首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Poly(A)-binding protein-interacting protein 1 (Paip1) stimulates translational initiation by inducing the circularization of mRNA. However, the mechanisms underlying Paip1 regulation, particularly its protein stability, are still unclear. Here, we show that the E6AP carboxyl terminus (HECT)-type ubiquitin ligase WW domain-containing protein 2 (WWP2), a homolog of the HECT-type ubiquitin ligase WWP1, interacts with and targets Paip1 for ubiquitination and proteasomal degradation. Mapping of the region including the WW domain of WWP2 revealed the interaction between WWP2 and the PABP-binding motif 2 (PAM2) of Paip1. The two consecutive PXXY motifs in PAM2 are required for WWP2-mediated ubiquitination and degradation. Furthermore, ectopic expression of WWP2 decreases translational stimulatory activity with the degradation of Paip1. We therefore provide evidence that the stability of Paip1 can be regulated by ubiquitin-mediated degradation, thus highlighting the importance of WWP2 as a suppressor of translation.  相似文献   

16.
The SCF-ROC1 ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase complex targets the ubiquitination and subsequent degradation of protein substrates required for the regulation of cell cycle progression and signal transduction pathways. We have previously shown that ROC1-CUL1 is a core subassembly within the SCF-ROC1 complex, capable of supporting the polymerization of ubiquitin. This report describes that the CUL1 subunit of the bacterially expressed, unmodified ROC1-CUL1 complex is conjugated with Nedd8 at Lys-720 by HeLa cell extracts or by a purified Nedd8 conjugation system (consisting of APP-BP1/Uba3, Ubc12, and Nedd8). This covalent linkage of Nedd8 to CUL1 is both necessary and sufficient to markedly enhance the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. A mutation of Lys-720 to arginine in CUL1 eliminates the Nedd8 modification, abolishes the activation of the ROC1-CUL1 ubiquitin ligase complex, and significantly reduces the ability of SCF(HOS/beta)(-TRCP)-ROC1 to support the ubiquitination of phosphorylated IkappaBalpha. Thus, although regulation of the SCF-ROC1 action has been previously shown to preside at the level of recognition of a phosphorylated substrate, we demonstrate that Nedd8 is a novel regulator of the efficiency of polyubiquitin chain synthesis and, hence, promotes rapid turnover of protein substrates.  相似文献   

17.
The newly identified gene, overexpressed in lung cancer 1 (OLC1), is highly expressed as OLC1 protein in the tumor tissues of lung cancer patients with histories of cigarette smoking. However, the underlying mechanisms of how the gene is affected by cigarette smoke have been poorly characterized. In this study, we investigated how OLC1 is regulated in lung cancer cells by cigarette smoke condensate (CSC).Compared to the controls, CSC treatment increased OLC1 protein levels in a dose- and time-dependent manner without affecting OLC1 mRNA levels in lung cancer cells. Ubiquitination of OLC1 protein was blocked upon CSC treatment. Biochemical analysis revealed that the ubiquitin E3 ligase anaphase promoting complex (APC) and its activators cell-division cycle protein 20 (CDC20) and cadherin-1 (CDH1) are responsible for the degradation of OLC1. However, upon introducing CSC the binding of OLC1 to the proteins CDC20, CDH1, and APC2 was impaired. These results demonstrate that CSC regulates OLC1 expression in lung cancer cells by compromising its ubiquitination and subsequent degradation through the ubiquitin E3 ligase APC.  相似文献   

18.
19.
Early embryonic lung branching morphogenesis is regulated by many growth factor-mediated pathways. Bone morphogenetic protein 4 (BMP4) is one of the morphogens that stimulate epithelial branching in mouse embryonic lung explant culture. To further understand the molecular mechanisms of BMP4-regulated lung development, we studied the biological role of Smad-ubiquitin regulatory factor 1 (Smurf1), an ubiquitin ligase specific for BMP receptor-regulated Smads, during mouse lung development. The temporo-spatial expression pattern of Smurf1 in mouse embryonic lung was first determined by quantitative real-time PCR and immunohistochemistry. Overexpression of Smurf1 in airway epithelial cells by intratracheal introduction of recombinant adenoviral vector dramatically inhibited embryonic day (E) 11.5 lung explant growth in vitro. This inhibition of lung epithelial branching was restored by coexpression of Smad1 or by addition of soluble BMP4 ligand into the culture medium. Studies at the cellular level show that overexpression of Smurf1 reduced epithelial cell proliferation and differentiation, as documented by reduced PCNA-positive cell index and by reduced mRNA levels for surfactant protein C and Clara cell protein 10 expression. Further studies found that overexpression of Smurf1 reduced BMP-specific Smad1 and Smad5, but not Smad8, protein levels. Thus overexpression of Smurf1 specifically promotes Smad1 and Smad5 ubiquitination and degradation in embryonic lung epithelium, thereby modulating the effects of BMP4 on embryonic lung growth.  相似文献   

20.
The F-box protein is the substrate recognition subunit of SCF (SKP1/CUL1/F-box) E3 ubiquitin ligase complex, a multicomponent RING-type E3 ligase involved in the regulation of numerous cellular processes by targeting critical regulatory proteins for ubiquitination. However, whether and how F-box proteins are regulated is largely unknown. Here we report that FBXO28, a poorly characterized F-box protein, is a novel substrate of SCF E3 ligase. Pharmaceutical or genetic inhibition of neddylation pathway that is required for the activation of SCF stabilizes FBXO28 and prolongs its half-life. Meanwhile, FBXO28 is subjected to ubiquitination and cullin1-based SCF complex promotes FBXO28 degradation. Moreover, deletion of F-box domain stabilizes FBXO28 and knockdown of endogenous FBXO28 strongly upregulates exogenous FBXO28 expression. Taken together, these data reveal that SCFFBXO28 is the E3 ligase responsible for the self-ubiquitination and proteasomal degradation of FBXO28, providing a new clue for the upstream signaling regulation for F-box proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号