首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundPolychlorinated biphenyls (PCBs) are persistent environmental pollutants that are detectable in the serum of all American adults. Amongst PCB congeners, PCB 153 has the highest serum level. PCBs have been dose-dependently associated with obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD) in epidemiological studies.ObjectiveThe purpose of this study is to determine mechanisms by which PCB 153 worsens diet-induced obesity and NAFLD in male mice fed a high-fat diet (HFD).MethodsMale C57BL6/J mice were fed either control or 42% milk fat diet for 12 weeks with or without PCB 153 coexposure (50 mg/kg ip ×4). Glucose tolerance test was performed, and plasma and tissues were obtained at necropsy for measurements of adipocytokine levels, histology and gene expression.ResultsIn control diet-fed mice, addition of PCB 153 had minimal effects on any of the measured parameters. However, PCB 153 treatment in high-fat-fed mice was associated with increased visceral adiposity, hepatic steatosis and plasma adipokines including adiponectin, leptin, resistin and plasminogen activator inhibitor-1 levels. Likewise, coexposure reduced expression of hepatic genes implicated in β-oxidation while increasing the expression of genes associated with lipid biosynthesis. Regardless of diet, PCB 153 had no effect on insulin resistance or tumor necrosis factor alpha levels.ConclusionPCB 153 is an obesogen that exacerbates hepatic steatosis, alters adipocytokines and disrupts normal hepatic lipid metabolism when administered with HFD but not control diet. Because all US adults have been exposed to PCB 153, this particular nutrient–toxicant interaction potentially impacts human obesity/NAFLD.  相似文献   

2.
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and have been associated with abnormal liver enzymes and suspected nonalcoholic fatty liver disease (NAFLD), obesity, and the metabolic syndrome in epidemiological studies. In epidemiological surveys of human PCB exposure, PCB 153 has the highest serum levels among PCB congeners. To determine the hepatic effects of PCB 153 in mice, C57BL/6J mice were fed either a control diet (CD) or a high fat diet (HFD) for 12 weeks, with or without PCB 153 coexposure. The metabolite extracts from mouse livers were analyzed using linear trap quadrupole-Fourier transform ion cyclotron resonance mass spectrometer (LTQ-FTICR MS) via direct infusion nanoelectrospray ionization (DI-nESI) mass spectrometry. The metabolomics analysis indicated no difference in the metabolic profile between mice fed the control diet with PCB 153 exposure (CD+PCB 153) and mice fed the control diet (CD) without PCB 153 exposure. However, compared with CD group, levels of 10 metabolites were increased and 15 metabolites were reduced in mice fed HFD. Moreover, compared to CD+PCB 153 group, the abundances of 6 metabolites were increased and 18 metabolites were decreased in the mice fed high fat diet with PCB 153 exposure (HFD+PCB 153). Compared with HFD group, the abundances of 2 metabolites were increased and of 12 metabolites were reduced in HFD+PCB 153 group. These observations agree with the histological results and indicate that the metabolic effects of PCB 153 were highly dependent on macronutrient interactions with HFD. Antioxidant depletion is likely to be an important consequence of this interaction, as this metabolic disturbance has previously been implicated in obesity and NAFLD.  相似文献   

3.
BackgroundGut microbiota is increasingly recognized as the key participant in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) by translocation of its products, such as lipopolysaccharide (LPS), via the dysfunctional intestinal barrier. Qushi Huayu decoction (QHD), a traditional Chinese medicine, is developed specially for NAFLD and used in clinic in China for more than a decade and previously found to ameliorate non-alcoholic steatohepatitis (NASH) induced by high-fat diet (HFD) in mice accompanied with inhibited metabolic endotoxemia and hepatic LPS signalling.PurposeTo investigate the mechanism of LPS gut-leakage inhibition by QHD in NASH.MethodsEffects of QHD on gut microbioa and intestinal barrier were evaluated in NASH induced by HFD in mice. 16S rRNA sequencing is employed to analyse the gut microbiota composition. To identify the potential signalling pathway responsible for tight junction regulation, the colonic phosphoprotein profile is screened via the Phospho Explorer Antibody Array and verified in NASH, intestinal barrier dysfunctional mouse and Caco-2 cells.ResultsQHD ameliorates NASH accompanied with regulating the gut microbiota composition, protecting intestinal tight junctions and inhibiting LPS gut-leakage without decreasing the abundance of identified Gram-negative bacteria. The validated data of phosphorylated proteins suggested that mitogen-activated protein kinase (MAPK) pathway is predominantly responsible for the colonic tight junction regulation by QHD.ConclusionQHD inhibits LPS gut-leakage in NASH, which is associated with downregulation of intestinal MAPK pathway.  相似文献   

