首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study details the gross and microscopic anatomy of the pelvic kidney in male Ambystoma maculatum. The nephron of male Ambystoma maculatum is divided into six distinct regions leading sequentially away from a renal corpuscle: (1) neck segment, which communicates with the coelomic cavity via a ventrally positioned pleuroperitoneal funnel, (2) proximal tubule, (3) intermediate segment, (4) distal tubule, (5) collecting tubule, and (6) collecting duct. The proximal tubule is divided into a vacuolated proximal region and a distal lysosomic region. The basal plasma membrane is modified into intertwining microvillus lamellae. The epithelium of the distal tubule varies little along its length and is demarcated by columns of mitochondria with their long axes oriented perpendicular to the basal lamina. The distal tubule possesses highly interdigitating microvillus lamellae from the lateral membranes and pronounced foot processes of the basal membrane that are not intertwined, but perpendicular to the basal lamina. The collecting tubule is lined by an epithelium with dark and light cells. Light cells are similar to those observed in the distal tuble except with less mitochondria and microvillus lamellae of the lateral and basal plasma membrane. Dark cells possess dark euchromatic nuclei and are filled with numerous small mitochondria. The epithelium of the neck segment, pleuroperitoneal funnel, and intermediate segment is composed entirely of ciliated cells with cilia protruding from only the central portion of the apical plasma membrane. The collecting duct is lined by a highly secretory epithelium that produces numerous membrane bound granules that stain positively for neutral carbohydrates and proteins. Apically positioned ciliated cells are intercalated between secretory cells. The collecting ducts anastomose caudally and unite with the Wolffian duct via a common collecting duct. The Wolffian duct is secretory, but not to the extent of the collecting duct, synthesizes neutral carbohydrates and proteins, and is also lined by apical ciliated cells intercalated between secretory cells. Although functional aspects associated with the morphological variation along the length of the proximal portions of the nephron have been investigated, the role of a highly secretory collecting duct has not. Historical data that implicated secretory activity concordant with mating activity, and similarity of structure and chemistry to sexual segments of the kidneys in other vertebrates, lead us to believe that the collecting duct functions as a secondary sexual organ in Ambystoma maculatum. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Male salamanders use nephrons from the genital kidney to transport sperm from the testicular lobules to the Wolffian duct. The microstructure of the epithelia of the genital kidney proximal tubule and distal tubule was studied over 1 year in a population of Notophthalmus viridescens from Crawford and Pike counties in central Missouri. Through ultrastructural analysis, we were able to support the hypothesis that the genital kidney nephrons are modified to aid in the transportation of sperm. A lack of folding of the basal plasma membrane, in both the genital kidney proximal and distal tubules when compared to the pelvic kidney proximal and distal tubules, reduces the surface area and thus likely decreases the efficiency of reabsorption in these nephron regions of the genital kidney. Ciliated epithelial cells are also present along the entire length of the genital kidney proximal tubule, but are lacking in the epithelium of the pelvic kidney proximal tubule. The exact function of these cilia remains unknown, but they may aid in mixing of seminal fluids or the transportation of immature sperm through the genital kidney nephrons. Ultrastructural analysis of proximal and distal tubules of the genital kidney revealed no seasonal variation in cellular activity and no mass production of seminal fluids throughout the reproductive cycle. Thus, we failed to support the hypothesis that the cellular activity of the epithelia lining the genital kidney nephrons is correlated to specific events in the reproductive cycle. The cytoplasmic contents and overall structure of the genital and pelvic kidney epithelial cells were similar to recent observations in Ambystoma maculatum, with the absence of abundant dense bodies apically in the epithelial cells lining the genital kidney distal tubule. J. Morphol. 275:914–922, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
We investigated the structure of the male reproductive system in Ichthyophis supachaii. The testis comprises a series of mulberry‐like lobes, each of which contains testis lobules occupied by germ cysts. A single cyst consists of synchronously developing germ cells. Six spermatogenic cell types, viz. primary spermatogonia, secondary spermatogonia, primary spermatocytes, secondary spermatocytes, spermatids and spermatozoa, have been identified and described. Notably, the testis of I. supachaii encompasses specific organization patterns of spermatids and spermatozoa during spermiogenesis. Spermiating cysts rupture and release spermatozoa to the collecting ducts, which are subsequently transported to the sperm duct, Wolffian duct and cloaca. We report for the first time ciliated cells in the epithelium of the caecilian Wolffian duct. The cloaca is divided into the urodeum and phallodeum. The urodeum has ciliated and glandular epithelia at its dorsolateral and ventral regions, respectively, as the lining of its internal surface. The muscular phallodeum is lined by ciliated epithelium. Paired Mullerian ducts lie parallel to the intestine and join the cloaca. The posterior portion of the duct is modified as the Mullerian gland. The most posterior region is non‐glandular and lined by ciliated epithelium. Our findings contribute further to information on the reproductive biology of caecilians in Thailand.  相似文献   

