首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robert A. Newman 《Oecologia》1998,115(1-2):9-16
Phenotypic plasticity is adaptive for an organism inhabiting a variable environment if the optimal phenotype of a trait that affects fitness varies with environmental conditions, and if the organism can perceive environmental conditions and respond appropriately. Wilbur and Collins have proposed that amphibian larvae might respond adaptively to changes in their resource environment. If conditions for growth in the aquatic environment deteriorate, then a tadpole should metamorphose earlier and smaller than a tadpole under constant high growth conditions. Several experiments on a variety of species have tested this prediction, but only one demonstrated such a response. That experiment involved Couch's spadefoot toads (Scaphiopus couchii) and employed a gradual decrease in food level, whereas the others all used an abrupt switch from high to low food. The purpose of the present experiment was to examine the response of S. couchii to an abrupt change in food level, and to determine if the response depended on the level of two other factors, density and temperature, that also affect larval development. The average effects of the abrupt change in food level were similar to those seen in studies on other species: age at metamorphosis was primarily determined by the early food regime, and size at metamorphosis was determined by food level late in the larval period, suggesting that the effect of decreased food depends on how the food change is done. However, the response to even an abrupt food change depended on interactions with other environmental factors. At high temperature, high initial food, and low density, development was very rapid and tadpoles switched from high to low food metamorphosed at about the same time and size as those at constant high food. In contrast, under high temperature and high initial food conditions, but at high density, tadpoles switched to low food metamorphosed somewhat earlier and smaller, on average, than tadpoles kept at high food. At low temperature, the direction of response depended on density: tadpoles metamorphosed much smaller and slightly, but significantly, earlier at low density, but smaller and later at high density. The developmental response to increased food also varied with temperature. Larvae at high temperature metamorphosed earlier and larger than those at constant low food. At low temperature, larvae metamorphosed larger, but at nearly the same time as their counterparts at constant low food. The combination of high density and constant low food prevented any tadpoles from metamorphosing at high temperature, and allowed relatively few metamorphs at low temperature. Under conditions which impose either very rapid or retarded development, the opportunity to respond to altered food level may be limited. Interactions among environmental factors, therefore, may constrain responses to changing conditions, and may even prevent completion of development. Received: 3 February 1997 / Accepted: 2 October 1997  相似文献   

2.
3.
Shrimp is one of few marine species cultured worldwide for which several selective breeding programs are being conducted. One environmental factor that can affect the response to selection in breeding programs is the density at which the shrimp are cultured (low-medium-high). Phenotypic plasticity in the growth response to different densities might be accompanied by a significant genotype by environment interaction, evidenced by a change in heritabilities between environments and by a genetic correlation less than one for a unique trait between environments. Our goal was to understand whether different growth densities affect estimates of those genetic parameters for adult body weight (BW) in the Pacific white shrimp (Penaeus vannamei). BW heritabilities were significantly different between environments, with the largest at high density. These differences resulted from both an increased additive genetic variance and a decreased environmental variance when grown at high density. The genetic correlation between BWs at the two environmental conditions was significantly less than one. Whereas these results might be suggestive for carrying out shrimp selective breeding for BW under high density conditions, further understanding of genetic correlations between growth and reproductive traits within a given environment is necessary, as there are indications of reduced reproductive fitness for shrimp grown at high densities.  相似文献   

4.
The growth and development of plants are influenced by the integration of diverse endogenous and environmental signals. Acting as a mediator of extrinsic signals, the stress hormone, abscisic acid (ABA), has been shown to regulate many aspects of plant development in response to unfavourable environmental stresses, allowing the plant to cope and survive in adverse conditions, such as drought, low or high temperature, or high salinity. Here, we summarize recent evidence on the roles of ABA in environmental stress responses in the Arabidopsis root; and on how ABA crosstalks with other phytohormones to modulate root development and growth in Arabidopsis. We also review literature findings showing that, in response to environmental stresses, ABA affects the root system architecture in other plant species, such as rice.  相似文献   

