首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study investigated the roles of ERK1 and ERK2 in transforming growth factor‐β1 (TGF‐β1)‐induced tissue inhibitor of metalloproteinases‐3 (TIMP‐3) expression in rat chondrocytes, and the specific roles of ERK1 and ERK2 in crosstalk with Smad2/3 were investigated to demonstrate the molecular mechanism of ERK1/2 regulation of TGF‐β1 signalling. To examine the interaction of specific isoforms of ERK and the Smad2/3 signalling pathway, chondrocytes were infected with LV expressing either ERK1 or ERK2 siRNA and stimulated with or without TGF‐β1. At indicated time‐points, TIMP‐3 expression was determined by real‐time PCR and Western blotting; p‐Smad3, nuclear p‐Smad3, Smad2/3, p‐ERK1/2 and ERK1/2 levels were assessed. And then, aggrecan, type II collagen and the intensity of matrix were examined. TGF‐β1‐induced TIMP‐3 expression was significantly inhibited by ERK1 knock‐down, and the decrease in TIMP‐3 expression was accompanied by a reduction of p‐Smad3 in ERK1 knock‐down cells. Knock‐down of ERK2 had no effect on neither TGF‐β1‐induced TIMP‐3 expression nor the quantity of p‐Smad3. Moreover, aggrecan, type II collagen expression and the intensity of matrix were significantly suppressed by ERK1 knock‐down instead of ERK2 knock‐down. Taken together, ERK1 and ERK2 have different roles in TGF‐β1‐induced TIMP‐3 expression in rat chondrocytes. ERK1 instead of ERK2 can regulate TGF‐β/Smad signalling, which may be the mechanism through which ERK1 regulates TGF‐β1‐induced TIMP‐3 expression.  相似文献   

2.
Rho‐associated kinase (ROCK) plays a critical role in pressure overload‐induced left ventricular remodelling. However, the underlying mechanism remains unclear. Here, we reported that TGF‐β1‐induced ROCK elevation suppressed BMP‐2 level and strengthened fibrotic response. Exogenous BMP‐2 supply effectively attenuated TGF‐β1 signalling pathway through Smad6‐Smurf‐1 complex activation. In vitro cultured cardiomyocytes, mechanical stretch up‐regulated cardiac TGF‐β1, TGF‐β1‐dependent ROCK and down‐regulated BMP‐2, but BMP‐2 level could be reversed through blocking TGF‐β1 receptor by SB‐431542 or inhibition of ROCK by Y‐27632. TGF‐β1 could also activate ROCK and suppress endogenous BMP‐2 level in a dose‐dependent manner. Knock‐down BMP‐2 enhanced TGF‐β1‐mediated PKC‐δ and Smad3 signalling cascades. In contrast, treatment with Y‐27632 or SB‐431542, respectively suppressed ROCK‐dependent PKC‐δ and Smad3 activation, but BMP‐2 was only up‐regulated by Y‐27632. In addition, BMP‐2 silencing abolished the effect of Y‐27632, but not SB‐431542 on suppression of TGF‐β1 pathway. Further experiments showed that Smad6 Smurf1 interaction were required for BMP‐2‐evoked antagonizing effects. Smad6 overexpression attenuated TGF‐β1‐induced activation of PKC‐δ and Smad3, promoted TGF‐β RI degradation in BMP‐2 knock‐down cardiomyocytes, and could be abolished after knocking‐down Smurf‐1, in which Smad6/Smurf1 complex formation was critically involved. In vivo data showed that pressure overload‐induced collagen deposition was attenuated, cardiac function was improved and TGF‐β1‐dependent activation of PKC‐δ and Smad3 was reduced after 2 weeks treatment with rhBMP‐2(0.5 mg/kg) or Y‐27632 (10 mg/kg) in mice that underwent surgical transverse aortic constriction. In conclusion, we propose that BMP‐2, as a novel fibrosis antagonizing cytokine, may have potential beneficial effect in attenuating pressure overload‐induced cardiac fibrosis.  相似文献   