4.
Sperm storage glands, spermathecae, were examined from mated female Ambystoma opacum during the breeding season. No differences occur in the spermathecal ultrastructure of individuals sacrificed prior to oviposition and those sacrificed within 3 days of removal from tended clutches of recently oviposited eggs. The simple tubuloalveolar glands produce two types of secretory vacuoles. Apical secretory vacuoles contain glycosaminoglycans for export into the lumen to bathe stored sperm, perhaps providing the chemical/osmotic environment necessary for sperm quiescence. The other type of secretory vacuole contains an unsaturated lipid that is produced for export into the connective tissue surrounding the spermathecae. The role of this secretion may involve the contraction of myoepithelial cells, resulting in sperm expulsion. Some sperm undergo degradation in the spermathecal epithelium, and an interepithelial leukocyte was observed in one specimen. Apical secretory vacuoles and sperm are absent from the spermathecae of a specimen sacrificed 62 days after removal from a tended egg clutch. This is the first report on the spermathecal cytology of a salamander from the Ambystomatidae, and comparisons with salamanders from other families provide a morphological basis for considering spermathecae polyphyletic within the Caudata. © 1993 Wiley-Liss, Inc.  相似文献   

5.
6.
The structures of the female reproductive system (ovary, oviduct and cloaca) of Ichthyophis supachaii were investigated by dissection, histology and light microscopy. Paired, elongated, sac‐like ovaries are parallel to the gut and fat bodies. Follicle stages include germinal nests of oogonia and primary oocytes, early and late previtellogenic follicles, early and late vitellogenic follicles and atretic follicles. Germinal nests of oogonia comprise oogonia and prefollicular cells. Nests of primary oocytes contain clusters of synchronously developing primary oocytes enclosed by connective tissue. Primary oocytes are associated with follicular cells. Previtellogenic follicles initially form the vitelline envelope, theca cell layers and patches of ooplasmic glycoproteins. Vitellogenic follicles contain heterogeneously sized spherical yolk granules. Atresia is present in several stages of developing follicles. The oviduct is divided into the anterior, middle and posterior parts. All oviductal parts are lined by non‐ciliated epithelium. A small number of mucous cells are present in the middle part. The cloaca of female I. supachaii is divided into the anterior and posterior chambers. The anterior chamber is lined by glandular stratified columnar epithelium, while the posterior chamber has stratified cuboidal epithelium with less mucus production. Our results contribute to useful information on the reproductive biology of caecilians.  相似文献   