5.
Previous syntheses on the effects of environmental conditions on the outcome of plant–plant interactions summarize results from pairwise studies. However, the upscaling to the community-level of such studies is problematic because of the existence of multiple species assemblages and species-specific responses to both the environmental conditions and the presence of neighbors. We conducted the first global synthesis of community-level studies from harsh environments, which included data from 71 alpine and 137 dryland communities to: (i) test how important are facilitative interactions as a driver of community structure, (ii) evaluate whether we can predict the frequency of positive plant–plant interactions across differing environmental conditions and habitats, and (iii) assess whether thresholds in the response of plant–plant interactions to environmental gradients exists between “moderate” and “extreme” environments. We also used those community-level studies performed across gradients of at least three points to evaluate how the average environmental conditions, the length of the gradient studied, and the number of points sampled across such gradient affect the form and strength of the facilitation-environmental conditions relationship. Over 25% of the species present were more spatially associated to nurse plants than expected by chance in both alpine and dryland areas, illustrating the high importance of positive plant–plant interactions for the maintenance of plant diversity in these environments. Facilitative interactions were more frequent, and more related to environmental conditions, in alpine than in dryland areas, perhaps because drylands are generally characterized by a larger variety of environmental stress factors and plant functional traits. The frequency of facilitative interactions in alpine communities peaked at 1000 mm of annual rainfall, and globally decreased with elevation. The frequency of positive interactions in dryland communities decreased globally with water scarcity or temperature annual range. Positive facilitation-drought stress relationships are more likely in shorter regional gradients, but these relationships are obscured in regions with a greater species turnover or with complex environmental gradients. By showing the different climatic drivers and behaviors of plant–plant interactions in dryland and alpine areas, our results will improve predictions regarding the effect of facilitation on the assembly of plant communities and their response to changes in environmental conditions.  相似文献   

6.
7.
The role of habitat-forming species in promoting biodiversity is widely acknowledged to vary across environmental gradients according to the extent to which they modify resources and environmental conditions. Population- and individual-level traits of habitat-forming species that influence species interactions may vary across gradients, but the importance of this indirect effect of environmental context is seldom considered. Here, we conducted surveys and field experiments to partition the effects of wave exposure on habitat-provisioning for invertebrates by oysters into direct and indirect effects, arising from morphological variation of the oysters. A survey of nine sites with varying degrees of wave exposure in Port Jackson, Australia revealed a decline in oyster densities and surface area as wave energy increased. Correlated to declining oyster surface area was a decrease in the richness and abundance of associated invertebrates. By contrast, taxon diversity increased with increasing wave energy. Experimental deployments of oysters at high and low wave energy sites confirmed that variations in oyster morphology was a phenotypically plastic response to environmental conditions. Oyster recruitment was also lower at high as compared to low wave energy sites, further contributing to the variation in oyster habitat among sites. A colonisation experiment in which exposed and sheltered morphologies of oysters were deployed under high and low wave energy conditions in a fully orthogonal design found that invertebrate communities were influenced by both the wave energy of sites and by habitat structure. Our study suggests that in some instances the indirect effects of environment on habitat availability, arising from changes in habitat-forming species density and morphology, may be as, or even more, important than the direct effects. Understanding how traits of habitat-forming species respond to environmental conditions, and how intraspecific trait-variation cascades to influence associated communities is critical to predicting when and where positive species interactions will be greatest.  相似文献   

8.
The complexity of plant response to density in nature has been recognized, but seldom interpreted, especially in the context of various abiotic environments or plant ontogeny. Our objective was to investigate whether and how soil conditions and plant growth stage affected plant responses to density in a variety of traits under field conditions. Abutilon theophrasti (annual species) was planted at low, medium, and high densities (13.4, 36, and 121 plants m?2, respectively) under good or poor soil conditions and harvested 30, 50, or 70 days after seedling emergence. Responses of many traits to density varied with soil conditions and growth stages. Initially, leaf size, petiole angle, and stem diameter were decreased by high density in good soil, but not in poor soil. After 50 days, high density induced extra stem elongation and stem mass increment in both soil conditions; this was at the cost of biomass allocated to other organs in good soil. In contrast, in poor soil, high density decreased more morphological traits, with less effects on allocation patterns. At 70 days, there were decreases in more traits in response to density in poor soil, whereas most traits remained stable in good soil. Results demonstrated that density–plasticity was inherently complex, including multiple responsive trends within and among traits, and revealed that the ability of the plants to adapt to variation in density via responses of various modular traits has been underestimated. Soil conditions and growth stage may affect these responses, either directly through effects on plant size and competition strength, or indirectly through effects on strength of stem response. Contrasting stage-dependent plasticity to density under two soil conditions also revealed different growth strategies of plants in dealing with biotic environmental challenges. These findings highlighted the importance of considering roles of abiotic environmental factors and growth stage in modulating plasticity to biotic environments.  相似文献   