3.
4.
5.
Herein, we hypothesized that pro‐osteogenic MicroRNAs (miRs) could play functional roles in the calcification of the aortic valve and aimed to explore the functional role of miR‐29b in the osteoblastic differentiation of human aortic valve interstitial cells (hAVICs) and the underlying molecular mechanism. Osteoblastic differentiation of hAVICs isolated from human calcific aortic valve leaflets obtained intraoperatively was induced with an osteogenic medium. Alizarin red S staining was used to evaluate calcium deposition. The protein levels of osteogenic markers and other proteins were evaluated using western blotting and/or immunofluorescence while qRT‐PCR was applied for miR and mRNA determination. Bioinformatics and luciferase reporter assay were used to identify the possible interaction between miR‐29b and TGF‐β3. Calcium deposition and the number of calcification nodules were pointedly and progressively increased in hAVICs during osteogenic differentiation. The levels of osteogenic and calcification markers were equally increased, thus confirming the mineralization of hAVICs. The expression of miR‐29b was significantly increased during osteoblastic differentiation. Furthermore, the osteoblastic differentiation of hAVICs was significantly inhibited by the miR‐29b inhibition. TGF‐β3 was markedly downregulated while Smad3, Runx2, wnt3, and β‐catenin were significantly upregulated during osteogenic induction at both the mRNA and protein levels. These effects were systematically induced by miR‐29b overexpression while the inhibition of miR‐29b showed the inverse trends. Moreover, TGF‐β3 was a direct target of miR‐29b. Inhibition of miR‐29b hinders valvular calcification through the upregulation of the TGF‐β3 via inhibition of wnt/β‐catenin and RUNX2/Smad3 signaling pathways.  相似文献   

6.
7.
8.
9.
10.
Accelerated marrow adipogenesis has been associated with ageing and osteoporosis and is thought to be because of an imbalance between adipogenic and osteogenic differentiation of mesenchymal stem cell (MSCs). We have previously found that lysyl oxidase (Lox) inhibition disrupts BMP4‐induced adipocytic lineage commitment and differentiation of MSCs. In this study, we found that lox inhibition dramatically up‐regulates BMP4‐induced expression of CCAAT/enhancer binding protein (C/EBP) homologous protein 10 (CHOP‐10), which then promotes BMP4‐induced osteogenesis of MSCs both in vitro and in vivo. Specifically, Lox inhibition or CHOP‐10 up‐regulation activated Wnt/β‐catenin signalling to enhance BMP4‐induced osteogenesis, with pro‐adipogenic p38 MAPK and Smad signalling suppressed. Together, we demonstrate that Lox/CHOP‐10 crosstalk regulates BMP4‐induced osteogenic and adipogenic fate determination of MSCs, presenting a promising therapeutic target for osteoporosis and other bone diseases.  相似文献   

11.
Liver fibrosis is characterized by an exacerbated accumulation of deposition of the extracellular matrix (ECM), and the activation of hepatic stellate cells (HSC) plays a pivotal role in the development of liver fibrosis. Periostin has been shown to regulate cell adhesion, proliferation, migration and apoptosis; however, the involvement of periostin and its role in transforming growth factor (TGF)‐β1‐induced HSC activation remains unclear. We used RT‐PCR and Western blot to evaluate the expression level of periostin in hepatic fibrosis tissues and HSCs, respectively. Cell proliferation was determined using the Cell Proliferation ELISA BrdU kit, cell cycle was analysed by flow cytometry. The expression of α‐smooth muscle actin (α‐SMA), collagen I, TGF‐β1, p‐Smad2 and p‐Smad3 were determined by western blot. Our study found that periostin was up‐regulated in liver fibrotic tissues and activated HSCs. In addition, siRNA‐periostin suppressed TGF‐β1‐induced HSC proliferation. The HSC transfected with siRNA‐periostin significantly inhibited TGF‐β1‐induced expression levels of α‐SMA and collagen I. Furthermore, TGF‐β1 stimulated the expression of periostin, and siRNA‐periostin attenuated TGF‐β1‐induced Smad2/3 activation in HSCs. These results suggest that periostin may function as a novel regulator to modulate HSC activation, potentially by promoting the TGF‐β1/Smad signalling pathway, and propose a strategy to target periostin for the treatment of liver fibrosis.  相似文献   

