首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundSalt-inducible kinase 2 (SIK2) is abundant in adipocytes, but downregulated in adipose tissue from individuals with obesity and insulin resistance. Moreover, SIK isoforms are required for normal insulin signalling and glucose uptake in adipocytes, but the underlying molecular mechanisms are currently not known. The adherens junction protein JUP, also termed plakoglobin or γ-catenin, has recently been reported to promote insulin signalling in muscle cells.ObjectiveThe objective of this study was to analyse if JUP is required for insulin signalling in adipocytes and the underlying molecular mechanisms of this regulation.MethodsCo-expression of SIK2 and JUP mRNA levels in adipose tissue from a human cohort was analysed. siRNA silencing and/or pharmacological inhibition of SIK2, JUP, class IIa HDACs and CRTC2 was employed in 3T3-L1- and primary rat adipocytes. JUP protein expression was analysed by western blot and mRNA levels by qPCR. Insulin signalling was evaluated by western blot as levels of phosphorylated PKB/Akt and AS160, and by monitoring the uptake of 3H-2-deoxyglucose.ResultsmRNA expression of SIK2 correlated with that of JUP in human adipose tissue. SIK2 inhibition or silencing resulted in downregulation of JUP mRNA and protein expression in 3T3-L1- and in primary rat adipocytes. Moreover, JUP silencing reduced the expression of PKB and the downstream substrate AS160, and consequently attenuated activity in the insulin signalling pathway, including insulin-induced glucose uptake. The known SIK2 substrates CRTC2 and class IIa HDACs were found to play a role in the SIK-mediated regulation of JUP expression.ConclusionsThese findings identify JUP as a novel player in the regulation of insulin sensitivity in adipocytes, and suggest that changes in JUP expression could contribute to the effect of SIK2 on insulin signalling in these cells.  相似文献   

2.
3.
Insulin receptor signal transduction depends on the precise intracellular localization of signalling molecules. This study examines the compartmentalization and the insulin-induced translocation and tyrosine phosphorylation of insulin receptor substrates (IRS-1 and IRS-3) in epididymal white adipose tissue from adult and insulin-resistant old rats. We found that insulin induces the translocation of IRS-1 from plasma membrane (PM) and light microsomes (LM) to cytosol, whereas IRS-3 translocates from PM to LM and cytosol upon insulin stimulation. Old rat adipocytes are characterized by higher relative levels of IRS proteins, under basal conditions, in those fractions where they are intended to translocate in response to insulin and exhibit a higher phosphotyrosine content of IRS-1 and -3 in basal conditions and a lower maximal phosphorylation in response to insulin. Furthermore, old rat adipocytes are also characterized by a reduced ability of insulin to stimulate both, Akt/PKB activity and translocation of GLUT4 to the PM. We conclude that the lower stimulation of downstream insulin signalling involved in glucose metabolism in old rat adipocytes may be explained, at least in part, by the altered subcellular distribution of IRS-1 and -3 proteins. In addition, our data suggest that the mechanism of turning on/off insulin receptor-mediated signal is impaired with aging.  相似文献   

4.
Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin.  相似文献   

5.
In the present study we have investigated the effect of increased serine/threonine phosphorylation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) by okadaic acid pretreatment on brown adipocyte insulin signalling leading to glucose transport, an important metabolic effect of insulin in brown adipose tissue. Okadaic acid pretreatment before insulin stimulation decreased IRS-1 and IRS-2 tyrosine phosphorylation in parallel to a decrease in their sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility. IRS-1/IRS-2-associated p85alpha and phosphatidylinositol (PI) 3-kinase enzymatic activity were partly reduced in brown adipocytes pretreated with okadaic acid upon stimulation with insulin. Furthermore, insulin-induced glucose uptake was totally abolished by the inhibitor in parallel with a total inhibition of insulin-induced protein kinase C (PKC) zeta activity. However, activation of Akt/PKB or p70 S6 kinase (p70(s6k)) by insulin remained unaltered. Our results suggest that downstream of PI 3-kinase, insulin signalling diverges into at least two independent pathways through Akt/PKB and PKC zeta, the PKC zeta pathway contributing to glucose transport induced by insulin in fetal brown adipocytes.  相似文献   

