首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
植物中含有多种富含亮氨酸重复(leucine-rich repeats,LRRs)的蛋白质,这类蛋白质在植物生长、发育和抗病反应等方面发挥着重要作用。本研究在水稻中克隆到一个编码LRRs结构的基因OsLRR,以半定量RT-PCR检测了OsLRR在水稻不同组织和不同非生物胁迫的表达情况,并进一步分析了铝毒胁迫下OsLRR在抗铝和铝敏感水稻品种之间的表达差异。结果表明OsLRR在水稻根、叶鞘和叶中都有较高表达。铝、砷、PEG6000和ABA可诱导水稻根中OsLRR的表达,而镉、硝普钠和铁则抑制其表达。只有盐胁迫能诱导叶片中OsLRR的表达。铝毒可以诱导抗铝和铝敏感水稻品种根中OsLRR的表达,但随着处理时间的延长,抗铝品种中OsLRR的表达逐渐加强,而铝敏感品种中OsLRR的表达则逐渐减弱。  相似文献   

4.
In many plants, efflux of organic anions from roots has been proposed as one of the major Al resistance mechanisms. However it remains unknown how plants regulate efflux of organic anions in response to Al. In this study, the regulatory mechanisms of Al-responsive malate efflux in wheat (Triticum aestivum) were characterized focusing on the role of protein phosphorylation. Al-resistant wheat (cv Atlas) initiated malate efflux at 5 min after addition of Al, and this response was sensitive to temperature. K-252a, a broad range inhibitor of protein kinases, effectively blocked the Al-induced malate efflux accompanied with an increased accumulation of Al and intensified Al-induced root growth inhibition. A transient activation of a 48-kD protein kinase and an irreversible repression of a 42-kD protein kinase were observed preceding the initiation of malate efflux, and these changes were canceled by K-252a. Malate efflux was accompanied with a rapid decrease in the contents of organic anions in the root apex, such as citrate, succinate, and malate but with no change in the contents of inorganic anions such as chloride, nitrate, and phosphate. These results suggest that protein phosphorylation is involved in the Al-responsive malate efflux in the wheat root apex and that the organic anion-specific channel might be a terminal target that responds to Al signaling mediated by phosphorylation.  相似文献   

5.
An aluminum-activated citrate transporter in barley   总被引:16,自引:0,他引:16  
Soluble ionic aluminum (Al) inhibits root growth and reduces crop production on acid soils. Al-resistant cultivars of barley (Hordeum vulgare L.) detoxify Al by secreting citrate from the roots, but the responsible gene has not been identified yet. Here, we identified a gene (HvAACT1) responsible for the Al-activated citrate secretion by fine mapping combined with microarray analysis, using an Al-resistant cultivar, Murasakimochi, and an Al-sensitive cultivar, Morex. This gene belongs to the multidrug and toxic compound extrusion (MATE) family and was constitutively expressed mainly in the roots of the Al-resistant barley cultivar. Heterologous expression of HvAACT1 in Xenopus oocytes showed efflux activity for (14)C-labeled citrate, but not for malate. Two-electrode voltage clamp analysis also showed transport activity of citrate in the HvAACT1-expressing oocytes in the presence of Al. Overexpression of this gene in tobacco enhanced citrate secretion and Al resistance compared with the wild-type plants. Transiently expressed green fluorescent protein-tagged HvAACT1 was localized at the plasma membrane of the onion epidermal cells, and immunostaining showed that HvAACT1 was localized in the epidermal cells of the barley root tips. A good correlation was found between the expression of HvAACT1 and citrate secretion in 10 barley cultivars differing in Al resistance. Taken together, our results demonstrate that HvAACT1 is an Al-activated citrate transporter responsible for Al resistance in barley.  相似文献   