12.
13.
14.
Chronic allograft dysfunction (CAD) induced by kidney interstitial fibrosis is the main cause of allograft failure in kidney transplantation. Endothelial‐to‐mesenchymal transition (EndMT) may play an important role in kidney fibrosis. We, therefore, undertook this study to characterize the functions and potential mechanism of EndMT in transplant kidney interstitial fibrosis. Proteins and mRNAs associated with EndMT were examined in human umbilical vein endothelial cells (HUVECs) treated with transforming growth factor‐beta1 (TGF‐β1) at different doses or at different intervals with western blotting, qRT‐PCR and ELISA assays. Cell motility and migration were evaluated with motility and migration assays. The mechanism of EndMT induced by TGF‐β1 was determined by western blotting analysis of factors involved in various canonical and non‐canonical pathways. In addition, human kidney tissues from control and CAD group were also examined for these proteins by HE, Masson's trichrome, immunohistochemical, indirect immunofluorescence double staining and western blotting assays. TGF‐β1 significantly promoted the development of EndMT in a time‐dependent and dose‐dependent manner and promoted the motility and migration ability of HUVECs. The TGF‐β/Smad and Akt/mTOR/p70S6K signalling pathways were found to be associated with the pathogenesis of EndMT induced by TGF‐β1, which was also proven in vivo by the analysis of specimens from the control and CAD groups. EndMT may promote transplant kidney interstitial fibrosis by targetting the TGF‐β/Smad and Akt/mTOR/p70S6K signalling pathways, and hence, result in the development of CAD in kidney transplant recipients.  相似文献   

15.
VEGF (vascular endothelial growth factor) is a potent proangiogenic cytokine, and vascular change is one of the characteristic features of airway remodelling. Since the glucocorticoids have shown antifibrosis properties, we sought to investigate whether budesonide, a widely used glucocorticoid in clinical practice, could attenuate TGF‐β1 (transforming growth factor‐β1)‐induced VEGF production by HFL‐1 (human lung fibroblasts). HFL‐1 fibroblasts were treated with various concentrations of budesonide (10?11 M, 10?9 M and 10?7 M) in the absence or presence of TGF‐β1. Postculture media were collected for ELISA of VEGF at the indicated times. The cell lysates were subjected to Western blotting analysis to test TGF‐β1/Smad and MAP (mitogen‐activated protein) kinase signalling activation, respectively. The results suggested that budesonide pretreatment reduced the significant increase of VEGF release induced by TGF‐β1 in HFL‐1 fibroblasts in a dose‐dependent manner, and suppressed the increase of phospho‐Smad3 and phosphor‐ERK (extracellular signal‐regulated kinase) protein levels. In conclusion, budesonide may reduce TGF‐β1‐induced VEGF production in the lung, probably through the Smad/ERK signalling pathway and, thus, may provide new sight into the molecular mechanism underlying glucocorticoid therapy for airway inflammatory diseases.  相似文献   

16.
Acetyl‐11‐keto‐β‐boswellic acid (AKBA), an active triterpenoid compound from the extract of Boswellia serrate, has been reported previously in our group to alleviate fibrosis in vascular remodelling. This study aimed to elucidate the in vivo and in vitro efficacy and mechanism of AKBA in renal interstitial fibrosis. The experimental renal fibrosis was produced in C57BL/6 mice via unilateral ureteral obstruction (UUO). Hypoxia‐induced HK‐2 cells were used to imitate the pathological process of renal fibrosis in vitro. Results showed that the treatment of AKBA significantly alleviated UUO‐induced impairment of renal function and improved the renal fibrosis by decreasing the expression of TGF‐β1, α‐SMA, collagen I and collagen IV in UUO kidneys. In hypoxia‐induced HK‐2 cells, AKBA displayed remarkable cell protective effects and anti‐fibrotic properties by increasing the cell viability, decreasing the lactate dehydrogenase (LDH) release and inhibiting fibrotic factor expression. Moreover, in obstructed kidneys and HK‐2 cells, AKBA markedly down‐regulated the expression of TGFβ‐RI, TGFβ‐RII, phosphorylated‐Smad2/3 (p‐Smad2/3) and Smad4 in a dose‐dependent fashion while up‐regulated the expression of Klotho and Smad7 in the same manner. In addition, the effects of AKBA on the Klotho/TGF‐β/Smad signalling were reversed by transfecting with siRNA‐Klotho in HK‐2 cells. In conclusion, our findings provide evidence that AKBA can effectively protect kidney against interstitial fibrosis, and this renoprotective effect involves the Klotho/TGF‐β/Smad signalling pathway. Therefore, AKBA could be considered as a promising candidate drug for renal interstitial fibrosis.  相似文献   