7.
Odontogenesis of early larval non-pedicellate teeth, late larval teeth with a more or less distinct dividing zone and fully transformed pedicellate teeth in Ambystoma mexicanum (Urodela) was studied to obtain insights into the development of differently structured teeth in lower vertebrates. Using transmission electron microscopy we investigated five developmental stages: (1) papilla; (2) bell stage (secretion of the matrix begins); (3) primordium (mineralization and activity of ameloblasts starts); (4) replacement tooth (young, old); and (5) established, functional tooth. Development of the differently structured teeth is largely identical in the first three stages. Mineralization takes place in apico-basal direction up to the (prospective) pedicel (early and some late larvae) or up to the zone that divides the late larval and transformed tooth in pedicel and dentine shaft (pedicellate condition). Mineralization starts directly at the collagen and by means of matrix vesicles. First odontoblasts develop small processes that extend to the basal lamina of the inner epithelial layer of the enamel organ. The processes are small and lack organelles in early larval teeth, but become larger, arborescent, and contain some organelles in late larval and transformed teeth. The processes are surrounded by unmineralized matrix (predentine). Odontoblasts at the basis of the teeth, at the pedicel, and in the zone of division do not develop significant cytoplasmic processes that extend into the matrix. Cells of the inner enamel epithelium differentiate to ameloblasts that secrete the enamel. In the early larval tooth they show an extensive basal labyrinth that becomes regressive when the enamel layer is completed. In late larval and transformed teeth, however, a large cavity arises between the basal ruffled border of ameloblasts and their basal lamina. This cavity appears to mediate amelogenesis. A small apical zone in early, but not in late larval teeth directly below the thin enamel layer consists of enameloid and is free of dentine channels.  相似文献   

8.
Females of the marbled salamander, Ambystoma opacum, store sperm in exocrine glands called spermathecae in the roof of the cloaca. Eggs are fertilized by sperm released from the spermathecae during oviposition. Some sperm remain in the spermathecae following oviposition, but these sperm degenerate within a month and none persists more than 6 mo after oviposition. Thus, sperm storage between successive breeding seasons does not occur. Apical secretory vaculoes are abundant during the fall mating season and contain a substance that is alcian blue+ at pH 2.5. Production of secretory vacuoles decreases markedly after oviposition, and the glands are inactive by the summer months. Ambystoma opacum is a terrestrial breeder, and some mating occurs prior to arrival at pond basins where oviposition occurs. Mating prior to arrival at the ovipository site may prolong the breeding season, leading to fitness implications for both males and females. Females have opportunities for more matings, and the possibilities for sperm competition in the spermathecae are enhanced. © 1995 Wiley-Liss, Inc.  相似文献   

9.
To date, little is known about the structure of the cells and the fibrillar matrix of the globuli ossei, globular structures showing histochemical properties of an osseous tissue, sometimes found in the resorption front of the hypertrophied cartilage in many tetrapods, and easily observed in the long bones of the Urodele Pleurodeles waltl. Here, we present the results obtained from the appendicular long bones of metamorphosed juveniles and subadults using histological and histochemical methods and transmission electron microscopy. The distal part of the cone‐shaped cartilage contains a heterogeneous cell population composed of the typical “light” hypertrophic chondrocytes and scarce “dark” hypertrophic chondrocytes. The “dark” chondrocytes display ultrastructural characteristics suggesting that they probably undergo degeneration through chondroptosis. However, in the hypertrophic, calcified cartilage close to the erosion front by the marrow, several noninvaded chondrocytic lacunae retained cells that do not show any morphological characteristics of degeneration and that cannot be identified as regular chondrocytes or osteocytes. These modified chondrocytes that have lost their regular morphology, appear to be active in the terminal cartilage and synthesize collagen fibrils of a peculiar diameter intermediate between the Type I collagen found in bone and the Type II collagen characteristic of cartilage. It is suggested that the local occurrence of globuli ossei is linked to a low rate of longitudinal growth as is the case in the long bones of postmetamorphic urodeles. J. Morphol. 275:1226–1237, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Concordant changes in the level of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.  相似文献   