6.
7.
Isolation and characterization of a rice mutant hypersensitive to Al   总被引:4,自引:0,他引:4  
Rice (Oryza sativa L.) is a highly Al-resistant species among small grain crops, but the mechanism responsible for the high Al resistance has not been elucidated. In this study, rice mutants sensitive to Al were isolated from M(3) lines derived from an Al-resistant cultivar, Koshihikari, irradiated with gamma-rays. Relative root elongation was used as a parameter for evaluating Al resistance. After initial screening plus two rounds of confirmatory testing, a mutant (als1) was isolated from a total of 560 lines. This mutant showed a phenotype similar to the wild-type plant in the absence of Al. However, in the presence of 10 microM Al, root elongation was inhibited 70% in the mutant, but only 8% in the wild-type plant. The mutant also showed poorer root growth in acid soil. The Al content of root apices (0-1 cm) was much lower in the wild-type plant. The sensitivity to other metals including Cd and La did not differ between the mutant and the wild-type plants. A small amount of citrate was secreted from the roots of the mutant in response to Al stress, but there was no difference from that secreted by the wild-type plant. Genetic analysis of F(2) populations between als1 and wild-type plants showed that the Al-resistant seedlings and Al-sensitive seedlings segregated at a 3 : 1 ratio, indicating that the high sensitivity to Al in als1 is controlled by a single recessive gene. The gene was mapped to the long arm of chromosome 6, flanked by InDel markers MaOs0619 and MaOs0615.  相似文献   

8.
Aluminium (Al) toxicity is an important limitation to barley (Hordeum vulgare L.) on acid soil. Al-resistant cultivars of barley detoxify Al externally by secreting citrate from the roots. To link the genetics and physiology of Al resistance in barley, genes controlling Al resistance and Al-activated secretion of citrate were mapped. An analysis of Al-induced root growth inhibition from 100 F2 seedlings derived from an Al-resistant cultivar (Murasakimochi) and an Al-sensitive cultivar (Morex) showed that a gene associated with Al resistance is localized on chromosome 4H, tightly linked to microsatellite marker Bmag353. Quantitative trait locus (QTL) analysis from 59 F4 seedlings derived from an F3 plant heterozygous at the region of Al resistance on chromosome 4H showed that a gene responsible for the Al-activated secretion of citrate was also tightly linked to microsatellite marker Bmag353. This QTL explained more than 50% of the phenotypic variation in citrate secretion in this population. These results indicate that the gene controlling Al resistance on barley chromosome 4H is identical to that for Al-activated secretion of citrate and that the secretion of citrate is one of the mechanisms of Al resistance in barley. The identification of the microsatellite marker associated with both Al resistance and citrate secretion provides a valuable tool for marker-assisted selection of Al-resistant lines.  相似文献   

9.
10.
Vitamin E comprises four tocopherols and four tocotrienols, collectively termed tocochromanols that play an essential role as antioxidants in humans, animals and photosynthetic organisms and are also believed to play a role in modulation of signal transduction and gene expression pathways. In rice and Populus genome, we have identified 7 and 11 tocochromanol biosynthesis genes, respectively. A detailed study of domain organization and phylogenetic analysis of these genes in rice, Arabidopsis and other plants has revealed the presence of homologous genes. Expression profiling of rice and Populus genes has been done by full-length cDNA and EST-based analysis. In rice, real-time PCR analysis was done to reveal the light-regulated expression pattern. Microarray-based expression analysis in different rice tissues and developmental stages revealed expression of these genes in almost all plant tissues/organs. Under abiotic stress conditions, expression of gene coding for HPPD enzyme, that regulates pathway flux, was also found to be increased. This information is expected to be helpful for further functional characterization of tocochromanol biosynthesis genes in different plant tissues under diverse growth conditions.  相似文献   

11.
铝毒是酸性土壤中抑制植物生长和减少作物产量的主要因素。近年来研究表明植物主要通过根部有机酸通道蛋白将小分子有机酸阴离子转运到细胞膜外来缓解铝毒。本文综述了植物中编码铝诱导的苹果酸转运蛋白和多药及毒性复合物的排出转运蛋白两种耐铝基因,并从基因克隆、蛋白质同源性比较、基因表达调控、基因的功能和应用以及预测耐铝基因作用模式等方面进行了阐述;同时对这些耐铝基因的应用前景进行了展望。  相似文献   

