首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cdc14 protein phosphatase is critical for late mitosis progression in budding yeast, although its orthologs in other organisms, including mammalian cells, function as stress-responsive phosphatases. We found herein unexpected roles of Cdc14 in autophagy induction after nutrient starvation and target of rapamycin complex 1 (TORC1) kinase inactivation. TORC1 kinase phosphorylates Atg13 to repress autophagy under nutrient-rich conditions, but if TORC1 becomes inactive upon nutrient starvation or rapamycin treatment, Atg13 is rapidly dephosphorylated and autophagy is induced. Cdc14 phosphatase was required for optimal Atg13 dephosphorylation, pre-autophagosomal structure formation, and autophagy induction after TORC1 inactivation. In addition, Cdc14 was required for sufficient induction of ATG8 and ATG13 expression. Moreover, Cdc14 activation provoked autophagy even under normal conditions. This study identified a novel role of Cdc14 as the stress-responsive phosphatase for autophagy induction in budding yeast.  相似文献   

2.
3.
Macroautophagy (hereafter autophagy) is a bulk degradation system conserved in all eukaryotes, which engulfs cytoplasmic components within double-membrane vesicles to allow their delivery to, and subsequent degradation within, the vacuole/lysosome. Autophagy activity is tightly regulated in response to the nutritional state of the cell and also to maintain organelle homeostasis. In nutrient-rich conditions, Tor kinase complex 1 (TORC1) is activated to inhibit autophagy, whereas inactivation of this complex in response to stress leads to autophagy induction; however, it is unclear how the activity of TORC1 is controlled to allow precise adjustments in autophagy activity. In this study, we performed genetic analyses in Saccharomyces cerevisiae to identify factors that regulate TORC1 activity. We determined that the Ksp1 kinase functions in part as a negative regulator of autophagy; deletion of KSP1 facilitated dephosphorylation of Atg13, a TORC1 substrate, which correlates with enhanced autophagy. These results suggest that Ksp1 down-regulates autophagy activity via the TORC1 pathway. The suppressive function of Ksp1 is partially activated by the Ras/cAMP-dependent protein kinase A (PKA), which is another negative regulator of autophagy. Our study therefore identifies Ksp1 as a new component that functions as part of the PKA and TORC1 signaling network to control the magnitude of autophagy.  相似文献   

4.
The proteins that comprise the Atg1 kinase complex constitute a key set of components that participate in macroautophagy (hereafter autophagy). Among these proteins, Atg13 plays a particularly important, although as yet undefined role, in that it is critical for the proper localization of Atg1 to the phagophore assembly site (PAS) and its efficient kinase activity. Atg13 is hyperphosphorylated in vegetative conditions when autophagy occurs at a basal level, and is largely dephosphorylated upon the induction of autophagy. Inhibitory phosphorylation of Atg13 reflects the activity of TOR complex 1 (TORC1) and protein kinase A. Accordingly, monitoring the phosphorylation state of Atg13 provides a convenient way to follow early steps of autophagy induction as well as the activity of some of the upstream nutrient-sensing kinases. However, the detection of Atg13 by western blot can be problematic. Here, we present a detailed protocol for sample preparation and detection of the Atg13 protein from yeast.  相似文献   

5.
《Autophagy》2013,9(3):514-517
The proteins that comprise the Atg1 kinase complex constitute a key set of components that participate in macroautophagy (hereafter autophagy). Among these proteins, Atg13 plays a particularly important, although as yet undefined role, in that it is critical for the proper localization of Atg1 to the phagophore assembly site (PAS) and its efficient kinase activity. Atg13 is hyperphosphorylated in vegetative conditions when autophagy occurs at a basal level, and is largely dephosphorylated upon the induction of autophagy. Inhibitory phosphorylation of Atg13 reflects the activity of TOR complex 1 (TORC1) and protein kinase A. Accordingly, monitoring the phosphorylation state of Atg13 provides a convenient way to follow early steps of autophagy induction as well as the activity of some of the upstream nutrient-sensing kinases. However, the detection of Atg13 by western blot can be problematic. Here, we present a detailed protocol for sample preparation and detection of the Atg13 protein from yeast.  相似文献   