11.
Summary In urodele amphibians, the lack of a reliable germ cell marker restricts the experimental study of the germ lineage. In the present work, we conducted genetic and histological analyses in order to demonstrate that melanin from oocytes constitutes a germ cell marker available for intraspecific experiments in Ambystoma mexicanum. Then, using this marker, we implanted germ cells from undifferentiated gonads (stage 48) into the blastocoel of host embryos and investigated their fate and determined state. Our results show that, from this stage on, the donor cells do not differentiate into other cell types; therefore, they are restricted in developmental capacity and irreversibly determined as germ cells. On the other hand, exogenous germ cells were found in an isotopic position until the young tail-bud stage, and then were found in an ectopic position; these results suggest that, from the middle tail-bud stage on, an active process contributes to migration of primordial germ cells to the gonadal territory.  相似文献   

12.
The alignment of sperm in a cloacal sperm storage gland, the spermatheca, was studied in female desmognathine salamanders by scanning and transmission electron microscopy. Females representing nine species and collected in spring, late summer, and fall in the southern Appalachian Mountains contained abundant sperm in their spermathecae. The spermatheca is a compound tubuloalveolar gland connected by a single common tube to the middorsal wall of the cloaca. Sperm enter the common tube in small groups aligned in parallel along their axes, and continue in a straight course until encountering divisions of the common tube (neck tubules) or luminal borders of distal bulbs, which can act as barriers. Sperm may form tangles, in which small clusters retain their mutual alignment, at the branches of the neck tubules from the common tube, or in the lumen of the distal bulbs, where subsequent waves of sperm collide with sperm already present. The nuclei of some sperm from the initial group to encounter the walls of the distal bulbs appear to become embedded in secretory material on the luminal border or in the apical cytoplasm of the spermathecal epithelial cells. We propose that these sperm become trapped in the spermatheca and are ultimately degraded. J. Morphol. 238:143–155, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Leiarius marmoratus, a freshwater catfish from Pimelodidae family, shows great biological and commercial relevance because of its geographic distribution and adaptation to fish-farm. The knowledge of the morphological characteristics of the digestive tract is fundamental to the understanding of fish physiology and nutrition, which helps in the planning of diets to provide better management and success in fish farming. Thus, this work described the morphology and histochemistry of the digestive tract of L. marmoratus adults. After euthanasia, the animals were dissected for analysis of the digestive tract. The oesophagus is a short and distensive organ with longitudinal folds that allow the passage of large food, e.g., other fishes. Oesophageal mucosa layer shows a stratified epithelium with goblet cells and club cells. The secretion of goblet cells is composed of neutral and acidic mucins that are anchored in the epithelium luminal face by epithelial cells fingerprint-like microridges, lubricating the surface to facilitate the food sliding. Club cells have protein secretion that can be involved in alarm signals when epithelium is damaged and in immunological defence. The saccular stomach is highly distensible to store large food. Gastric mucosa layer is composed of epithelial cells with intense secretion of neutral mucin to protect against self-digestion of gastric juice. Cardiac and fundic regions of stomach show well-developed gastric glands composed of oxynticopeptic cells. These cells have numerous mitochondria, highlighting their intense activity in the synthesis of acid and enzymes. The intestine is divided into three regions: anterior, middle and posterior. Although it is a short tube, intestine shows longitudinal folds and microvilli of enterocytes to increase the contact surface. These folds are higher in the anterior region of the intestine, highlighting their function in digestion and absorption. Intestinal goblet cells have acidic and neutral mucins that lubricate the epithelium and aid in digestive processes. These cells increase in number towards aboral, and they are related to the protection and lubrication to expulsion of faecal bolus.  相似文献   

