首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Regulation of tumor cell invasion by extracellular matrix   总被引:10,自引:0,他引:10  
  相似文献   

2.
T cells migrating across extracellular matrix (ECM) barriers toward their target, the inflammatory site, should respond to chemoattractant cytokines and to the degradation of ECM by specific enzymes. In this study, we examined the effects of RANTES and ECM proteins treated with human leukocyte elastase on T cell activation and adhesion to the ECM. We found that human peripheral blood T cells briefly suspended with RANTES (0.1-100 ng/ml) had increased phosphorylation of their intracellular extracellular signal-regulated kinase (ERK), a mitogen-activated protein kinase involved in the activation of several intracellular downstream effector molecules implicated in cell adhesion and migration. Consequently, a small portion (12-20%) of the responding cells adhered to fibronectin (FN). However, when the T cells were exposed to RANTES in the presence of native immobilized FN, laminin, or collagen type I, ERK phosphorylation was partially inhibited, suggesting that this form of the ECM proteins can down-regulate RANTES-induced intracellular signaling. In contrast, when the T cells were exposed to RANTES in the presence of elastase-treated immobilized FN, but not to elastase-treated laminin, ERK phosphorylation was markedly increased. Furthermore, a large percentage (30%) of RANTES-activated T cells adhered to the enzymatically treated FN in a beta1 integrin-dependent fashion. Thus, while migrating along chemotactic gradients within the ECM, T cells can adapt their adhesive performance according to the level of cleavage induced by enzymes to the matrix.  相似文献   

3.
Cells in multicellular organisms are surrounded by a complex three-dimensional macromolecular extracellular matrix (ECM). This matrix, traditionally thought to serve a structural function providing support and strength to cells within tissues, is increasingly being recognized as having pleiotropic effects in development and growth. Elucidation of the role that the ECM plays in developmental processes has been significantly advanced by studying the phenotypic and developmental consequences of specific genetic alterations of ECM components in the mouse. These studies have revealed the enormous contribution of the ECM to the regulation of key processes in morphogenesis and organogenesis, such as cell adhesion, proliferation, specification, migration, survival, and differentiation. The ECM interacts with signaling molecules and morphogens thereby modulating their activities. This review considers these advances in our understanding of the function of ECM proteins during development, extending beyond their structural capacity, to embrace their new roles in intercellula signaling.  相似文献   

4.
This review provides an overview of several molecular and cellular approaches that are likely to supply insights into the host–fungus interaction. Fungi present intra- and/or extracellular host–parasite interfaces, the parasitism phenomenon being dependent on complementary surface molecules. The entry of the pathogen into the host cell is initiated by the fungus adhering to the cell surface, which generates an uptake signal that may induce its cytoplasmatic internalization. Furthermore, microbial pathogens use a variety of their surface molecules to bind to host extracellular matrix (ECM) components to establish an effective infection. On the other hand, integrins mediate the tight adhesion of cells to the ECM at sites referred to as focal adhesions and also play a role in cell signaling. The phosphorylation process is an important mechanism of cell signaling and regulation; it has been implicated recently in defense strategies against a variety of pathogens that alter host-signaling pathways in order to facilitate their invasion and survival within host cells. The study of signal transduction pathways in virulent fungi is especially important in view of their putative role in the regulation of pathogenicity. This review discusses fungal adherence, changes in cytoskeletal organization and signal transduction in relation to host–fungus interaction.  相似文献   

5.
This review provides an overview of several molecular and cellular approaches that are likely to supply insights into the host-fungus interaction. Fungi present intra- and/or extracellular host-parasite interfaces, the parasitism phenomenon being dependent on complementary surface molecules. The entry of the pathogen into the host cell is initiated by the fungus adhering to the cell surface, which generates an uptake signal that may induce its cytoplasmatic internalization. Furthermore, microbial pathogens use a variety of their surface molecules to bind to host extracellular matrix (ECM) components to establish an effective infection. On the other hand, integrins mediate the tight adhesion of cells to the ECM at sites referred to as focal adhesions and also play a role in cell signaling. The phosphorylation process is an important mechanism of cell signaling and regulation; it has been implicated recently in defense strategies against a variety of pathogens that alter host-signaling pathways in order to facilitate their invasion and survival within host cells. The study of signal transduction pathways in virulent fungi is especially important in view of their putative role in the regulation of pathogenicity. This review discusses fungal adherence, changes in cytoskeletal organization and signal transduction in relation to host-fungus interaction.  相似文献   