9.
Breeding is limited by energetic or environmental constraints and long-lived species sometimes skip breeding opportunities. Environmental conditions may vary considerably across the geographic and elevational range of a species and species that can respond through variation in life history strategies are likely to maintain populations at the extremes of their ranges. The decision to skip breeding enables animals to adjust life history to circumstances, and plasticity in behavior allows implementation of adjustments. Elevational patterns suggest that breeding may be limited physiologically at high elevations (e.g., greater probability of skipped breeding; resources and environmental conditions more variable) in contrast to low elevations (probability of skipping breeding lower; resources and environmental conditions more predictable). We estimated the probabilities of survival and skipped breeding in a high-elevation population of common toads and compared estimates to existing data for common toads at low elevations, and to another toad species inhabiting a similar high elevation environment. Female common toads at high elevations tend to have high probabilities of skipping breeding and survival relative to data for common toads at low elevations, and appear to use a similar strategy of skipping breeding in response to similar environmental constraints as other toads at high elevations. We provide evidence of variability in this aspect of life history for common toads. Understanding variation in life history within widely distributed species is critical. Knowing that certain life history strategies are employed on a continuum informs conservation efforts, especially as impacts of climate change are likely to be different depending on elevation.  相似文献   

10.
A key finding from elevated [CO(2)] field experiments is that the impact of elevated [CO(2)] on plant and ecosystem function is highly dependent upon other environmental conditions, namely temperature and the availability of nutrients and soil moisture. In addition, there is significant variation in the response to elevated [CO(2)] among plant functional types, species and crop varieties. However, experimental data on plant and ecosystem responses to elevated [CO(2)] are strongly biased to economically and ecologically important systems in the temperate zone. There is a multi-biome gap in experimental data that is most severe in the tropics and subtropics, but also includes high latitudes. Physiological understanding of the environmental conditions and species found at high and low latitudes suggest they may respond differently to elevated [CO(2)] than well-studied temperate systems. Addressing this knowledge gap should be a high priority as it is vital to understanding 21st century food supply and ecosystem feedbacks on climate change.  相似文献   

11.
Pathogens often encounter stressful conditions inside their hosts. In the attempt to characterize the stress response in Brucella suis, a gene highly homologous to Escherichia coli clpB was isolated from Brucella suis, and the deduced amino acid sequence showed features typical of the ClpB ATPase family of stress response proteins. Under high-temperature stress conditions, ClpB of B. suis was induced, and an isogenic B. suis clpB mutant showed increased sensitivity to high temperature, but also to ethanol stress and acid pH. The effects were reversible by complementation. Simultaneous inactivation of clpA and clpB resulted in a mutant that was sensitive to oxidative stress. In B. suis expressing gfp, ClpA but not ClpB participated in degradation of the green fluorescent protein at 42 degrees C. We concluded that ClpB was responsible for tolerance to several stresses and that the lethality caused by harsh environmental conditions may have similar molecular origins.  相似文献   

12.
Plants may experience different environmental cues throughout their development which interact in determining their phenotype. This paper tests the hypothesis that environmental conditions experienced early during ontogeny affect the phenotypic response to subsequent environmental cues. This hypothesis was tested by exposing different accessions of Rumex palustris to different light and nutrient conditions, followed by subsequent complete submergence. Final leaf length and submergence-induced plasticity were affected by the environmental conditions experienced at early developmental stages. In developmentally older leaves, submergence-induced elongation was lower in plants previously subjected to high-light conditions. Submergence-induced elongation of developmentally younger leaves, however, was larger when pregrown in high light. High-light and low-nutrient conditions led to an increase of nonstructural carbohydrates in the plants. There was a positive correlation between submergence-induced leaf elongation and carbohydrate concentration and content in roots and shoots, but not with root and shoot biomass before submergence. These results show that conditions experienced by young plants modulate the responses to subsequent environmental conditions, in both magnitude and direction. Internal resource status interacts with cues perceived at different developmental stages in determining plastic responses to the environment.  相似文献   

