首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Unregulated FGF signaling affects endochondral ossification and long bone growth, causing several genetic forms of human dwarfism. One major mechanism by which FGFs regulate endochondral bone growth is through their inhibitory effect on chondrocyte proliferation. Because mice with targeted mutations of the retinoblastoma (Rb)-related proteins p107 and p130 present severe endochondral bone defects with excessive chondrocyte proliferation, we have investigated the role of the Rb family of cell cycle regulators in the FGF response. Using a chondrocyte cell line, we found that FGF induced a rapid dephosphorylation of all three proteins of the Rb family (pRb, p107, and p130) and a blockade of the cells in the G1 phase of the cell cycle. This cell cycle block was reversed by inactivation of Rb proteins with viral oncoproteins such as polyoma large T (PyLT) antigen and Adenovirus E1A. Expression of a PyLT mutant that efficiently binds pRb, but not p107 and p130, allowed the cells to be growth inhibited by FGF, suggesting that pRb itself is not involved in the FGF response. To investigate more precisely the role of the individual Rb family proteins in FGF-mediated growth inhibition, we used chondrocyte micromass culture of limb bud cells isolated from mice lacking Rb proteins individually or in combination. Although wild-type as well as Rb-/- chondrocytes were similarly growth inhibited by FGF, chondrocytes null for p107 and p130 did not respond to FGF. Furthermore, FGF treatment of metatarsal bone rudiments obtained from p107-/-;p130-/- embryos failed to inhibit proliferation of growth plate chondrocytes, whereas rudiments from p107-null or p130-null embryos showed only a slight inhibition of growth. Our findings indicate that p107 and p130, but not pRb, are critical effectors of FGF-mediated growth inhibition in chondrocytes.  相似文献   

3.
The retinoblastoma family of nuclear factors is composed of RB, the prototype of the tumour suppressor genes and of the strictly related genes p107 and Rb2/p130. The three genes code for proteins, namely pRb, p107 and pRb2/p130, that share similar structures and functions. These proteins are expressed, often simultaneously, in many cell types and are involved in the regulation of proliferation and differentiation. We determined the expression and the phosphorylation of the RB family gene products during the DMSO-induced differentiation of the N1E-115 murine neuroblastoma cells. In this system, pRb2/p130 was strongly up-regulated during mid-late differentiation stages, while, on the contrary, pRb and p107 resulted markedly decreased at late stages. Differentiating N1E-115 cells also showed a progressive decrease in B-myb levels, a proliferation-related protein whose constitutive expression inhibits neuronal differentiation. Transfection of each of the RB family genes in these cells was able, at different degrees, to induce neuronal differentiation, to inhibit [3H]thymidine incorporation and to down-regulate the activity of the B-myb promoter.  相似文献   

4.
We have reported previously that herpes simplex virus type 1 (HSV-1) infection disrupts normal progression of the mammalian cell cycle, causing cells to enter a G(1)-like state. Infected cells were characterized by a decline in cyclin-dependent kinase 2 (CDK2) activities, loss of hyperphosphorylated retinoblastoma protein (pRb), accumulation of E2F-pocket protein complexes, and failure to initiate cellular DNA replication. In the present study, we investigated the role of the pocket proteins pRb, p107, and p130 in HSV-1-dependent cell cycle inhibition and cyclin kinase regulation by infecting murine 3T3 cells derived from wild-type (WT) mouse embryos or embryos with deletions of pRb (pRb(-/-)), p107 (p107(-/-)), p130 (p130(-/-)), or both p130 and p107 (p130(-/-)/p107(-/-)). With respect to CDK2 inhibition, viral protein accumulation, viral DNA replication, and progeny virus yield, WT, pRb(-/-), and p107(-/-) cells were essentially identical. In contrast, after infection of p130(-/-) cells, we observed no inhibition of CDK2 activity, a 5- to 6-h delay in accumulation of viral proteins, an impaired ability to form viral DNA replication compartments, and reduced viral DNA synthesis. As a result, progeny virus yield was reduced 2 logs compared to that in WT cells. Notably, p130(-/-)/p107(-/-) double-knockout cells had a virus replication phenotype intermediate between those of the p107(-/-) and p130(-/-) cells. We conclude from these studies that p130 is a key factor in regulating aspects of cell cycle progression, as well as the timely expression of viral genes and replication of viral DNA.  相似文献   