12.
The effects of Al2(SO4)3·18H2O on growth of root and apical root cells were studied in seedlings of rice cultivars differing in Al resistance including I Kong Pao and Aiwu (Al-sensitive) and IRAT 112 and IR6023-10-1-1 (Al-resistant). Inhibition of root growth was a typical effect of Al, and the extent of the inhibition depended on both cultivar and Al concentration. Al impaired the activity of the root meristem as indicated by reductions in its size, mitotic activity and the diameter of the meristematic cell nucleoli. Cell size in the elongation zone of the root was also reduced by Al. The reliability of the haematoxylin staining method to classify rice cultivars according to their Al-sensitivity failed to discriminate the Al-resistant IR6023-10-1-1 cultivar from the two sensitive cultivars. The results are discussed in relation to the Al resistance mechanisms operating in rice.  相似文献   

13.
14.
Basu  U.  McDonald-Stephens  J. L.  Archambault  D. J.  Good  A. G.  Briggs  K. G.  Taing-Aung  Taylor  G. J. 《Plant and Soil》1997,196(2):283-288
We have made use of a genetic approach to develop homozygous, near-isogenic germplasm for investigating aluminium (Al) resistance in Triticum aestivum L. A conventional backcross program was used to transfer Al resistance from the Al-resistant cultivar, Maringa, to a locally-adapted, Al-sensitive cultivar, Katepwa. At the third backcross stage, a single, resistant isoline (Alikat = Katepwa*3/Maringa) was chosen on the basis of superior root growth after 14 days of exposure to a broad range of Al concentrations (0 to 600 µM). Genetic analysis of doubled-haploid lines (DH) developed from this isoline suggested that resistance is controlled by a single dominant gene. Crosses between DH Alikat and DH Katepwa yielded an Al-resistant F1 population. Backcrossing this F1 population to DH Katepwa produced a population which segregated 1:1 for Al resistance, while selfing produced a population segregating 3 : 1 for Al resistance. Under conditions of Al stress, Al-resistant F2 plants released a suite of novel low molecular weight polypeptides into the rhizosphere. One of these polypeptides (23 kD) shows substantive Al-binding capacity and segregates with the resistant phenotype. While the precise mechanisms that mediate Al resistance are still unknown, this research has provided support for a possible role of the 23 kD exudate polypeptide in mediating resistance to Al. To more fully understand the role that this polypeptide plays in Al-resistance, we are attempting to clone this gene from microsequence data obtained from purified protein.  相似文献   

15.
16.
To examine the biological role of Al-stress-induced genes, nine genes derived from Arabidopsis, tobacco (Nicotiana tabacum L.), wheat (Triticum aestivum L.), and yeast (Saccharomyces cerevisiae) were expressed in Arabidopsis ecotype Landsberg. Lines containing eight of these genes were phenotypically normal and were tested in root elongation assays for their sensitivity to Al, Cd, Cu, Na, Zn, and to oxidative stresses. An Arabidopsis blue-copper-binding protein gene (AtBCB), a tobacco glutathione S-transferase gene (parB), a tobacco peroxidase gene (NtPox), and a tobacco GDP-dissociation inhibitor gene (NtGDI1) conferred a degree of resistance to Al. Two of these genes, AtBCB and parB, and a peroxidase gene from Arabidopsis (AtPox) also showed increased resistance to oxidative stress induced by diamide, while parB conferred resistance to Cu and Na. Al content of Al-treated root tips was reduced in the four Al-resistant plant lines compared with wild-type Ler-0, as judged by morin staining. All four Al-resistant lines also showed reduced staining of roots with 2',7'-dichloro fluorescein diacetate (H(2)DCFDA), an indicator of oxidative stress. We conclude that Al-induced genes can serve to protect against Al toxicity, and also provide genetic evidence for a link between Al stress and oxidative stress in plants.  相似文献   