6.
Shin CS  Huh WK 《Autophagy》2011,7(8):854-862
It has been reported in various model organisms that autophagy and the target of rapamycin complex 1 (TORC1) signaling are strongly involved in eukaryotic cell aging and decreasing TORC1 activity extends longevity by an autophagy-dependent mechanism. Thus, to expand our knowledge of the regulation of eukaryotic cell aging, it is important to understand the relationship between TORC1 signaling and autophagy. Many researchers have shown that TORC1 represses autophagy under normal growth conditions, and TORC1 inactivation contributes to the upregulation of autophagy. However, it is poorly understood how autophagy is regulated or terminated when starvation is prolonged. Here, we report that bidirectional regulation between autophagy and TORC1 exists in the yeast Saccharomyces cerevisiae. We show that mutant cells with weak TORC1 activity maintain autophagy longer than wild-type cells, and TORC1 is partially reactivated under ongoing nitrogen starvation by an autophagy-dependent mechanism. In addition, we found that Atg13 is gradually rephosphorylated during prolonged nitrogen starvation, and the kinase activity of Atg1 is required for Atg13 rephosphorylation. Our data suggest that TORC1 can be substantially, if not fully, reactivated in an autophagy-dependent manner under ongoing starvation, and that partially reactivated TORC1 eventually plays a role in the attenuation of autophagy.  相似文献   

7.
《Autophagy》2013,9(8):854-862
It has been reported in various model organisms that autophagy and the target of rapamycin complex 1 (TORC1) signaling are strongly involved in eukaryotic cell aging and decreasing TORC1 activity extends longevity by an autophagy-dependent mechanism. Thus, to expand our knowledge of the regulation of eukaryotic cell aging, it is important to understand the relationship between TORC1 signaling and autophagy. Many researchers have shown that TORC1 represses autophagy under normal growth conditions, and TORC1 inactivation contributes to the upregulation of autophagy. However, it is poorly understood how autophagy is regulated or terminated when starvation is prolonged. Here, we report that bidirectional regulation between autophagy and TORC1 exists in the yeast Saccharomyces cerevisiae. We show that mutant cells with weak TORC1 activity maintain autophagy longer than wild-type cells, and TORC1 is partially reactivated under ongoing nitrogen starvation by an autophagy-dependent mechanism. In addition, we found that Atg13 is gradually rephosphorylated during prolonged nitrogen starvation, and the kinase activity of Atg1 is required for Atg13 rephosphorylation. Our data suggest that TORC1 can be substantially, if not fully, reactivated in an autophagy-dependent manner under ongoing starvation, and that partially reactivated TORC1 eventually plays a role in the attenuation of autophagy.  相似文献   

8.
The target of rapamycin (TOR) kinase belongs to the highly conserved eukaryotic family of phosphatidylinositol 3-kinase-related kinases. TOR proteins are found at the core of two evolutionary conserved complexes, known as TORC1 and TORC2. In fission yeast, TORC2 is dispensable for proliferation under optimal growth conditions but is required for starvation and stress responses. TORC2 has been implicated in a wide variety of functions; however, the signals that regulate TORC2 activity have so far remained obscure. TORC2 has one known direct substrate, the AGC kinase Gad8, which is related to AKT in human cells. Gad8 is phosphorylated by TORC2 at Ser-546 (equivalent to AKT Ser-473), leading to its activation. Here, we show that glucose is necessary and sufficient to induce Gad8 Ser-546 phosphorylation in vivo and Gad8 kinase activity in vitro. The glucose signal that activates TORC2-Gad8 is mediated via the cAMP/PKA pathway, a major glucose-sensing pathway. By contrast, Pmk1, similar to human extracellular signal-regulated kinases and a major stress-induced mitogen activated protein kinase (MAPK) in fission yeast, inhibits TORC2-dependent Gad8 phosphorylation and activation. Inhibition of TORC2-Gad8 also occurs in response to ionic or osmotic stress, in a manner dependent on the cAMP/PKA and Pmk1-MAPK signaling pathways. Our findings highlight the significance of glucose availability in regulation of TORC2-Gad8 and indicate a novel link between the cAMP/PKA, Pmk1/MAPK, and TORC2-Gad8 signaling.  相似文献   