4.
5.
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. NAFLD begins with steatosis and advances to nonalcoholic steatohepatitis (NASH) and cirrhosis. The molecular mechanisms involved in NAFLD progression are not understood. Based on recent studies showing dysregulation of epidermal growth factor receptor (EGFR) in animal models of liver injury, we sought to determine if inhibition of EGFR mitigates liver fibrosis and HSC activation in NAFLD. We utilized the high fat diet (HFD)-induced murine model of liver injury to study the role of EGFR in NAFLD. The lipid accumulation, oxidative stress, hepatic stellate cell (HSC) activation and matrix deposition were examined in the liver tissues. We also evaluated the EGFR signaling pathway, ROS activation and pro-fibrogenic phenotype in oxidized low density lipoproteins (ox-LDL) challenged cultured HSCs. We demonstrate that EGFR was phosphorylated in liver tissues of HFD murine model of NAFLD. Inhibition of EGFR prevented diet-induced lipid accumulation, oxidative stress, and HSC activation and matrix deposition. In cultured HSCs, we show that ox-LDL caused rapid activation of the EGFR signaling pathway and induce the production of reactive oxygen species. EGFR also mediated HSC activation and promoted a pro-fibrogenic phenotype. In conclusion, our data demonstrate that EGFR plays an important role in NAFLD and is an attractive target for NAFLD therapy.  相似文献   

6.
The aim of this study was to investigate the effect of isocaloric intake from a high‐fat diet (HFD) on insulin resistance and inflammation in rats. Male Wistar rats were fed on an HFD (n = 12) or control diet (n = 12) for 12 weeks. Subsequently, all animals were euthanized, and blood glucose, insulin, free fatty acids, C‐reactive protein, lipid profile, cytokines and hepatic‐enzyme activity were determined. Carcass chemical composition was also analyzed. During the first and the twelfth weeks of the experimental protocol, the oral glucose tolerance test and insulin tolerance test were performed and demonstrated insulin resistance (P < 0.05) in the HFD group. Although food intake (g) was lower (P < 0.05) in the HFD group compared with the control group, the concentration of total cholesterol, low‐density lipoprotein, C‐reactive protein and liver weight were all significantly higher. The kinase inhibitor of κB, c‐Jun N‐terminal kinase and protein kinase B expressions were determined in the liver and skeletal muscle. After an insulin stimulus, the HFD group demonstrated decreased (P = 0.05) hepatic protein kinase B expression, whereas the kinase inhibitor of κB phospho/total ratio was elevated in the HFD muscle (P = 0.02). In conclusion, the isocaloric intake from the HFD induced insulin resistance, associated with impaired insulin signalling in the liver and an inflammatory response in the muscle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Min AK  Kim MK  Kim HS  Seo HY  Lee KU  Kim JG  Park KG  Lee IK 《Life sciences》2012,90(5-6):200-205
AimsNon-alcoholic steatohepatitis (NASH) is a liver disease that causes fat accumulation, inflammation and fibrosis. Increased oxidative stress contributes to hepatic inflammation and fibrosis by upregulation of Cytochrome P450 2E1 (CYP2E1), endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) activity. This study examined whether alpha-lipoic acid (ALA), a naturally occurring thiol antioxidant, prevents steatohepatitis through the inhibition of several pathways involved in hepatic inflammation and fibrosis.Main MethodsC57BL/6 mice were fed an MCD diet with or without ALA for 4 weeks. Liver sections from mice on control or MCD diets with or without ALA were stained with hematoxylin-eosin, oil red O, and anti-4-HNE antibody. The effects of ALA on methionine-choline deficient MCD-diet induced plasma AST and ALT as well as tissue TBARS were measured. The effects of ALA on CYP2E1 expression, ER stress, MAPK levels, and NF-κB activity in MCD diet-fed mice liver were measured by northern and western blot analysis.Key findingsDietary supplementation with ALA reduced MCD diet-induced hepatic lipid accumulation, hepatic inflammation, TBARS, 4-HNE, and plasma ALT and AST levels. These effects were associated with a reduced expression of CYP2E1 and reduced ER stress and MAPK and NF-κB activity.SignificanceTaken together, the results of the present study indicate that ALA attenuates steatohepatitis through inhibition of several pathways, and provide the possibility that ALA can be used to prevent the development and progression of non-alcoholic fatty liver disease in patients who have strong risk factors for NASH.  相似文献   