6.
SIK2 (salt-inducible kinase 2) is a member of the AMPK (AMP-activated protein kinase) family of kinases and is highly expressed in adipocytes. We investigated the regulation of SIK2 in adipocytes in response to cellular stimuli with relevance for adipocyte function and/or AMPK signalling. None of the treatments, including insulin, cAMP inducers or AICAR (5-amino-4-imidazolecarboxamide riboside), affected SIK2 activity towards peptide or protein substrates in vitro. However, stimulation with the cAMP-elevating agent forskolin and the β-adrenergic receptor agonist CL 316,243 resulted in a PKA (protein kinase A)-dependent phosphorylation and 14-3-3 binding of SIK2. Phosphopeptide mapping of SIK2 revealed several sites phosphorylated in response to cAMP induction, including Ser(358). Site-directed mutagenesis demonstrated that phosphorylation of Ser(358), but not the previously reported PKA site Ser(587), was required for 14-3-3 binding. Immunocytochemistry illustrated that the localization of exogenously expressed SIK2 in HEK (human embryonic kidney)-293 cells was exclusively cytosolic and remained unchanged after cAMP elevation. Fractionation of adipocytes, however, revealed a significant increase of wild-type, but not Ser358Ala, HA (haemagglutinin)-SIK2 in the cytosol and a concomitant decrease in a particulate fraction after CL 316,243 treatment. This supports a phosphorylation-dependent relocalization in adipocytes. We hypothesize that regulation of SIK2 by cAMP could play a role for the critical effects of this second messenger on lipid metabolism in adipocytes.  相似文献   

7.
Salt-inducible kinase (SIK) 3 is a virtually unstudied, ubiquitously expressed serine/threonine kinase, belonging to the AMP-activated protein kinase (AMPK)-related family of kinases, all of which are regulated by LKB1 phosphorylation of a threonine residue in their activation (T)-loops. Findings in adrenal cells have revealed a role for cAMP in the regulation of SIK1, and recent findings suggest that insulin can regulate an SIK isoform in Drosophila. As cAMP has important functions in adipocytes, mainly in the regulation of lipolysis, we have evaluated a potential role for cAMP, as well as for insulin, in the regulation of SIK3 in these cells. We establish that raised cAMP levels in response to forskolin and the β-adrenergic receptor agonist CL 316,243 induce a phosphorylation of SIK3 in HEK293 cells and primary adipocytes. This phosphorylation coincides with increased 14-3-3 binding to SIK3 in these cell types. Our findings also show that cAMP-elevation results in reduced SIK3 activity in adipocytes. Phosphopeptide mapping and site-directed mutagenesis reveal that the cAMP-mediated regulation of SIK3 appears to depend on three residues, T469, S551 and S674, that all contribute to some extent to the cAMP-induced phosphorylation and 14-3-3-binding. As the cAMP-induced regulation can be reversed with the protein kinase A (PKA) inhibitor H89, and a role for other candidate kinases, including PKB and RSK, could be excluded, we believe that PKA is the kinase responsible for SIK3 regulation in response to elevated cAMP levels. Our findings of cAMP-mediated regulation of SIK3 suggest that SIK3 may mediate some of the effects of this important second messenger in adipocytes.  相似文献   