9.
10.
DNA damage can occur due to environmental insults or intrinsic metabolic processes and is a major threat to genome stability. The DNA damage response is composed of a series of well coordinated cellular processes that include activation of the DNA damage checkpoint, transient cell cycle arrest, DNA damage repair, and reentry into the cell cycle. Here we demonstrate that mutant cells defective for TOR complex 2 (TORC2) or the downstream AGC-like kinase, Gad8, are highly sensitive to chronic replication stress but are insensitive to ionizing radiation. We show that in response to replication stress, TORC2 is dispensable for Chk1-mediated cell cycle arrest but is required for the return to cell cycle progression. Rad52 is a DNA repair and recombination protein that forms foci at DNA damage sites and stalled replication forks. TORC2 mutant cells show increased spontaneous nuclear Rad52 foci, particularly during S phase, suggesting that TORC2 protects cells from DNA damage that occurs during normal DNA replication. Consistently, the viability of TORC2-Gad8 mutant cells is dependent on the presence of the homologous recombination pathway and other proteins that are required for replication restart following fork replication stalling. Our findings indicate that TORC2 is required for genome integrity. This may be relevant for the growing amount of evidence implicating TORC2 in cancer development.  相似文献   

11.
We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. The SNF1-dependent phosphorylation of Psk1 appears to be direct, in that Snf1 is necessary and sufficient for Psk1 activation by alternate carbon sources, is required for altered Psk1 protein mobility, is able to phosphorylate Psk1 in vitro, and binds Psk1 via its substrate-targeting subunit Gal83. Evidence for the direct phosphorylation and activation of Pbp1 by Psk1 is also provided by in vitro and in vivo kinase assays, including the reduction of Pbp1 localization at distinct cytoplasmic foci and subsequent rescue of TORC1 inhibition in PAS kinase–deficient yeast. In support of this signaling cascade, Snf1-deficient cells display increased TORC1 activity, whereas cells containing hyperactive Snf1 display a PAS kinase–dependent decrease in TORC1 activity. This interplay between yeast SNF1, Psk1, and TORC1 allows for proper glucose allocation during nutrient depletion, reducing cell growth and proliferation when energy is low.  相似文献   

12.
《Autophagy》2013,9(5):616-624
Autophagy is a highly conserved degradative process in eukaryotic cells. This process plays an integral role in cellular physiology, and the levels of autophagy must be precisely controlled to prevent cellular dysfunction. The rapamycin-sensitive Tor kinase complex 1 (TORC1) has a major role in regulating the induction of autophagy; however, the regulatory mechanisms are not fully understood. Here, we find that Tap42 and protein phosphatase type 2A (PP2A) are involved in the regulation of autophagy in yeast. Temperature-sensitive mutant alleles of TAP42 revealed that autophagy was induced without inactivation of TORC1. Absence of the Tap42-interacting protein Tip41 abolished autophagy induction in the tap42 mutants, whereas overexpression of Tip41 activated autophagy. Furthermore, inactivation of PP2A stimulated autophagy and overexpression of a catalytic subunit of PP2A blocked rapamycin-induced autophagy. Our data support a model in which autophagy is negatively regulated by the Tap42-PP2A pathway.  相似文献   

13.
Autophagy is required for cellular homeostasis and can determine cell viability in response to stress. It is established that MTOR is a master regulator of starvation-induced macroautophagy/autophagy, but recent studies have also implicated an essential role for the MAPK8/cJun NH2-terminal kinase 1 signal transduction pathway. We found that MAPK8/JNK1 and MAPK9/JNK2 were not required for autophagy caused by starvation or MTOR inhibition in murine fibroblasts and epithelial cells. These data demonstrate that MAPK8/9 has no required role in starvation-induced autophagy. We conclude that the role of MAPK8/9 in autophagy may be context-dependent and more complex than previously considered.