14.
This study aims to analyze the functional anatomy of the male reproductive system in Neocaridina davidi, a very popular ornamental species of caridean shrimp. Mature males were cold‐anaesthetized and their reproductive systems were dissected for histological and histochemical analysis, while the spermatozoa and spermatophore wall ultrastructure were analyzed under transmission electron microscopy. The male reproductive system consisted of two coiled testes, which were continuous with the vasa deferentia. Testes were positioned on the dorsal side of the cephalothorax above the hepatopancreas, and comprised seminiferous tubules where spermatogenesis occurred. Each vas deferens (VD) was a long tube dorsolaterally positioned with respect to the hepatopancreas, and increased in diameter at the distal end. Three regions could be recognized in the VD: proximal, middle, and distal. The proximal region had a cylindrical epithelium with secretory cells. The middle region (or typhlosole) had a dorsal fold (or typhlosole) with a thick columnar epithelium and high secretory activity. The spermatophore was a continuous cord with three acellular layers, which were mainly characterized by the presence of neutral glycoconjugates and proteins. The sperm morphology was distinct from the inverted cup‐shaped spermatozoa observed in the majority of caridean shrimps. The spermatozoa in specimens of N. davidi were spherical in shape, with a cross‐striated, single, short spike, and arranged in clusters of three or four sperm cells. The composition of the spermatophore, and the arrangement and form of the spermatozoa, seem to be unique in comparison to other species of Caridea.  相似文献   

15.
Salamanders possess kidneys with two distinct regions: a caudal pelvic portion and cranial genital portion. Nephrons of the pelvic region are responsible for urine formation and transport. Nephrons of the genital region transport sperm from testes to Wolffian ducts; however, nephrons of the genital region possess all the same functional regions found in pelvic kidney nephrons that are involved with urine formation and transport (renal corpuscles, proximal tubules, distal tubules, and collecting ducts). Morphological similarities between pelvic and genital regions stimulated past researchers to hypothesize that nephrons of genital kidneys possess dual function; that is, sperm transport and urine formation/transport. Considering size of glomeruli is directly related to the total amount of blood plasma filtered into the Bowman's space, we tested the hypothesis that nephrons of genital kidneys have reduced urine formation function by comparing glomerular size between nephrons of pelvic and genital kidney regions in Eurycea longicauda with general histological techniques. Light microscopy analysis revealed that glomeruli of pelvic kidneys were significantly larger than those measured from genital kidneys. Transmission electron microscopy analysis also revealed modifications in genital kidney nephrons when compared to pelvic kidney nephrons that suggested a decrease in urine formation function in genital kidneys. Such modifications included a decrease in basal and lateral plasma membrane folding in genital kidney proximal and distal tubules compared to that of pelvic kidney proximal and distal tubules. Genital kidney proximal tubules were also ciliated, which was not observed in pelvic kidney proximal tubules. In conclusion, although structurally similar at the histological level, it appears that nephrons of genital kidneys have decreased urine formation function based on glomerular size comparison and nephron ultrastructure.  相似文献   

16.
Lampbrush chromosomes isolated from the germinal vesicle of medium sized oocytes can be individually identified by differences in two characters: (1) chromosome regions rich in well developed loops, and (2) number and position of spheres. Actually the lateral loops are not all equally extended, but those which are inserted in a certain region of the axis of some chromosomes are more developed and sometimes are loaded with dense and copious matrix; chiasmata do not occur inside these regions. One or more spheres are present on eight chromosomes in the complement (chromosomes I–VI, VIII and X): the total number of spheres inserted on S. salamandra lampbrush chromosomes is the highest among the salamandrid species studied so far. These landmarks as well as the maximally developed normal loops are schematically drawn on the maps of the single lampbrush chromosomes. The length of the maps corresponds to the mean value of the lengths of each chromosome relative to that of chromosome XII, taken as 100 units long.Also bivalents from first metaphase spermatocytes have been analysed: they are generally ring-shaped with two terminal or subterminal chiasmata.  相似文献   