6.
7.
Neural cells secrete diverse molecules, which accumulate in the extracellular space and form the extracellular matrix (ECM). Interactions between cells and the ECM are well recognized to play the crucial role in cell migration and guidance of growing axons, whereas formation of mature neural ECM in the form of perineuronal nets is believed to restrict certain forms of developmental plasticity. On the other hand, major components of perineuronal nets and other ECM molecules support induction of functional plasticity, the most studied form of which is long-term potentiation. Here, we review the underlying mechanisms by which ECM molecules, their receptors and remodeling proteases regulate the induction and maintenance of synaptic modifications. In particular, we highlight that activity-dependent secretion and activation of proteases leads to a local cleavage of the ECM and release of signaling proteolytic fragments. These molecules regulate transmitter receptor trafficking, actin cytoskeleton, growth of dendritic spines, and formation of dendritic filopodia.  相似文献   

8.
Matrix metalloproteinase stromelysin-3 in development and pathogenesis   总被引:1,自引:0,他引:1  
The extracellular matrix (ECM) serves as a medium for cell-cell interactions and can directly signal cells through cell surface ECM receptors, such as integrins. In addition, many growth factors and signaling molecules are stored in the ECM. Thus, ECM remodeling and/or degradation plays a critical role in cell fate and behavior during many developmental and pathological processes. ECM remodeling/degradation is, to a large extent, mediated by matrix metalloproteinases (MMPs), a family of extracellular or membrane-bound, Zn2+-dependent proteases that are capable of digesting various proteinaceous components of the ECM. Of particular interest among them is the MMP11 or stromelysin-3, which was first isolated as a breast cancer associated protease. Here, we review some evidence for the involvement of this MMP in development and diseases with a special emphasis on amphibian metamorphosis, a postembryonic, thyroid hormone-dependent process that transforms essentially every organ/tissue of the animal.  相似文献   

9.
10.
Cell-matrix adhesion   总被引:1,自引:0,他引:1  
The complex interactions of cells with extracellular matrix (ECM) play crucial roles in mediating and regulating many processes, including cell adhesion, migration, and signaling during morphogenesis, tissue homeostasis, wound healing, and tumorigenesis. Many of these interactions involve transmembrane integrin receptors. Integrins cluster in specific cell-matrix adhesions to provide dynamic links between extracellular and intracellular environments by bi-directional signaling and by organizing the ECM and intracellular cytoskeletal and signaling molecules. This mini review discusses these interconnections, including the roles of matrix properties such as composition, three-dimensionality, and porosity, the bi-directional functions of cellular contractility and matrix rigidity, and cell signaling. The review concludes by speculating on the application of this knowledge of cell-matrix interactions in the formation of cell adhesions, assembly of matrix, migration, and tumorigenesis to potential future therapeutic approaches.  相似文献   

11.
Capillary endothelial (CE) cells require two extracellular signals in order to switch from quiescence to growth and back to differentiation during angiogenesis: soluble angiogenic factors and insoluble extracellular matrix (ECM) molecules. Soluble endothelial mitogens, such as basic fibroblast growth factor (FGF), act over large distances to trigger capillary growth, whereas ECM molecules act locally to modulate cell responsiveness to these soluble cues. Recent studies reveal that ECM molecules regulate CE cell growth and differentiation by modulating cell shape and by activating intracellular chemical signaling pathways inside the cell. Recognition of the importance of ECM and cell shape during capillary morphogenesis has led to the identification of a series of new angiogenesis inhibitors. Elucidation of the molecular mechanism of capillary regulation may result in development of even more potent angiogenesis modulators in the future.  相似文献   