17.
Aluminum (Al) toxicity is a major constraint for wheat production in acidic soils. An Al resistance gene on chromosome 4DL that traces to Brazilian wheat has been extensively studied, and can provide partial protection from Al damage. To identify potentially new sources of Al resistance, 590 wheat accessions, including elite wheat breeding lines from the United States and other American and European countries, landraces and commercial cultivars from East Asia, and synthetic wheat lines from CIMMYT, Mexico, were screened for Al resistance by measuring relative root elongation in culture with a nutrient solution containing Al, and by staining Al-stressed root tips with hematoxylin. Eighty-eight wheat accessions demonstrated at least moderate resistance to Al toxicity. Those selected lines were subjected to analysis of microsatellite markers linked to an Al resistance gene on 4DL and a gene marker for the Al-activated malate transporter (ALMT1) locus. Many of the selected Al-resistant accessions from East Asia did not have the Al-resistant marker alleles of ALMT1, although they showed Al resistance similar to the US Al-resistant cultivar, Atlas 66. Most of the cultivars derived from Jagger and Atlas 66 have the Al-resistant marker alleles of ALMT1. Cluster analysis separated the selected Al-resistant germplasm into two major clusters, labeled as Asian and American–European clusters. Potentially new germplasm of Al resistance different from those derived from Brazil were identified. Further investigation of Al resistance in those new germplasms may reveal alternative Al-resistance mechanisms in wheat. Electronic supplementary material The online version of this article (doi:contains supplementary material, which is available to authorized users. Responsible Editor: Thomas B. Kinraide.  相似文献   

18.
19.
To understand the mechanisms responsible for aluminum (Al) toxicity and tolerance in plants, an expressed sequence tag (EST) approach was used to analyze changes in gene expression in roots of rye (Secale cereale L. cv Blanco) under Al stress. Two cDNA libraries were constructed (Al stressed and unstressed), and a total of 1,194 and 774 ESTs were generated, respectively. The putative proteins encoded by these cDNAs were uncovered by Basic Local Alignment Search Tool searches, and those ESTs showing similarity to proteins of known function were classified according to 13 different functional categories. A total of 671 known function genes were used to analyze the gene expression patterns in rye cv Blanco root tips under Al stress. Many of the previously identified Al-responsive genes showed expression differences between the libraries within 6 h of Al stress. Certain genes were selected, and their expression profiles were studied during a 48-h period using northern analysis. A total of 13 novel genes involved in cell elongation and division (tonoplast aquaporin and ubiquitin-like protein SMT3), oxidative stress (glutathione peroxidase, glucose-6-phosphate-dehydrogenase, and ascorbate peroxidase), iron metabolism (iron deficiency-specific proteins IDS3a, IDS3b, and IDS1; S-adenosyl methionine synthase; and methionine synthase), and other cellular mechanisms (pathogenesis-related protein 1.2, heme oxygenase, and epoxide hydrolase) were demonstrated to be regulated by Al stress. These genes provide new insights about the response of Al-tolerant plants to toxic levels of Al.  相似文献   

20.
采用实时荧光定量PCR方法测定了水稻条纹病毒(Rice stripe virus,RSV)胁迫下抗性不同品种水稻中与脱落酸相关基因的mRNA转录水平变化.结果表明:感病品种武育梗3号中WGPI、OsGASA2、Polcalcin、OsCBIA、Myb和OsCIPK15基因表达水平均上调,上调比率分别为4.96、5.17、2.01、5.17、12.04和7.84.而抗病品系KT 95-418中,OsGASA2和OsCIPK15基因表达水平下调,下调比率分别为1/5.40和1/2.08;Polcalcin和Myb基因表达水平上调,上调比率分别为4.20和3.86;WGPI和OsCBIA表达量变化不明显.这些结果表明,RSV胁迫能诱导脱落酸相关基因表达量的变化,并且在抗病、感病水稻品种中的表达特征不同,从而提示植物激素脱落酸可能调控了RSV胁迫条件下相关基因的表达.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号