13.
Classical selection for increasing prolificacy in sheep leads to a concomitant increase in its variability, even though the objective of the breeder is to maximise the frequency of an intermediate litter size rather than the frequency of high litter sizes. For instance, in the Lacaune sheep breed raised in semi-intensive conditions, ewes lambing twins represent the economic optimum. Data for this breed, obtained from the national recording scheme, were analysed. Variance components were estimated in an infinitesimal model involving genes controlling the mean level as well as its environmental variability. Large heritability was found for the mean prolificacy, but a high potential for increasing the percentage of twins at lambing while reducing the environmental variability of prolificacy is also suspected. Quantification of the response to such a canalising selection was achieved.  相似文献   

14.
Although differences in the corticosterone stress response have frequently been reported between populations or closely related subspecies, their origin remains unclear. These differences may appear because individuals adjust their corticosterone stress response to the environmental conditions they are experiencing. However, they may also result from selection that has favoured individuals with specific corticosterone stress response or from environmental factors that have affected the development of the corticosterone stress response during early life. We investigated these hypotheses by studying the corticosterone stress response of two closely related subspecies of swamp sparrows (Melospiza sp.). We showed for the first time that two closely related subspecies can differ in their corticosterone stress response when raised at the laboratory and held in similar conditions for a year. Thus, we demonstrated that selection, developmental processes or a conjunction of both of these processes can account for variation in the stress response between closely related subspecies.  相似文献   

15.
In this study morphological variation and the potential for competition to affect biomass and seedling selection of the families of five populations of Rumex acetosella L. sampled along a successional old-field gradient have been investigated. Seeds from 25 families were submitted to four competitive regimes: no competition (one plant per pot), medium competition (two plants/ pot taking plants from the same population), high within-population competition (four individuals from the same population in a pot) and high between-population competition (four individuals from two different populations in a pot). Eight traits were analysed after 3 months of growth for variation among families within populations. A significant difference among families within the two older populations was recorded for sexual biomass and related components. High sensitivity of these traits to density was observed in all populations except the youngest, suggesting specialization to particular environmental conditions in late successional populations, and a good adaptive capacity to buffer environmental variation in the pioneer population. Little significant interaction between competitive regimes and families within populations was found, i.e. genotypes within each population showed little variation in their response to environmental variation. Genotypic variance decreased with increasing competitive conditions for the majority of the traits. However, the percentage of variance in sexual reproduction explained by family was stable among treatments. Tradeoffs between vegetative reproduction and sexual reproduction were recorded at the population level along the successional gradient, with increasing competitive conditions. As succession proceeds, we observed a decrease in sexual reproduction and an increase in vegetative reproduction. At the family level, correlation among traits were similar when plants were grown in the absence of competition and at high density, with a significant negative correlation between sexual reproduction and vegetative reproduction. For both sprout number and sexual biomass, the performance of families grown under all the treatments was positively correlated. Together these results indicate allocational constraints on the reproductive biology of R. acetosella that may be favoured by natural selection and have influenced population differentiation along the successional gradient. However, they also revealed that the potential exists for evolutionary specialization through plasticity, in response to variation in environmental conditions.  相似文献   

16.
C. elegans Dicer requires an accessory double-stranded RNA binding protein, RDE-4, to enact the first step of RNA interference, the cleavage of dsRNA to produce siRNA. While RDE-4 is typically essential for RNAi, we report that in the presence of high concentrations of trigger dsRNA, rde-4 deficient animals are capable of silencing a transgene. By multiple criteria the silencing occurs by the canonical RNAi pathway. For example, silencing is RDE-1 dependent and exhibits a decrease in the targeted mRNA in response to an increase in siRNA. We also find that high concentrations of dsRNA trigger lead to increased accumulation of primary siRNAs, consistent with the existence of a rate-limiting step during the conversion of primary to secondary siRNAs. Our studies also revealed that transgene silencing occurs at low levels in the soma, even in the presence of ADARs, and that at least some siRNAs accumulate in a temperature-dependent manner. We conclude that an RNAi response varies with different conditions, and this may allow an organism to tailor a response to specific environmental signals.  相似文献   