8.
LKB1 plays important roles in governing energy homeostasis by regulating AMP-activated protein kinase (AMPK) and other AMPK-related kinases, including the salt-inducible kinases (SIKs). However, the roles and regulation of LKB1 in lipid metabolism are poorly understood. Here we show that Drosophila LKB1 mutants display decreased lipid storage and increased gene expression of brummer, the Drosophila homolog of adipose triglyceride lipase (ATGL). These phenotypes are consistent with those of SIK3 mutants and are rescued by expression of constitutively active SIK3 in the fat body, suggesting that SIK3 is a key downstream kinase of LKB1. Using genetic and biochemical analyses, we identify HDAC4, a class IIa histone deacetylase, as a lipolytic target of the LKB1-SIK3 pathway. Interestingly, we found that the LKB1-SIK3-HDAC4 signaling axis is modulated by dietary conditions. In short-term fasting, the adipokinetic hormone (AKH) pathway, related to the mammalian glucagon pathway, inhibits the kinase activity of LKB1 as shown by decreased SIK3 Thr196 phosphorylation, and consequently induces HDAC4 nuclear localization and brummer gene expression. However, under prolonged fasting conditions, AKH-independent signaling decreases the activity of the LKB1-SIK3 pathway to induce lipolytic responses. We also identify that the Drosophila insulin-like peptides (DILPs) pathway, related to mammalian insulin pathway, regulates SIK3 activity in feeding conditions independently of increasing LKB1 kinase activity. Overall, these data suggest that fasting stimuli specifically control the kinase activity of LKB1 and establish the LKB1-SIK3 pathway as a converging point between feeding and fasting signals to control lipid homeostasis in Drosophila.  相似文献   

9.
10.
11.
《Phytomedicine》2015,22(9):837-846
PurposeThe current study investigated the efficacy of Cyclocarya paliurus chloroform extract (CPEC) and its two specific triterpenoids (cyclocaric acid B and cyclocarioside H) on the regulation of glucose disposal and the underlying mechanisms in 3T3-L1 adipocytes.MethodsMice and adipocytes were stimulated by macrophages-derived conditioned medium (Mac-CM) to induce insulin resistance. CPEC was evaluated in mice for its ability by oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). To investigate the hypoglycemic mechanisms of CPEC and its two triterpenoids, glucose uptake, AMP-activated protein kinase (AMPK) activation, inhibitor of NF-κB kinase β (IKKβ) phosphorylation and insulin signaling transduction were detected in 3T3-L1 adipocytes using 2-NBDG uptake assay and Western blot analysis.ResultsMac-CM, an inflammatory stimulus which induced the glucose and insulin intolerance, increased phosphorylation of IKKβ, reduced glucose uptake and impaired insulin sensitivity. CPEC and two triterpenoids improved glucose consumption and increased AMPK phosphorylation under basal and inflammatory conditions. Moreover, CPEC and its two triterpenoids not only enhanced glucose uptake in an insulin-independent manner, but also restored insulin-mediated protein kinase B (Akt) phosphorylation by reducing the activation of IKKβ and regulating insulin receptor substrate-1 (IRS-1) serine/tyrosine phosphorylation. These beneficial effects were attenuated by AMPK inhibitor compound C, implying that the effects may be associated with AMPK activation.ConclusionsCPEC and its two triterpenoids promoted glucose uptake in the absence of insulin, as well as ameliorated IRS-1/PI3K/Akt pathway by inhibiting inflammation. These effects were related to the regulation of AMPK activity.  相似文献   