5.
Phosphorylation of the retinoblastoma-related or pocket proteins RB1/pRb, RBL1/p107, and RBL2/p130 regulates cell cycle progression and exit. While all pocket proteins are phosphorylated by cyclin-dependent kinases (CDKs) during the G1/S-phase transition, p130 is also specifically phosphorylated in G0-arrested cells. We have previously identified several phosphorylated residues that match the consensus site for glycogen synthase kinase 3 (GSK3) in the G0 form of p130. Using small-molecule inhibitors of GSK3, site-specific mutants of p130, and phospho-specific antibodies, we demonstrate here that GSK3 phosphorylates p130 during G0. Phosphorylation of p130 by GSK3 contributes to the stability of p130 but does not affect its ability to interact with E2F4 or cyclins. Regulation of p130 by GSK3 provides a novel link between growth factor signaling and regulation of the cell cycle progression and exit.  相似文献   

6.
7.
RB family proteins pRb, p107 and p130 have similar structures and overlapping functions, enabling cell cycle arrest and cellular senescence. pRb, but not p107 or p130, is frequently mutated in human malignancies. In human fibroblasts acutely exposed to oncogenic ras, pRb has a specific role in suppressing DNA replication, and p107 or p130 cannot compensate for the loss of this function; however, a second p53/p21-dependent checkpoint prevents escape from growth arrest. This model of oncogene-induced senescence requires the additional loss of p53/p21 to explain selection for preferential loss of pRb function in human malignancies. We asked whether similar rules apply to the role of pRb in growth arrest of human epithelial cells, the source of most cancers. In two malignant human breast cancer cell lines, we found that individual RB family proteins were sufficient for the establishment of p16-initiated senescence, and that growth arrest in G1 was not dependent on the presence of functional pRb or p53. However, senescence induction by endogenous p16 was delayed in primary normal human mammary epithelial cells with reduced pRb but not with reduced p107 or p130. Thus, under these circumstances, despite the presence of functional p53, p107 and p130 were unable to completely compensate for pRb in mediating senescence induction. We propose that early inactivation of pRb in pre-malignant breast cells can, by itself, extend proliferative lifespan, allowing acquisition of additional changes necessary for malignant transformation.  相似文献   

8.
RB family proteins pRb, p107 and p130 have similar structures and overlapping functions, enabling cell cycle arrest and cellular senescence. pRb, but not p107 or p130, is frequently mutated in human malignancies. In human fibroblasts acutely exposed to oncogenic ras, pRb has a specific role in suppressing DNA replication, and p107 or p130 cannot compensate for the loss of this function; however, a second p53/p21-dependent checkpoint prevents escape from growth arrest. This model of oncogene-induced senescence requires the additional loss of p53/p21 to explain selection for preferential loss of pRb function in human malignancies. We asked whether similar rules apply to the role of pRb in growth arrest of human epithelial cells, the source of most cancers. In two malignant human breast cancer cell lines, we found that individual RB family proteins were sufficient for the establishment of p16-initiated senescence, and that growth arrest in G1 was not dependent on the presence of functional pRb or p53. However, senescence induction by endogenous p16 was delayed in primary normal human mammary epithelial cells with reduced pRb but not with reduced p107 or p130. Thus, under these circumstances, despite the presence of functional p53, p107 and p130 were unable to completely compensate for pRb in mediating senescence induction. We propose that early inactivation of pRb in pre-malignant breast cells can, by itself, extend proliferative lifespan, allowing acquisition of additional changes necessary for malignant transformation.Key words: breast cancer, senescence, retinoblastoma, p130, p107  相似文献   

9.
10.
The Rb2/p130 protein has been shown to have a high sequence homology with the retinoblastoma gene product (pRb), one of the most well-characterized tumor suppressor genes, and with pRb-related p107, especially in their conserved pocket domains, which display a primary role in the function of these proteins. In this study, we report on the biochemical and immunocytochemical characterization of the Rb2/p130 protein, using a polyclonal antibody developed against its “spacer” region included in the pocket domain of the whole protein. We show that pRb/p130 is a phosphoprotein located at the nuclear level and that its phosphorylation pathway can be dramatically reduced by phosphatase treatment. Moreover pRb/p130, with p107, with p107, is one of the major targets of the E1A viral oncoprotein-associated kinase activity, showing a phosphorylation pattern which is modulated during the cell cycle, reaching a peak of activation at the onset of S-phase. © 1995 Wiley-Liss, Inc.  相似文献   