17.
Stomatal behaviour in cucumber (Cucumis sativus L.) was analysed and modelled as a function of different greenhouse environmental parameters, under variable summer conditions. Solar radiation was the main regulating factor. During the day, large atmospheric vapour pressure deficit increased transpiration which was followed by a reduction in stomatal aperture, suggesting the presence of a feedback response to water stress. However, stomatal behaviour was more sensitive to high atmospheric vapour pressure deficit when this was accompanied by a rapid decrease of solar radiation. The response to the difference between leaf and air temperature was also influenced by air vapour pressure deficit and duration of plant exposure to high evaporative demand. Calculation of the crop water stress index showed that the air vapour pressure deficit of 1 kPa used in the control treatment probably caused water stress and induced some hardening, a necessary condition for adaptation to summer climate in southern Europe. The importance of the interaction between climatic parameters and plant response in greenhouse environmental management is analysed. Classical models of stomatal resistance are also discussed.  相似文献   

18.
Understanding how biodiversity (B) affects ecosystem functioning (EF) is essential for assessing the consequences of ongoing biodiversity changes. An increasing number of studies, however, show that environmental conditions affect the shape of BEF relationships. Here, we first use a game‐theoretic community model to reveal that a unimodal response of the BEF slope can be expected along environmental stress gradients, but also how the ecological mechanisms underlying this response may vary depending on how stress affects species interactions. Next, we analysed a global dataset of 44 experiments that crossed biodiversity with environmental conditions. Confirming our main model prediction, the effect of biodiversity on ecosystem functioning tends to be greater at intermediate levels of environmental stress, but varies among studies corresponding to differences in stress‐effects on species interactions. Together, these results suggest that increases in stress from ongoing global environmental changes may amplify the consequences of biodiversity changes.  相似文献   

19.
Understanding the patterns of species distribution and abundance has been at the core of ecology. In general, these patterns are determined by species dispersion as well as by abiotic and biotic environmental conditions. Similarly, host-parasite relations and the structure of parasite assemblages are also shaped by environmental conditions and landscape composition. Herein, we assessed the influence of environmental variables and parasite species dispersion on the structure of helminth parasites communities in the frog Leptodactylus podicipinus. We sampled 10 ponds and recorded area, depth, altitude, pH, dissolved oxygen, salinity, temperature, and extent of soil, water, and vegetation cover as well as the distances between the ponds. We collected 121 frogs and found 9 helminth taxa; 2 of them were core species (prevalence higher than 50%), which contributed to the relatively high similarity observed among the ponds. Most of the helminths showed some variation in the frequencies of occurrence among communities from different ponds. The change in species composition among ponds was explained by the environmental variables but not by the distance between the ponds. Moreover, the results indicated that local processes (variation in environmental conditions) were more important than the regional processes (species distribution) in determining the structure of parasite communities. The variation in helminth communities among ponds in response to moderate differences in pond environmental characteristics points to the potential of helminth species as indicators of environmental conditions.  相似文献   

20.
Microorganisms govern soil carbon cycling with critical effects at local and global scales. The activity of microbial extracellular enzymes is generally the limiting step for soil organic matter mineralization. Nevertheless, the influence of soil characteristics and climate parameters on microbial extracellular enzyme activity (EEA) performance at different water availabilities and temperatures remains to be detailed. Different soils from the Iberian Peninsula presenting distinctive climatic scenarios were sampled for these analyses. Results showed that microbial EEA in the mesophilic temperature range presents optimal rates under wet conditions (high water availability) while activity at the thermophilic temperature range (60°C) could present maximum EEA rates under dry conditions if the soil is frequently exposed to high temperatures. Optimum water availability conditions for maximum soil microbial EEA were influenced mainly by soil texture. Soil properties and climatic parameters are major environmental components ruling soil water availability and temperature which were decisive factors regulating soil microbial EEA. This study contributes decisively to the understanding of environmental factors on the microbial EEA in soils, specifically on the decisive influence of water availability and temperature on EEA. Unlike previous belief, optimum EEA in high temperature exposed soil upper layers can occur at low water availability (i.e., dryness) and high temperatures. This study shows the potential for a significant response by soil microbial EEA under conditions of high temperature and dryness due to a progressive environmental warming which will influence organic carbon decomposition at local and global scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号