8.
Obesity is a major contributor to the development of steatohepatitis and fibrosis from nonalcoholic fatty liver disease (NAFLD). Hypoxia aggravates progression of NAFLD. In mice on high-fat diet (HFD), hepatic steatosis leads to liver tissue hypoxia, evidenced by accumulation of hypoxia inducible factor-1-alpha (HIF-1α), which is a central regulator of the global response to hypoxia. Hepatocyte cell signaling is an important factor in hepatic fibrogenesis. We here hypothesize that HIF-1α knockout in hepatocyte may protect against liver fibrosis. We first found that HFD led to 80% more hepatic collagen deposition than Hif1a−/−hep mice, which was confirmed by a-SMA staining of liver tissue. Body weight and liver weight were similar between groups. We then found the increasing HIF1a expression and decreasing PTEN expression in the mice on HFD and in PA-treated HepG2 cells. Finally, we found that HIF1 mediated PTEN/nfkb-p65 pathway plays an important role in the development of NAFLD to liver fibrosis. Collectively, these results identify a novel HIF1a/PTEN/NF-κ Bp65 signaling pathway in NAFLD, which could be targeted for the therapy.  相似文献   

9.
Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC), mainly in the liver. Pemt?/? mice are protected from high-fat diet (HFD)-induced obesity and insulin resistance, but develop severe non-alcoholic fatty liver disease (NAFLD) when fed a HFD, mostly due to impaired VLDL secretion. Oxidative stress is thought to be an essential factor in the progression from simple steatosis to steatohepatitis. Vitamin E is an antioxidant that has been clinically used to improve NAFLD pathology. Our aim was to determine whether supplementation of the diet with vitamin E could attenuate HFD-induced hepatic steatosis and its progression to NASH in Pemt?/? mice. Treatment with vitamin E (0.5?g/kg) for 3?weeks improved VLDL-TG secretion and normalized cholesterol metabolism, but failed to reduce hepatic TG content. Moreover, vitamin E treatment was able to reduce hepatic oxidative stress, inflammation and fibrosis. We also observed abnormal ceramide metabolism in Pemt?/? mice fed a HFD, with elevation of ceramides and other sphingolipids and higher expression of mRNAs for acid ceramidase (Asah1) and ceramide kinase (Cerk). Interestingly, vitamin E supplementation restored Asah1 and Cerk mRNA and sphingolipid levels. Together this study shows that vitamin E treatment efficiently prevented the progression from simple steatosis to steatohepatitis in mice lacking PEMT.  相似文献   