11.
The human pathogenic poxvirus molluscum contagiosum virus (MCV) is the causative agent of benign neoplasm, with worldwide incidence, characterized by intraepidermal hyperplasia and hypertrophy of cells. Here, we present evidence that the MC007L protein of MCV targets retinoblastoma protein (pRb) via a conserved LxCxE motif, which is present in many viral oncoproteins. The deregulation of the pRb pathway plays a central role in tumor pathogenesis. The oncoproteins of small DNA viruses contain amino acid sequences that bind to and inactivate pRb. Isolated expression of these oncoproteins induces apoptosis, cell proliferation, and cellular transformation. The MC007L gene displays no homology to other genes within the poxvirus family. The protein anchors into the outer mitochondrial membrane via an N-terminal mitochondrial targeting sequence. Through the LxCxE motifs, MC007L induces a cytosolic sequestration of pRb at mitochondrial membranes, leading to the inactivation of the protein by mislocalization. MC007L precipitates the endogenous pRb/E2F-1 complex. Moreover, MC007L is able to cooperate to transform primary rat kidney cells. The interaction between MC007L and pRb provides a novel mechanism by which a virus can perturb the cell cycle.  相似文献   

12.
Retinoblastoma (RB) family proteins pRb, p107 and pRb2/p130 are important cellular factors which play a well-recognized role as tumor and growth suppressors. These proteins are actively involved in the negative control of the cell cycle and their function is modulated via complex homeostatic processes, most of them involving post-translational regulation of their phosphorylation status. Interestingly, the family members p107 and pRb2/p130 share the ability to physically interact and inhibit the kinase activity of the Cdk2/Cyclin A and Cdk2/Cyclin E complexes. Regarding pRb2/p130, its inhibitory effect on the Cdk2/Cyclin A activity has been attributed to the “spacer” region. Recently, a 39 aa-long pRb2/p130 spacer-derived peptide (Spa310, aa 641-679) has been selected as the sequence responsible for Cdk2/Cyclin A inhibition. Following the identification of this active sequence, here we propose a computer-generated three-dimensional model of the interaction between the Cdk2/Cyclin A complex and the N-terminal 9-amino acid sequence of the Spa310 peptide. We believe this model as useful for the rational development of peptide or peptidomimetic kinase inhibitors to be used for the negative modulation of cell cycle in cancer cells.  相似文献   

13.
14.
15.
Transforming growth factor beta (TGFbeta)1 induced dephosphorylation of pRb at multiple serine and threonine residues including Ser249/Thr252, Thr373, Ser780, and Ser807/811 in MV4-11 cells. Likewise, TGFbeta1 caused the dephosphorylation of p130, while inhibiting accumulation of p107 protein. Phosphorylated pRb was detected to bind E2F-1 and E2F-3, which appears to be a major form of pRb complexes in actively cycling cells. TGFbeta1 significantly downregulated pRb-E2F-1 and pRb-E2F-3 complexes as a result of inhibition of E2F-1 and E2F-3. In contrast, complexes of E2F-4 with pRb and with p130 were increased markedly upon TGFbeta1 treatment, whereas p107 associated E2F-4 was dramatically decreased. In agreement with these results, p130-E2F-4 DNA binding activity was dominant in TGFbeta1 treated cells, whereas p107-E2F-4 DNA binding activity was only found in proliferating cells. Our data strongly suggest that inhibition of E2Fs and differential regulation of pRb family-E2F-4 complexes are linked to TGFbeta1-induced growth inhibition. E2F-4 is switched from p107 to p130 and pRb when cells are arrested in G1 phase by TGFbeta1.  相似文献   