17.
Obstructive nephropathy is the end result of a variety of diseases that block drainage from the kidney(s). Transforming growth factor‐β1 (TGF‐β1)/Smad3‐driven renal fibrosis is the common pathogenesis of obstructive nephropathy. In this study, we identified petchiether A (petA), a novel small‐molecule meroterpenoid from Ganoderma, as a potential inhibitor of TGF‐β1‐induced Smad3 phosphorylation. The obstructive nephropathy was induced by unilateral ureteral obstruction (UUO) in mice. Mice received an intraperitoneal injection of petA/vehicle before and after UUO or sham operation. An in vivo study revealed that petA protected against renal inflammation and fibrosis by reducing the infiltration of macrophages, inhibiting the expression of proinflammatory cytokines (interleukin‐1β and tumour necrosis factor‐α) and reducing extracellular matrix deposition (α‐smooth muscle actin, collagen I and fibronectin) in the obstructed kidney of UUO mice; these changes were associated with suppression of Smad3 and NF‐κB p65 phosphorylation. Petchiether A inhibited Smad3 phosphorylation in vitro and down‐regulated the expression of the fibrotic marker collagen I in TGF‐β1‐treated renal epithelial cells. Further, we found that petA dose‐dependently suppressed Smad3‐responsive promoter activity, indicating that petA inhibits gene expression downstream of the TGF‐β/Smad3 signalling pathway. In conclusion, our findings suggest that petA protects against renal inflammation and fibrosis by selectively inhibiting TGF‐β/Smad3 signalling.  相似文献   

18.
This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross‐talks with BMP9 and regulates BMP9‐induced osteogenic differentiation. We find that EGF potentiates BMP9‐induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG‐1478 and AG‐494 in a dose‐ and time‐dependent manner. Furthermore, EGF significantly augments BMP9‐induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9‐induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up‐regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross‐talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine.  相似文献   

20.
This study investigated the effects of Golgi membrane protein 73 (GP73) on the epithelial–mesenchymal transition (EMT) and on bladder cancer cell invasion and metastasis through the TGF‐β1/Smad2 signalling pathway. Paired bladder cancer and adjacent tissue samples (102) and normal bladder tissue samples (106) were obtained. Bladder cancer cell lines (T24, 5637, RT4, 253J and J82) were selected and assigned to blank, negative control (NC), TGF‐β, thrombospondin‐1 (TSP‐1), TGF‐β1+ TSP‐1, GP73‐siRNA‐1, GP73‐siRNA‐2, GP73‐siRNA‐1+ TSP‐1, GP73‐siRNA‐1+ pcDNA‐GP73, WT1‐siRNA and WT1‐siRNA + GP73‐siRNA‐1 groups. Expressions of GP73, TGF‐β1, Smad2, p‐Smad2, E‐cadherin and vimentin were detected using RT‐qPCR and Western blotting. Cell proliferation, migration and invasion were determined using MTT assay, scratch testing and Transwell assay, respectively. Compared with the blank and NC groups, levels of GP73, TGF‐β1, Smad2, p‐Smad2, N‐cadherin and vimentin decreased, and levels of WT1 and E‐cadherin increased in the GP73‐siRNA‐1 and GP73‐siRNA‐2 groups, while the opposite results were observed in the WT1 siRNA, TGF‐β, TSP‐1 and TGF‐β + TSP‐1 groups. Cell proliferation, migration and invasion notably decreased in the GP73‐siRNA‐1 and GP73‐siRNA‐2 groups in comparison with the blank and NC groups, while in the WT1 siRNA, TGF‐β, TSP‐1 and TGF‐β + TSP‐1 groups, cell migration, invasion and proliferation showed the reduction after the EMT. These results suggest that GP73 promotes bladder cancer invasion and metastasis by inducing the EMT through down‐regulating WT1 levels and activating the TGF‐β1/Smad2 signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号