro, 131I significantly reduced the clonogenic survival of CNE-2Z-NIS cells. In vivo, 131I effectively inhibited the growth of CNE-2Z-NIS xenografts. At the end of 131I therapy, CNE-2Z-NIS xenograft tumor cells expressed higher levels of NIS and caspase-3 and lower levels of Ki-67.

Conclusion

Lentiviruses effectively delivered and mediated long-lasting expression of NIS in CNE-2Z cells which enabled uptake and accumulation of radioisotopes and provided a significant therapeutic effect in an in vivo model of NPC. NIS-mediated radioiodine treatment merits further investigation as a potentially effective, low toxicity therapeutic strategy for NPC.  相似文献   

15.
The immune response in individuals co‐infected with Mycobacterium tuberculosis (MTB) and the human immunodeficiency virus (MTB/HIV) gradually deteriorates, particularly in the cellular compartment. Adoptive transfer of functional effector T cells can confer protective immunity to immunodeficient MTB/HIV co‐infected recipients. However, few such effector T cells exist in vivo, and their isolation and amplification to sufficient numbers is difficult. Therefore, enhancing immune responses against both pathogens is critical for treating MTB/HIV co‐infected patients. One approach is adoptive transfer of T cell receptor (TCR) gene‐modified T cells for the treatment of MTB/HIV co‐infections because lymphocyte numbers and their functional avidity is significantly increased by TCR gene transfer. To generate bispecific CD8+ T cells, MTB Ag85B199–207 peptide‐specific TCRs (MTB/TCR) and HIV‐1 Env120–128 peptide‐specific TCRs (HIV/TCR) were isolated and introduced into CD8+ T cells simultaneously using a retroviral vector. To avoid mispairing among exogenous and endogenous TCRs, and to improve the function and stability of the introduced TCRs, several strategies were employed, including introducing mutations in the MTB/TCR constant (C) regions, substituting part of the HIV/TCR C regions with CD3ζ, and linking gene segments with three different 2A peptides. Results presented in this report suggest that the engineered T cells possessed peptide‐specific specificity resulting in cytokine production and cytotoxic activity. This is the first report describing the generation of engineered T cells specific for two different pathogens and provides new insights into TCR gene therapy for the treatment of immunocompromised MTB/HIV co‐infected patients.  相似文献   

16.
The chemotherapeutic drug cisplatin (cis-diamminedichloroplatinum(II) (CDDP)) is widely used in the treatment of human cancers. However, the mechanism underlying intrinsic tumor resistance to CDDP remains elusive. Here, we demonstrate that treatment with CDDP resulted in down-regulation of c-Jun expression via caspase-9-dependent cleavage of c-Jun at Asp-65 and MEKK1-mediated ubiquitylation and degradation of c-Jun in CDDP-sensitive cancer cells. In contrast, activation of JNK2 (but not JNK1) phosphorylated and up-regulated the expression of c-Jun in CDDP-resistant cells. Activated c-Jun bound to the promoter regions of the MDR1 gene and promoted the expression of MDR1. Expression of a cleavage-resistant c-Jun mutant (D65A) suppressed CDDP-induced apoptosis of CDDP-sensitive cells, whereas depletion of JNK2, c-Jun, or MDR1 in CDDP-resistant cancer cells promoted apoptosis upon CDDP treatment. In addition, mammary gland tumors induced by polyomavirus middle T antigen in JNK2−/− mice were more sensitive to CDDP compared with those in JNK2+/+ mice. These findings highlight the instrumental role of c-Jun in the resistance of tumors to treatment with CDDP and indicate that c-Jun is a molecular target for improving cancer therapy.  相似文献   