Abbreviations: AKT: thymoma viral proto-oncogene;ALB: albumin; ATG4: autophagy related 4; BCL2: B cell leukemia/lymphoma 2; BECN1: beclin 1, autophagy related; BNIP3: BCL2/adenovirus E1B interacting protein 3; CQ: chloroquine diphosphate; DMEM: Dulbecco’s modified Eagle’s medium; EDTA: ethylenediaminetetraacetic acid; EBSS: Earle’s balanced salt solution; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HRAS: Harvey rat sarcoma virus oncogene; IgG: Immunoglobulin G; MAPK3/ERK1: mitogen-activated protein kinase 3; MAPK8/JNK1: mitogen-activated protein kinase 8; MAPK9/JNK2: mitogen-activated protein kinase 9; MAPK10/JNK3: mitogen-activated protein kinase 10; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MTOR: mechanistic target of rapamycin kinase; RPS6KB1/p70: ribosomal protein S6 kinase, polypeptide 1; PPARA: peroxisome proliferator activated receptor alpha; SEM: standard error of the mean; SQSTM1/p62: sequestosome 1; TORC1: target of rapamycin complex 1; TORC2: target of rapamycin complex 2; TRP53: transforming related protein 53; TUBA: tubulin alpha; UV: ultraviolet; WT: wild-type  相似文献   

14.
Loss-of-function mutations in TRPML1 (transient receptor potential mucolipin 1) cause the lysosomal storage disorder, mucolipidosis type IV (MLIV). Here, we report that flies lacking the TRPML1 homolog displayed incomplete autophagy and reduced viability during the pupal period-a phase when animals rely on autophagy for nutrients. We show that TRPML was required for fusion of amphisomes with lysosomes, and its absence led to accumulation of vesicles of significantly larger volume and higher luminal Ca(2+). We also found that trpml(1) mutant cells showed decreased TORC1 (target of rapamycin complex 1) signaling and a concomitant upregulation of autophagy induction. Both of these defects in the mutants were reversed by genetically activating TORC1 or by feeding the larvae a high-protein diet. The high-protein diet?also reduced the pupal lethality and the increased volume of acidic vesicles. Conversely, further inhibition of TORC1 activity by rapamycin exacerbated the mutant phenotypes. Finally, TORC1 exerted reciprocal control on TRPML function. A high-protein diet caused cortical localization of TRPML, and this effect was blocked by rapamycin. Our findings delineate the interrelationship between the TRPML and TORC1 pathways and raise the intriguing possibility that a high-protein diet might reduce the severity of MLIV.  相似文献   