16.
The phosphorylation status of the pRB family of growth suppressor proteins is regulated in a cell cycle entry-, progression-, and exit-dependent manner in normal cells. We have shown previously that p130, a member of this family, exhibits patterns of phosphorylated forms associated with various cell growth and differentiation stages. However, human 293 cells, which are transformed cells that express the adenoviral oncoproteins E1A and E1B, exhibit an abnormal pattern of p130 phosphorylated forms. Here we report that, unlike pRB, the phosphorylation status of both p130 and p107 is not modulated during the cell cycle in 293 cells as it is in other cells. Conditional overexpression of individual G(1)/S cyclins in 293 cells does not alter the phosphorylation status of p130, suggesting that the expression of E1A and/or E1B blocks hyperphosphorylation of p130. In agreement with these observations, transient cotransfection of vectors expressing E1A 12S, but not E1B, in combination with pocket proteins into U-2 OS cells blocks hyperphosphorylation of both p130 and p107. However, the phosphorylation status of pRB is not altered by cotransfection of E1A 12S vectors. Moreover, MC3T3-E1 preosteoblasts stably expressing E1A 12S also exhibit a block in hyperphosphorylation of endogenous p130 and p107. Direct binding of E1A to p130 and p107 is not required for the phosphorylation block since E1A 12S mutants defective in binding to the pRB family also block hyperphosphorylation of p130 and p107. Our data reported here identify a novel function of E1A, which affects p130 and p107 but does not affect pRB. Since E1A does not bind the hyperphosphorylated forms of p130, this function of E1A might prevent the existence of "free" hyperphosphorylated p130, which could act as a CDK inhibitor.  相似文献   

17.
Cell cycle reactivation in adult neurons is an early hallmark of neurodegeneration. The lipopolysaccharide (LPS) is a well-known pro-inflammatory factor that provokes neuronal cell death via glial cells activation. The retinoblastoma (RB) family includes RB1/p105, retinoblastoma-like 1 (RBL1/p107), and retinoblastoma-like 2 (Rb2/p130). Several studies have indicated that RB proteins exhibit tumor suppressor activities, and play a central role in cell cycle regulation. In this study, we assessed LPS-mediated inflammatory effect on cell cycle reactivation and apoptosis of neuronally differentiated cells. Also, we investigated whether the LPS-mediated inflammatory response can influence the function and expression of RB proteins. Our results showed that LPS challenges triggered cell cycle reactivation of differentiated neuronal cells, indicated by an accumulation of cells in S and G2/M phase. Furthermore, we found that LPS treatment also induced apoptotic death of neurons. Interestingly, we observed that LPS-mediated inflammatory effect on cell cycle re-entry and apoptosis was concomitant with the aberrant expression of RBL1/p107 and RB1/p105. To the best of our knowledge, our study is the first to indicate a role of LPS in inducing cell cycle re-entry and/or apoptosis of differentiated neuronal cells, perhaps through mechanisms altering the expression of specific members of RB family proteins. This study provides novel information on the biology of post-mitotic neurons and could help in identifying novel therapeutic targets to prevent de novo cell cycle reactivation and/or apoptosis of neurons undergoing neurodegenerative processes.  相似文献   

18.
p107 and p130: versatile proteins with interesting pockets   总被引:23,自引:0,他引:23  
  相似文献   

19.
Extracellular plasminogen activator inhibitor type-2 (PAI-2) is a potent inhibitor of urokinase-type plasminogen activator (u-PA) and also acts as a multifunctional protein. However, the biological activity of intracellular PAI-2, as well as its intracellular targets, until now remain an enigma. Here, we show that pRb2/p130 and Rb1/p105, but not p107, interact with PAI-2 in both the cytoplasm and nucleus of normal primary human corneal and conjunctival epithelial cells. We provided the first in vivo evidence that a specific fragment of the PAI-2 promoter is bound simultaneously by pRb2/ p130, PAI-2, E2F5, histone deacetylase 1 (HDAC1), DNA methyltransferase 1 (DNMT1), and histone methyltransferase (SUV39H1), in normal primary human corneal epithelial cells, and by pRb2/p130, PAI-2, E2F5, HDAC1, and DNMT1, in normal primary human conjunctiva epithelial cells. Our results strongly indicate a physiological interaction between pRb family members and PAI-2, suggesting the hypothesis that pRb2/p130 and PAI-2 may cooperate in modulating PAI-2 gene expression by chromatin remodeling, in normal corneal and conjunctival cells.  相似文献   