17.
In chondrichthyes, the process of spermatogenesis produces a spermatocyst composed of Sertoli cells and their cohort of associated spermatozoa linearly arrayed and embedded in the apical end of the Sertoli cell. The extratesticular ducts consist of paired epididymis, ductus deferens, isthmus, and seminal vesicles. In transit through the ducts, spermatozoa undergo modification by secretions of the extratesticular ducts and associated glands, i.e., Leydig gland. In mature animals, the anterior portion of the mesonephros is specialized as the Leydig gland that connects to both the epididymis and ductus deferens and elaborates seminal fluid and matrix that contribute to the spermatophore or spermatozeugmata, depending on the species. Leydig gland epithelium is simple columnar with secretory and ciliated cells. Secretory cells have periodic acid-Schiff positive (PAS+) apical secretory granules. In the holocephalan elephant fish, Callorhynchus milii, sperm and Sertoli cell fragments enter the first major extratesticular duct, the epididymis. In the epididymis, spermatozoa are initially present as individual sperm but soon begin to laterally associate so that they are aligned head-to-head. The epididymis is a highly convoluted tubule with a small bore lumen and an epithelium consisting of scant ciliated and relatively more secretory cells. Secretory activity of both the Leydig gland and epididymis contribute to the nascent spermatophores, which begin as gel-like aggregations of secretory product in which sperm are embedded. Fully formed spermatophores occur in the ductus. The simple columnar epithelium has both ciliated and secretory cells. The spermatophore is regionalized into a PAS+ and Alcian-blue-positive (AB+) cortex and a distinctively PAS+, and less AB+ medulla. Laterally aligned sperm occupy the medulla and are surrounded by a clear zone separate from the spermatophore matrix. Grossly, the seminal vesicles are characterized by spiral partitions of the epithelium that project into the lumen, much like a spiral staircase. Each partition is staggered with respect to adjacent partitions while the aperture is eccentric. The generally nonsecretory epithelium of the seminal vesicle is simple columnar with both microvillar and ciliated cells.  相似文献   

18.
19.
The innervation of the uterus in the ovoviviparous urodele Salamandra salamandra was studied. In whole mount preparations of the thin-walled uterus of pregnant females, a dense adrenergic network was demonstrated using a modified glyoxylic acid fluorescence technique. Based on vesicle type and cytochemical reactivity after chromate/dichromate fixation for electron microscopy at least two types of neural process were distinguished and classified as adrenergic and cholinergic. Both types are preferentially situated above or between the smooth muscles of the uterine tissue. Adjacent to the muscles in the walls of arterioles mainly adrenergic fibers are seen. Using high performance liquid chromatography with electrochemical detection in tissue homogenates of uterus a considerable amount of noradrenaline could be identified. The significance of the dense innervation is discussed with respect to the function of the uterus during pregnancy and birth.  相似文献   

20.
In this study, the anterior testicular ducts of the North American natricine snake Seminatrix pygaea are described using light and electron microscopy. From the seminiferous tubules, the rete testis passes into the epididymal sheath, a structure along the medial border of the testis heavily invested with collagen fibers. The rete testis consists of simple, nonciliated cuboidal epithelium (principal cells). The intratesticular ducts of the rete testis are narrow (50–70 μm) at their junction with the seminiferous tubules, widen (80–100 μm) as they extend extratesticularly, and divide into smaller branches as they anastomose with the next tubules, the ductuli efferentes. The ductuli efferentes are lined by simple cuboidal epithelium but possess nonciliated principal cells as well as ciliated cells. These are the only ducts in the male reproductive system with ciliated cells. The ductuli efferentes are narrow (25–45 μm), divide into numerous branches, and are highly convoluted. The ductus epididymis is the largest duct in diameter (240–330 μm), and the diameter widens and the epithelium thins posteriorly. The ductus epididymis is lined by nonciliated, columnar principal cells and basal cells. No regional differences in the ductus epididymis are apparent. Ultrastructural evidence suggests that all of the nonciliated principal cells in each of the anterior testicular ducts function in both absorption and secretion. Absorption occurs via small endocytic vesicles, some of which appear coated. Secretion is by a constitutive pathway in which small vesicles and a flocculent material are released via a merocrine process or through the formation of apocrine blebs. The secretory product is a glycoprotein. Overall, the characteristics of the anterior testicular ducts of this snake are concordant with those of other amniotes, and the traditional names used for snakes are changed to conform with those used for other sauropsids and mammals. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号