17.
18.
Inherited medullary thyroid carcinomas (MTC) are aggressive and resistant to conventional chemo- and radiotherapies. We evaluated a novel strategy for treatment of MTC, combining “suicide” and interleukin-2 (IL-2) gene therapies. Tumors were produced in Wag/Rij rats by orthotopic injection of the rMTC 6–23 cell line, and/or derivatives expressing the herpes simplex virus 1 thymidine kinase (HSV1-TK) gene (rMTC-TK). Ganciclovir, a nucleoside analog selectively transformed to a toxic metabolite by HSV1-TK, totally eradicated rMTC-TK tumors in 60% of the animals. 1:1 rMTC and rMTC-TK mixed tumors were also strongly inhibited by ganciclovir (P < 0.05), indicating the occurrence of an efficient “bystander” effect in vivo. Double labelling of rMTC cell membranes and apoptotic nuclei revealed that, as with the TK+ cells, some TK cells died by apoptosis. A 1:1 mixture of rMTC and rMTC-TK cells was administered to produce established tumors and then rMTC cells, transfected to express the IL-2 gene (rMTC-IL2), were inoculated. Combined ganciclovir and IL-2 treatment improved the inhibition of tumor growth compared to that following ganciclovir alone (86% compared to 54%, P < 0.05). This treatment also significantly enhanced macrophage activation and tumor infiltration by CD8+ and CD4+ T lymphocytes. These results open an avenue for combining suicide and immunoregulatory gene therapies for MTC management in man. Received: 1 October 1998 / Accepted: 1 January 1999  相似文献   

19.
MUC1 tumor antigen is a target for immunotherapy of most human adenocarcinomas and some hematological malignancies. Expression of a MUC1-specific, MHC-unrestricted single-chain T cell receptor (scTCR) on cells of both innate and adaptive immune system through reconstitution of lethally irradiated mice by retroviral vector-transduced bone marrow cells, had been shown to effectively control the growth of MUC1+ tumors independent of their MHC type, suggesting that this receptor is a good candidate for broadly applicable gene therapy/immunotherapy. However, the translational application of this immuno-gene therapy modality was discouraged by the progressive transgene silencing in reconstituted T and B cells, as well as the potential of tumorogenesis intrinsic to oncoretroviral vectors. To overcome these problems and facilitate the future clinical use of this receptor, we have constructed a panel of novel self-inactivating lentiviral vectors (LVs) which harbor two independent internal promoters, one driving expression of the scTCR gene and the other of a fusion suicide gene, the HSV-TK–EGFP fusion gene, allowing the transduced cells to be destroyable by the pro-drug ganciclovir. Despite the large size of insert, these vectors were efficiently packaged into high titer virus that transferred the expression of transgene in both T cell lines and primary T cells. Sustained expression was maintained in a T cell line for over 4 months in vitro, suggesting its efficient resistance to transgene silencing. Both scTCR and HSV-TK–EGFP genes were functional in the transduced cells, as evidenced by their specific recognition of MUC1+ tumors and efficient eradication by ganciclovir.  相似文献   

20.
《Cytotherapy》2014,16(7):934-945
BackgroundTo evaluate the therapeutic efficacy of dendritic cells (DC) alone, cytokine-induced killer (CIK) cells alone and the combination of DC and CIK cells in the treatment of breast cancer, we performed a systemic review of the relevant published clinical studies, collectively referred to as DC-CIK cell therapy.MethodsSix hundred thirty-three patients with breast cancer were assigned to cohorts, and a meta-analysis was conducted.ResultsThe treatment of breast cancer with DC-CIK cells was associated with a significantly improved 1-year survival (P = 0.0001). The Karnofsky performance status scale of the patients treated with DC-CIK cells was significantly improved compared with that of the non-DC-CIK group (P < 0.0001). The percentage of T cells (CD3+, CD4+ and CD4+CD8+), CD16+ monocytes, and CD3+CD56+ natural killer T cells in the peripheral blood of cancer patients was significantly increased (P ≤ 0.05), whereas the percentage of CD4+CD25+ regulatory T cells was not significantly decreased (P = 0.32) in the DC-CIK treatment group compared with the non-DC-CIK group. The levels of interleukin-2, interleukin-12, tumor necrosis factor-α, interferon-γ, and nucleolar organizer region protein in the peripheral blood of cancer patients, which reflect immune function, were significantly increased (P < 0.001) after DC-CIK cell treatment. Furthermore, after DC-CIK treatment, the average levels of the alpha-fetoprotein, cancer antigen embryonic antigen and carbohydrate antigen tumor markers were decreased (P < 0.00001).ConclusionsDC-CIK cell therapy markedly prolongs survival time, enhances immune function, and improves the efficacy of the treatment of breast cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号