12.
Decreased GLUT4 expression, impaired insulin receptor (IR), IRS-1, and pp60/IRS-3 tyrosine phosphorylation are characteristics of adipocytes from insulin-resistant animal models and obese NIDDM humans. However, the sequence of events leading to the development of insulin signaling defects and the significance of decreased GLUT4 expression in causing adipocyte insulin resistance are unknown. The present study used male heterozygous GLUT4 knockout mice (GLUT4(+/-)) as a novel model of diabetes to study the development of insulin signaling defects in adipocytes with the progression of whole body insulin resistance and diabetes. Male GLUT4(+/-) mice with normal fed glycemia and insulinemia (N/N), normal fed glycemia and hyperinsulinemia (N/H), and fed hyperglycemia with hyperinsulinemia (H/H) exist at all ages. The expression of GLUT4 protein and the maximal insulin-stimulated glucose transport was 50% decreased in adipocytes from all three groups. Insulin signaling was normal in N/N adipose cells. From 35 to 70% reductions in insulin-stimulated tyrosine phosphorylation of IR, IRS-1, and pp60/IRS-3 were noted with no changes in the cellular content of IR, IRS-1, and p85 in N/H adipocytes. Insulin-stimulated protein tyrosine phosphorylation was further decreased to 12-23% in H/H adipose cells accompanied by 42% decreased IR and 80% increased p85 expression. Insulin-stimulated, IRS-1-associated PI3 kinase activity was decreased by 20% in N/H and 68% reduced in H/H GLUT4(+/-) adipocytes. However, total insulin-stimulated PI3 kinase activity was normal in H/H GLUT4(+/-) adipocytes. Taken together, these results strongly suggest that hyperinsulinemia triggers a reduction of IR tyrosine kinase activity that is further exacerbated by the appearance of hyperglycemia. However, the insulin signaling cascade has sufficient plasticity to accommodate significant changes in specific components without further reducing glucose uptake. Furthermore, the data indicate that the cellular content of GLUT4 is the rate-limiting factor in mediating maximal insulin-stimulated glucose uptake in GLUT4(+/-) adipocytes.  相似文献   

13.
14.
Obesity leads to a proinflammatory state with immune responses that include infiltration of adipose tissue with macrophages. These macrophages are believed to alter insulin sensitivity in adipocytes, but the mechanisms that underlie this effect have not been characterized. We have explored the interaction between macrophages and adipocytes in the context of both indirect and direct coculture. Macrophage-secreted factors blocked insulin action in adipocytes via downregulation of GLUT4 and IRS-1, leading to a decrease in Akt phosphorylation and impaired insulin-stimulated GLUT4 translocation to the plasma membrane. GLUT1 was upregulated with a concomitant increase in basal glucose uptake. These changes recapitulate those seen in adipose tissue from insulin-resistant humans and animal models. TNF-alpha-neutralizing antibodies partially reversed the insulin resistance produced by macrophage-conditioned media. Peritoneal macrophages and macrophage-enriched stromal vascular cells from adipose tissue also attenuated responsiveness to insulin in a manner correlating with inflammatory cytokine secretion. Adipose tissue macrophages from obese mice have an F4/80(+)CD11b(+)CD68(+)CD14(-) phenotype and form long cellular extensions in culture. Peritoneal macrophages take on similar characteristics in direct coculture with adipocytes and induce proinflammatory cytokines, suggesting that macrophage activation state is influenced by contact with adipocytes. Thus both indirect/secreted and direct/cell contact-mediated factors derived from macrophages influence insulin sensitivity in adipocytes.  相似文献   

15.
16.
Identification of enhanced serine kinase activity in insulin resistance   总被引:14,自引:0,他引:14  
Insulin receptor substrate (IRS) proteins play a crucial role as signaling molecules in insulin action. Serine phosphorylation of IRS proteins has been hypothesized as a cause of attenuating insulin signaling. The current study investigated serine kinase activity toward IRS-1 in several models of insulin resistance. An in vitro kinase assay was developed that used partially purified cell lysates as a kinase and glutathione S-transferase fusion proteins that contained various of IRS-1 fragments as substrates. Elevated serine kinase activity was detected in Chinese hamster ovary/insulin receptor (IR)/IRS-1 cells and 3T3-L1 adipocytes chronically treated with insulin, and in liver and muscle of obese JCR:LA-cp rats. It phosphorylated the 526-859 amino acid region of IRS-1, whereas phosphorylation of the 2-516 and 900-1235 amino acid regions was not altered. Phosphopeptide mapping of the 526-859 region of IRS-1 showed three major phosphopeptides (P1, P2, and P3) with different patterns of phosphorylation depending on the source of serine kinase activity. P1 and P2 were strongly phosphorylated when the kinase activity was prepared from insulin-resistant Chinese hamster ovary/IR/IRS-1 cells, weakly phosphorylated by the kinase activity from insulin-resistant 3T3-L1 adipocytes, and barely phosphorylated when the extract was derived from insulin-resistant liver. In contrast, P3 was phosphorylated by the serine kinase activity prepared from all insulin-resistant cells and tissues of animals. P1 and P2 phosphorylation can be explained by mitogen-activated protein kinase activity based on the phosphopeptide map generated by recombinant ERK2. In contrast, mitogen-activated protein kinase failed to phosphorylate the P3 peptide, suggesting that another serine kinase regulates this modification of IRS-1 in insulin-resistant state.  相似文献   