10.
Background: Obesity is a chronic progressive disease with several metabolic alterations. Nonalcoholic fatty liver disease (NAFLD) is an important comorbidity of obesity that can progress to nonalcoholic steatohepatitis (NASH), cirrhosis or hepatocarcinoma. This study aimed at clarifying the molecular mechanisms underlying the metabolic alterations in hepatic and adipose tissue during high-fat high-sucrose diet-induced NAFLD development in mice. Methods: Twenty-four male mice (C57BL/6J) were randomly allocated into 3 groups (n = 8 mice per group) to receive a chow diet, a high-fat diet (HFD), or a high-fat high-sucrose diet (HF-HSD) for 20 weeks. At sacrifice, liver and adipose tissue were obtained for histopathological, metabolomic, and protein expression analyses. Results: HF-HSD (but not HFD) was associated with NASH and increased oxidative stress. These animals presented an inhibition of hepatic autophagy and alterations in AMP-activated protein kinase/mammalian target of rapamycin activity. We also observed that the ability of metabolic adaptation was adversely affected by the increase of damaged mitochondria. NASH development was associated with changes in adipose tissue dynamics and increased amounts of saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids in visceral adipose tissue. Conclusion: HF-HSD led to a metabolic blockage and impaired hepatic mitochondria turnover. In addition, the continuous accumulation of fatty acids produced adipose tissue dysfunction and hepatic fat accumulation that favored the progression to NASH.  相似文献   

11.
Exercise is an effective therapy for insulin resistance. However, the underlying mechanism remains to be elucidated. Previous research demonstrated that TGFβ-activated kinase 1 (TAK1)-dependent signaling plays a crucial character in hepatic insulin resistance. Hepatic ubiquitin specific protease 4 (USP4), USP18, and dual-specificity phosphatases 14 (DUSP14) can suppress TAK1 phosphorylation, besides tumor necrosis factor receptor-associated factor 3 (TRAF3) and tripartite motif 8 (TRIM8) promote its phosphorylation. In this study, we tried to verify our hypothesis that exercise improves insulin resistance in high-fat diet (HFD)-induced obese (DIO) rats via regulating the TAK1 dependent signaling and TAK1 regulators in liver. Forty male Sprague–Dawley rats were randomized into four groups (n = 10): standard diet and sedentary as normal control; fed on HFD and DIO-sedentary; fed on HFD and DIO-chronic exercise; and fed on HFD and DIO-acute exercise. HFD feeding resulted in increased body weight, visceral fat mass, serum FFAs and hepatic lipid deposition, but decreased hepatic glycogen content and insulin sensitivity. Moreover, hepatic TRAF3 and TRIM8 protein levels increased, whereas USP4, USP18, and DUSP14 protein levels were decreased under obese status, which resulted in enhanced TAK1 phosphorylation and impaired insulin signaling. Exercise training, containing chronic and acute mode, both ameliorated insulin resistance. Meanwhile, decreased TAK1, c-Jun N-terminal kinase 1 (JNK1), and insulin receptor substrate 1 (IRS1) phosphorylation enhanced Akt phosphorylation in liver. Moreover, exercise enhanced USP4 and DUSP14 protein levels, whereas decreased TRIM8 protein levels in obese rats’ liver. These results showed that exercise triggered a crucial modulation in TAK1-dependent signaling and its regulators in obese rats’ liver, and distinct improvement in insulin sensitivity, which provide new insights into the mechanism by which physical exercise improves insulin resistance.  相似文献   

12.
13.
Our group recently demonstrated that maternal high-fat diet (HFD) consumption is associated with non-alcoholic fatty liver disease, increased apoptosis, and changes in gluconeogenic gene expression and chromatin structure in fetal nonhuman primate (NHP) liver. However, little is known about the long-term effects that a HFD has on hepatic nervous system development in offspring, a system that plays an important role in regulating hepatic metabolism. Utilizing immunohistochemistry and Real-Time PCR, we quantified sympathetic nerve fiber density, apoptosis, inflammation, and other autonomic components in the livers of fetal and one-year old Japanese macaques chronically exposed to a HFD. We found that HFD exposure in-utero and throughout the postnatal period (HFD/HFD), when compared to animals receiving a CTR diet for the same developmental period (CTR/CTR), is associated with a 1.7 fold decrease in periportal sympathetic innervation, a 5 fold decrease in parenchymal sympathetic innervation, and a 2.5 fold increase in hepatic apoptosis in the livers of one-year old male animals. Additionally, we observed an increase in hepatic inflammation and a decrease in a key component of the cholinergic anti-inflammatory pathway in one-year old HFD/HFD offspring. Taken together, these findings reinforce the impact that continuous exposure to a HFD has in the development of long-term hepatic pathologies in offspring and highlights a potential neuroanatomical basis for hepatic metabolic dysfunction.  相似文献   