15.
Recent studies have demonstrated that dysregulation of macroautophagy/autophagy may play a central role in the pathogenesis of neurodegenerative disorders, and the induction of autophagy protects against the toxic insults of aggregate-prone proteins by enhancing their clearance. Thus, autophagy has become a promising therapeutic target against neurodegenerative diseases. In this study, quantitative phosphoproteomic profiling together with a computational analysis was performed to delineate the phosphorylation signaling networks regulated by 2 natural neuroprotective autophagy enhancers, corynoxine (Cory) and corynoxine B (Cory B). To identify key regulators, namely, protein kinases, we developed a novel network-based algorithm of in silico Kinome Activity Profiling (iKAP) to computationally infer potentially important protein kinases from phosphorylation networks. Using this algorithm, we observed that Cory or Cory B potentially regulated several kinases. We predicted and validated that Cory, but not Cory B, downregulated a well-documented autophagy kinase, RPS6KB1/p70S6K (ribosomal protein S6 kinase, polypeptide 1). We also discovered 2 kinases, MAP2K2/MEK2 (mitogen-activated protein kinase kinase 2) and PLK1 (polo-like kinase 1), to be potentially upregulated by Cory, whereas the siRNA-mediated knockdown of Map2k2 and Plk1 significantly inhibited Cory-induced autophagy. Furthermore, Cory promoted the clearance of Alzheimer disease-associated APP (amyloid β [A4] precursor protein) and Parkinson disease-associated SNCA/α-synuclein (synuclein, α) by enhancing autophagy, and these effects were dramatically diminished by the inhibition of the kinase activities of MAP2K2 and PLK1. As a whole, our study not only developed a powerful method for the identification of important regulators from the phosphoproteomic data but also identified the important role of MAP2K2 and PLK1 in neuronal autophagy.  相似文献   

16.
TORC1, a conserved protein kinase, regulates cell growth in response to nutrients. Localization of mammalian TORC1 to lysosomes is essential for TORC1 activation. Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), an endosomal signaling lipid, is implicated in insulin-dependent stimulation of TORC1 activity in adipocytes. This raises the question of whether PI(3,5)P2 is an essential general regulator of TORC1. Moreover, the subcellular location where PI(3,5)P2 regulates TORC1 was not known. Here we report that PI(3,5)P2 is required for TORC1 activity in yeast and regulates TORC1 on the vacuole (lysosome). Furthermore, we show that the TORC1 substrate, Sch9 (a homologue of mammalian S6K), is recruited to the vacuole by direct interaction with PI(3,5)P2, where it is phosphorylated by TORC1. Of importance, we find that PI(3,5)P2 is required for multiple downstream pathways via TORC1-dependent phosphorylation of additional targets, including Atg13, the modification of which inhibits autophagy, and phosphorylation of Npr1, which releases its inhibitory function and allows nutrient-dependent endocytosis. These findings reveal PI(3,5)P2 as a general regulator of TORC1 and suggest that PI(3,5)P2 provides a platform for TORC1 signaling from lysosomes.  相似文献   

17.
Molecular organization of target of rapamycin complex 2   总被引:10,自引:0,他引:10  
  相似文献   

18.
The target of rapamycin (TOR) kinase is a conserved regulator of cell growth and functions within 2 different protein complexes, TORC1 and TORC2, where TORC2 positively controls macroautophagy/autophagy during amino acid starvation. Under these conditions, TORC2 signaling inhibits the activity of the calcium-regulated phosphatase calcineurin and promotes the general amino acid control (GAAC) response and autophagy. Here we demonstrate that TORC2 regulates calcineurin by controlling the respiratory activity of mitochondria. In particular, we find that mitochondrial oxidative stress affects the calcium channel regulatory protein Mid1, which we show is an essential upstream activator of calcineurin. Thus, these findings describe a novel regulation for autophagy that involves TORC2 signaling, mitochondrial respiration, and calcium homeostasis.  相似文献   

19.
20.
Ariadne Vlahakis  Ted Powers 《Autophagy》2014,10(11):2085-2086
The conserved target of rapamycin (TOR) kinase is a central regulator of cell growth in response to nutrient availability. TOR forms 2 structurally and functionally distinct complexes, TORC1 and TORC2, and negatively regulates autophagy via TORC1. Here we demonstrate TOR also operates independently through the TORC2 signaling pathway to promote autophagy upon amino acid limitation. Under these conditions, TORC2, through its downstream target kinase Ypk1, inhibits the Ca2+- and Cmd1/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing EIF2S1/eIF2α kinase, Gcn2, and promote autophagy. Thus TORC2 signaling regulates autophagy in a pathway distinct from TORC1 to provide a tunable response to the cellular metabolic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号