17.
The global incidence of diabetes is increasing at epidemic rates. Estimates suggest there are currently 150 million people with diabetes and this number is expected to double in the next 20 years. Type 2 diabetes accounts for 95% of all cases and is characterized in part by impaired sensitivity to insulin or 'insulin resistance'. Defects in the insulin signalling pathways underpin this resistance. In the current article we discuss the regulation of Insulin Receptor Substrate-1 (IRS-1), a protein that plays a pivotal role in insulin signalling and whose function is impaired in subjects with insulin resistance. Coordination of IRS-1 function is multi-faceted, involving phosphorylation of IRS-1 at multiple serine/threonine residues. This controls many aspects of IRS-1, including its interaction with the insulin receptor and subsequent tyrosine phosphorylation, as well as its subcellular distribution and targeting for degradation by the proteasome. Such tight control ensures appropriate transduction and attenuation of the insulin signal, thereby regulating insulin action in healthy individuals. Emerging evidence indicates that 'diabetogenic factors' associated with insulin resistance, such as TNFalpha and elevated circulating fatty acids, impact on insulin signalling at the level of IRS-1 serine/threonine phosphorylation. The expression and/or activity of several kinases, such as IkappaB kinase beta (IKKbeta) and salt-induced kinase 2 (SIK2), and the phosphorylation of IRS-1 at key sites, such as Ser307 and Ser789, are increased in states of insulin resistance. Identifying the pathways by which such factors activate these and other kinases, and defining the precise roles of specific serine/ threonine phosphorylation events in IRS-1 regulation, represent important goals which may eventually provide a rationale for therapeutic intervention.  相似文献   

18.
Lipodystrophies are disorders that directly affect lipid metabolism and storage. Familial partial lipodystrophy type 2 (FPLD2) is caused by an autosomal dominant mutation in the LMNA gene. FPLD2 is characterized by abnormal adipose tissue distribution. This leads to metabolic deficiencies, such as insulin-resistant diabetes mellitus and hypertriglyceridemia. Here we have derived iPSC lines from two individuals diagnosed with FPLD2, and differentiated these cells into adipocytes. Adipogenesis and certain adipocyte functions are impaired in FPLD2-adipocytes. Consistent with the lipodystrophic phenotype, FPLD2-adipocytes appear to accumulate markers of autophagy and catabolize triglycerides at higher levels than control adipocytes. These data are suggestive of a mechanism causing the lack of adipose tissue in FPLD2 patients.  相似文献   

19.
20.
Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and adiposity and is a drug target for the treatment of obesity and diabetes. Here we identify pyruvate kinase M2 (PKM2) as a novel PTP1B substrate in adipocytes. PTP1B deficiency leads to increased PKM2 total tyrosine and Tyr105 phosphorylation in cultured adipocytes and in vivo. Substrate trapping and mutagenesis studies identify PKM2 Tyr-105 and Tyr-148 as key sites that mediate PTP1B-PKM2 interaction. In addition, in vitro analyses illustrate a direct effect of Tyr-105 phosphorylation on PKM2 activity in adipocytes. Importantly, PTP1B pharmacological inhibition increased PKM2 Tyr-105 phosphorylation and decreased PKM2 activity. Moreover, PKM2 Tyr-105 phosphorylation is regulated nutritionally, decreasing in adipose tissue depots after high-fat feeding. Further, decreased PKM2 Tyr-105 phosphorylation correlates with the development of glucose intolerance and insulin resistance in rodents, non-human primates, and humans. Together, these findings identify PKM2 as a novel substrate of PTP1B and provide new insights into the regulation of adipose PKM2 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号