14.
Mitochondrial dysfunctions have been detected in non-alcoholic steatohepatitis, but less information exists regarding adaptation of mitochondrial function during the initiation of hepatic steatosis. This study aimed to determine in rat liver the sequence of mitochondrial and metabolic adaptations occurring during the first 8 weeks of a moderate high fat diet (HFD). Sprague-Dawley rats were fed a HFD during 2, 4, and 8 weeks. Mitochondrial oxygen consumption, respiratory chain complexes activity, and oxidative phosphorylation efficiency were assessed in isolated liver mitochondria. Gene expression related to fat metabolism and mitochondrial biogenesis were determined. Results were compared to data collected in a group of rats sacrificed before starting the HFD feeding. After 2 and 4 weeks of HFD, there was a development of fatty liver and a concomitant increase the expression of mitochondrial glycerol-3-phosphate acyltransferase (mtGPAT) and peroxisome proliferator-activated receptor γ. Higher serum β-hydroxybutyrate levels and enhanced hepatic pyruvate dehydrogenase kinase 4 expression suggested increased fatty acid oxidation. However, mitochondrial respiration and respiratory chain activity were normal. After 8 weeks of HFD, lower accumulation of liver triglycerides was associated with reduced expression of mtGPAT. At this time, oxygen consumption with palmitoyl-L: -carnitine was decreased whereas oxidative phosphorylation efficiency (ATP/O) with succinate was enhanced. Hepatic levels of mtDNA were unchanged whatever the time points. This longitudinal study in rats fed a HFD showed that hepatic lipid homeostasis and mitochondrial function can adapt to face the increase in fatty acid availability.  相似文献   

15.
Obesity is accompanied by a low-grade inflammation state, characterized by increased proinflammatory cytokines levels such as tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1β). In this regard, there exists a lack of studies in hepatic tissue about the role of TNFα receptor 1 (TNFR1) in the context of obesity and insulin resistance during the progression of nonalcoholic fatty liver disease (NAFLD). The aim of this work was to evaluate the effects of high-caloric feeding (HFD) (40% fat, for 16 weeks) on liver inflammation-induced apoptosis, insulin resistance, hepatic lipid accumulation and its progression toward nonalcoholic steatohepatitis (NASH) in TNFR1 knock-out and wild-type mice. Mechanisms involved in HFD-derived IL-1β release and impairment of insulin signaling are still unknown, so we determined whether IL-1β affects liver insulin sensitivity and apoptosis through TNFα receptor 1 (TNFR1)-dependent pathways. We showed that knocking out TNFR1 induces an enhanced IL-1β plasmatic release upon HFD feed. This was correlated with higher hepatic and epididymal white adipose tissue mRNA levels. In vivo and in vitro assays confirmed an impairment in hepatic insulin signaling, in part due to IL-1β-induced decrease of AKT activation and diminution of IRS1 levels, followed by an increase in inflammation, macrophage (resident and recruited) accumulation, hepatocyte apoptotic process and finally hepatic damage. In addition, TNFR1 KO mice displayed higher levels of pro-fibrogenic markers. TNFR1 signaling disruption upon an HFD leads to an accelerated progression from simple steatosis to a more severe phenotype with many NASH features, pointing out a key role of TNFR1 in NAFLD progression.  相似文献   