20.
Comment on: Bazarov A, et al. Cell Cycle 2012; 11:1008–1013More than 90% of human cancers are of epithelial origin. Cellular senescence of human mammary epithelial cells (HMECs) is an important barrier that protects cells from immortalization; the first step in breast cancer development.1 Although induction of tumor suppressor p16 is not evident in some types of normal human fibroblasts undergoing senescence,2 in cultured HMECs, senescence occurs by a robust p16 induction, and cells that acquire silencing of p16Ink4a locus eventually proliferate and undergo senescence again by telomere shortening in a p53-dependent manner.1 Therefore, p16 induction is a critical barrier to immortalize HMECs in culture. p16 inhibits kinase activity of Cdk4/6-cyclinD complexes, which inactivate three pRb family proteins: pRb, p107 and p130. However, the relative contribution of these three pRb family proteins to HMEC senescence is not well understood.In a recent issue of Cell Cycle, Bazarov et al. examined the role of each pRb family protein in p16-mediated senescence in breast cancer cell lines and in HMECs (Fig. 1).3 They showed that knockdown of each of the three pRb family proteins individually did not abrogate senescence mediated by ectopically expressed p16 in the breast cancer cell lines MDA-MB-231 and MCF7. However, the senescence induced by ectopic p16 was abrogated if they introduced E7, which inactivates all three pRb family proteins. Their data suggest that two of pRb family proteins can compensate for the loss of each pRb family protein to induce p16-mediated senescence in these cancer cells. The remaining question is whether all three pRb family members play an additive role, and whether the inactivation of at least two members of the pRb family is required to overcome p16-induced senescence in breast cancer cells. On the other hand, they showed that abrogation of pRb, but not of p107 and/ or p130, attenuates senescence in HMECs, suggesting a non-redundant critical role of pRb in HMEC senescence. These data are consistent with a recent report demonstrating that pRb has a non-redundant role in repressing DNA replication during H-ras-induced senescence of human fibroblasts,4 and explain why pRb, but not p107 or p130, is frequently mutated in cancer. Interestingly, although abrogation of pRb is critical for HMECs escaping senescence, simultaneous depletion of pRb together with either p107, p130 or both accelerates bypass of senescence. This suggests that p107 and p130 help pRb to trigger/maintain HMEC senescence in culture and possibly in vivo. Although each pRb family protein preferentially binds to different members of the E2F family,5 the contribution of each E2F family protein in escaping p16-mediated senescence remains unclear. Therefore, it will be interesting to see whether the critical role of pRb, and a supportive role of p130 and p107, in p16-mediated HMEC senescence depend on how each pRb family protein interacts with an E2F family protein.Open in a separate windowFigure 1. Contribution of pRb family proteins to p16-mediated senescence in breast cancer cells and HMECs. Knockdown of each of the three pRb family proteins in breast cancer cells does not abrogate ectopic p16-induced senescence, suggesting that either two of pRb family proteins can compensate for the loss of each pRb family proteins or all three of pRb family proteins play an additive role in p16-mediated senescence in breast cancer cells. On the other hand, knockdown of pRb, but not of p107 or p130, abrogates HMEC senescence, suggesting a non-redundant critical role for pRb in senescence of HMECs. However, the knockdown of either p107 or p130, in conjunction with pRb depletion, abrogates HMEC senescence more efficiently than pRb knockdown alone. This suggests a supporting role for p107 and p130 in maintaining HMEC senescence.Bazarov et al. also showed that even aggressive p53-negative breast cancer cells undergo cellular senescence upon ectopic p16 expression. These results are quite encouraging from an epigenetic therapy point of view. Silencing of p16 often occurs in breast cancer cells via promoter methylation. During DNA replication, cells require new p16 promoter methylation to keep p16 silenced. The observations of Bazarov et al. suggest that we may be able to stop the growth of even aggressive p53-negative breast cancers in patients by inducing p16 expression in cancer cells using DNA methylation inhibitors. Back to the question of running family business: “it appears that pRb is still the boss, but in some cases, it may get a helping hand from his cousins- p107 and p130.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号