12.
Vascular amyloidosis, caused when peptide monomers aggregate into insoluble amyloid, is a prevalent age-associated pathology. Aortic medial amyloid (AMA) is the most common human amyloid and is composed of medin, a 50-amino acid peptide. Emerging evidence has implicated extracellular vesicles (EVs) as mediators of pathological amyloid accumulation in the extracellular matrix (ECM). To determine the mechanisms of AMA formation with age, we explored the impact of vascular smooth muscle cell (VSMC) senescence, EV secretion, and ECM remodeling on medin accumulation. Medin was detected in EVs secreted from primary VSMCs. Small, round medin aggregates colocalized with EV markers in decellularized ECM in vitro and medin was shown on the surface of EVs deposited in the ECM. Decreasing EV secretion with an inhibitor attenuated aggregation and deposition of medin in the ECM. Medin accumulation in the aortic wall of human subjects was strongly correlated with age and VSMC senescence increased EV secretion, increased EV medin loading and triggered deposition of fibril-like medin. Proteomic analysis showed VSMC senescence induced changes in EV cargo and ECM composition, which led to enhanced EV-ECM binding and accelerated medin aggregation. Abundance of the proteoglycan, HSPG2, was increased in the senescent ECM and colocalized with EVs and medin. Isolated EVs selectively bound to HSPG2 in the ECM and its knock-down decreased formation of fibril-like medin structures. These data identify VSMC-derived EVs and HSPG2 in the ECM as key mediators of medin accumulation, contributing to age-associated AMA development.  相似文献   

13.

The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules. The neural ECM acts as a non-specific physical barrier that modulates neuronal plasticity and axon regeneration. There are two specialized types of ECM in the CNS, diffuse perisynaptic ECM and condensed ECM, which selectively surround the perikaryon and initial part of dendritic trees in subtypes of neurons, forming perineuronal nets. This review presents the current knowledge about the role of important neuronal ECM molecules in maintaining the basic functions of a neuron, including electrogenesis and the ability to form neural circuits. The review mainly focuses on the role of ECM components that participate in the control of key events such as cell survival, axonal growth, and synaptic remodeling. Particular attention is drawn to the numerous molecular partners of the main ECM components. These regulatory molecules are integrated into the cell membrane or disposed into the matrix itself in solid or soluble form. The interaction of the main matrix components with molecular partners seems essential in molecular mechanisms controlling neuronal functions. Special attention is paid to the chondroitin sulfate proteoglycan 4, type 1 transmembrane protein, neural-glial antigen 2 (NG2/CSPG4), whose cleaved extracellular domain is such a molecular partner that it not only acts directly on neural and vascular cells, but also exerts its influence indirectly by binding to resident ECM molecules.

  相似文献   

14.
The extracellular matrix (ECM) molecule tenascin-C (TNC) promotes tumor progression. This has recently been demonstrated in the stochastic murine RIP1-Tag2 insulinoma model, engineered to either express TNC abundantly or to be devoid of TNC. However, our knowledge about organization of the TNC microenvironment is scant. Here we determined the spatial distribution of TNC together with other ECM molecules in murine RIP1-Tag2 insulinoma and human cancer tissue (insulinoma and colorectal carcinoma). We found that TNC is organized in matrix tracks together with other ECM molecules of the AngioMatrix signature, a previously described gene expression profile that characterizes the angiogenic switch. Moreover, stromal cells including endothelial cells, fibroblasts and leukocytes were enriched in the TNC tracks. Thus, TNC tracks may provide niches for stromal cells and regulate their behavior. Given similarities of TNC rich niches for stromal cells in human insulinoma and colon cancer, we propose that the RIP1-Tag2 model may be useful for providing insights into the contribution of the tumor stroma specific ECM as promoter of cancer progression.  相似文献   

15.
16.
17.
18.
Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM.  相似文献   

19.
The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field.  相似文献   

20.
Cells anchor to substrates by binding to extracellular matrix (ECM). In addition to this anchoring function however, cell–ECM binding is a mechanism for cells to sense their surroundings and to communicate and coordinate behaviour amongst themselves. Several ECM molecules and their receptors play essential roles in muscle development and maintenance. Defects in these proteins are responsible for some of the most severe muscle dystrophies at every stage of life from neonates to adults. However, recent studies have also revealed a role of cell–ECM interactions at much earlier stages of development as skeletal muscle forms. Here we review which ECM molecules are present during the early phases of myogenesis, how myogenic cells interact with the ECM that surrounds them and the potential consequences of those interactions. We conclude that cell–ECM interactions play significant roles during all stages of skeletal muscle development in the embryo and suggest that this “extracellular matrix dimension” should be added to our conceptual network of factors contributing to skeletal myogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号