16.
High fat diet (HFD) is closely linked to a variety of health issues including fatty liver. Exposure to perfluorooctanoic acid (PFOA), a synthetic perfluorinated carboxylic acid, also causes liver injury. The present study investigated the possible interactions between high fat diet and PFOA in induction of liver injury. Mice were pair-fed a high-fat diet (HFD) or low fat control with or without PFOA administration at 5 mg/kg/day for 3 weeks. Exposure to PFOA alone caused elevated plasma alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels and increased liver weight along with reduced body weight and adipose tissue mass. HFD alone did not cause liver damage, but exaggerated PFOA-induced hepatotoxicity as indicated by higher plasma ALT and AST levels, and more severe pathological changes including hepatocyte hypertrophy, lipid droplet accumulation and necrosis as well as inflammatory cell infiltration. These additive effects of HFD on PFOA-induced hepatotoxicity correlated with metabolic disturbance in liver and blood as well as up-regulation of hepatic proinflammatory cytokine genes. Metabolomic analysis demonstrated that both serum and hepatic metabolite profiles of PFOA, HFD, or HFD-PFOA group were clearly differentiated from that of controls. PFOA affected more hepatic metabolites than HFD, but HFD showed positive interaction with PFOA on fatty acid metabolites including long chain fatty acids and acylcarnitines. Taken together, dietary high fat potentiates PFOA-induced hepatic lipid accumulation, inflammation and necrotic cell death by disturbing hepatic metabolism and inducing inflammation. This study demonstrated, for the first time, that HFD increases the risk of PFOA in induction of hepatotoxicity.  相似文献   

17.
A defect of hepatic remodeling of phospholipids (PL) is seen in non-alcoholic fatty liver disease and steatohepatitis (NASH) indicating pivotal role of PL metabolism in this disease. The deletion of group VIA calcium-independent phospholipase A2 (iPla2β) protects ob/ob mice from hepatic steatosis (BBAlip 1861, 2016, 440–461), however its role in high-fat diet (HFD)-induced NASH is still elusive. Here, wild-type and iPla2β-null mice were subjected to chronic feeding with HFD for 6 months. We showed that protection was observed in iPla2β-null mice with an attenuation of diet-induced body and liver-weight gains, liver enzymes, serum free fatty acids as well as hepatic TG and steatosis scores. iPla2β deficiency under HFD attenuated the levels of 1-stearoyl lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), and lysophosphatidylinositol (LPI) as well as elevation of hepatic arachidonate, arachidonate-containing cholesterol esters and prostaglandin E2. More importantly, this deficiency rescued a defect in PL remodeling and attenuated the ratio of saturated and unsaturated PL. The protection by iPla2β deficiency was not observed during short-term HFD feeding of 3 or 5 weeks which showed no PL remodeling defect. In addition to PC/PE, this deficiency reversed the suppression of PC/PI and PE/PI among monounsaturated PL. However, this deficiency did not modulate hepatic PL contents and PL ratios in ER fractions, ER stress, fibrosis, and inflammation markers. Hence, iPla2β inactivation protected mice against hepatic steatosis and obesity during chronic dietary NASH by correcting PL remodeling defect and PI composition relative to PC and PE.  相似文献   

18.
Protease-activated receptor 2 (PAR2) is a member of G protein-coupled receptors. There are two types of PAR2 signaling pathways: Canonical G-protein signaling and β-arrestin signaling. Although PAR2 signaling has been reported to aggravate hepatic steatosis, the exact mechanism is still unclear, and the role of PAR2 in autophagy remains unknown. In this study, we investigated the regulatory role of PAR2 in autophagy during high-fat diet (HFD)-induced hepatic steatosis in mice. Increased protein levels of PAR2 and β-arrestin-2 and their interactions were detected after four months of HFD. To further investigate the role of PAR2, male and female wild-type (WT) and PAR2-knockout (PAR2 KO) mice were fed HFD. PAR2 deficiency protected HFD-induced hepatic steatosis in male mice, but not in female mice. Interestingly, PAR2-deficient liver showed increased AMP-activated protein kinase (AMPK) activation with decreased interaction between Ca2+/calmodulin-dependent protein kinase kinase β (CAMKKβ) and β-arrestin-2. In addition, PAR2 deficiency up-regulated autophagy in the liver. To elucidate whether PAR2 plays a role in the regulation of autophagy and lipid accumulation in vitro, PAR2 was overexpressed in HepG2 cells. Overexpression of PAR2 decreased AMPK activation with increased interaction of CAMKKβ with β-arrestin-2 and significantly inhibited autophagic responses in HepG2 cells. Inhibition of autophagy by PAR2 overexpression further exacerbated palmitate-induced lipid accumulation in HepG2 cells. Collectively, these findings suggest that the increase in the PAR2-β-arrestin-2-CAMKKβ complex by HFD inhibits AMPK-mediated autophagy, leading to the alleviation of hepatic steatosis.  相似文献   

19.
Ethanol metabolism by liver generates short lived reactive oxygen species that damage liver but also affects distal organs through unknown mechanisms. We hypothesized that dissemination of liver oxidative stress proceeds through release of biologically active oxidized lipids to the circulation. We searched for these by tandem mass spectrometry in plasma of rats fed a Lieber-DeCarli ethanol diet or in patients with established alcoholic liver inflammation, steatohepatitis. We found a severalfold increase in plasma peroxidized phosphatidylcholines, inflammatory and pro-apoptotic oxidatively truncated phospholipids, and platelet-activating factor, a remarkably potent and pleiotropic inflammatory mediator, in rats chronically ingesting ethanol. Circulating peroxidized phospholipids also increased in humans with established steatohepatitis. However, reactive oxygen species generated by liver ethanol catabolism were not directly responsible for circulating oxidized phospholipids because the delayed appearance of these lipids did not correlate with ethanol exposure, hepatic oxidative insult, nor plasma alanine transaminase marking hepatocyte damage. Rather, circulating oxidized lipids correlated with steatohepatitis and tumor necrosis factor-α deposition in liver. The organic osmolyte 2-aminoethylsulfonic acid (taurine), which reduces liver endoplasmic reticulum stress and inflammation, even though it is not an antioxidant, abolished liver damage and the increase in circulating oxidized phospholipids. Thus, circulating oxidized phospholipids are markers of developing steatohepatitis temporally distinct from oxidant stress associated with hepatic ethanol catabolism. Previously, circulating markers of the critical transition to pathologic steatohepatitis were unknown. Circulating oxidatively truncated phospholipids are pro-inflammatory and pro-apoptotic mediators with the potential to systemically distribute the effect of chronic ethanol exposure. Suppressing hepatic inflammation, not ethanol catabolism, reduces circulating inflammatory and apoptotic agonists.  相似文献   

20.
Environmental chemicals, such as polychlorinated biphenyls (PCBs), may be atherogenic by disrupting normal functions of the vascular endothelium. To investigate this hypothesis, porcine pulmonary artery-derived endothelial cells were exposed to 3,3′,4,4′-tetrachlorobiphenyl (PCB 77), 2,3,4,4′,5-pentachlorobiphenyl (PCB 114), or 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB 153) for up to 24 hours. These PCBs were selected for their varying binding avidities with the aryl hydrocarbon (Ah) receptor and differences in their induction of cytochrome P450. PCB 77 and PCB 114 significantly disrupted, in a dose-dependent manner, endothelial barrier function by allowing an increase in albumin transfer across endothelial monolayers. These PCBs also contributed markedly to cellular oxidative stress, as measured by 2,7-dichlorofluorescin (DCF) fluorescence and lipid hydroperoxides, and caused a significant increase in intracellular calcium ([Ca2+]i) levels. Enhanced oxidative stress and [Ca2+]i in PCB 77- and PCB 114-treated cells were accompanied by increased activity and content of cytochrome P450 1A and by a decrease in the vitamin E content in the culture medium. In contrast to the effects of PCB 77 and PCB 114, cell exposure to PCB 153 had no effect on cellular oxidation, [Ca2+]i, or endothelial barrier function. These results suggest that certain PCBs may play a role in the development of atherosclerosis by causing endothelial cell dysfunction and a decrease in the barrier function of the vascular endothelium. It is possible that interaction of PCBs with the Ah receptor and activation of the cytochrome P450 1A subfamily are involved in this pathology. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号