首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nucleotide phosphomonoesterase activity that preferably hydrolyzed dCMP was detected in rabbit liver and purified approximately 20-fold. The enzyme was similar in the catalytic and molecular properties to pyrimidine 5'-nucleotidase subclass I (P5N-I), which distributed specifically in vertebrate erythrocytes. In addition to liver, the activity was found in rabbit kidney, spleen, heart, intestine, but was not detected in any rat or chicken tissues tested. The rabbit enzyme protein reacted with antibodies against chicken P5N-I. Its pI was estimated to be approximately 5.3, and the enzyme was concluded to consist of single polypeptide of an approximately 38 kDa based on gel filtration and Western blot analysis. The partially purified enzyme preferentially hydrolyzes dCMP, UMP and CMP, K(m) values for these substrates are approximately 0.3 mM, the optimal pH is approximately 7, and the enzyme requires Mg(2+). This nucleotidase may contribute to the regulation of intracellular pyrimidine nucleotides in the rabbit.  相似文献   

2.
Adenosine, a well-known neuromodulator, may be formed intracellularly in the CNS from degradation of AMP and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. This study reports the enzymatic properties of an ecto-5'-nucleotidase activity in brain membranes of zebrafish (Danio rerio). This enzyme was cation-dependent, with a maximal rate for AMP hydrolysis in a pH range of 7.0-7.5 in the presence of Mg(2+). The enzyme presented a maximal activity for AMP hydrolysis at 37 degrees C. The apparent K(m) and V(max) values for Mg(2+)-AMP were 135.3+/-16 microM and 29+/-4.2 nmol Pi.min(-1).mg(-1) protein, respectively. The enzyme was able to hydrolyze both purine and pyrimidine monophosphate nucleotides, such as UMP, GMP and CMP. Levamisole and tetramisole (1 mM), specific inhibitors of alkaline phosphatases, did not alter the enzymatic activity. However, a significant inhibition of AMP hydrolysis (42%) was observed in the presence of 100 microM alpha,beta-methylene-ADP, a known inhibitor of ecto-5'-nucleotidase. Since 5'-nucleotidase represents the major enzyme responsible for the formation of extracellular adenosine, the enzymatic characterization is important to understand its role in purinergic systems and the involvement of adenosine in the regulation of neurotransmitter release.  相似文献   

3.
The kinetic properties of highly purified human placental cytoplasmic 5'-nucleotidase were investigated. Initial velocity studies gave Michaelis constants for AMP, IMP, and CMP of 18, 30, and 2.2 microM, respectively. The enzyme shows the following relative Vmax values: CMP greater than UMP greater than dUMP greater than GMP greater than AMP greater than dCMP greater than IMP. The activity was magnesium-dependent, and this cation binds sequentially with a Km of 14 microM for AMP and an apparent Km of 6 mM for magnesium. A large variety of purine, pyrimidine, and pyridine compounds exert an inhibitory effect on enzyme activity. IMP, GMP, and NADH produce almost 100% inhibition at 1.0 mM. Nucleoside di- and triphosphates are potent inhibitors. ATP and ADP are competitive inhibitors with respect to AMP and IMP as substrates with Ki values of 100 and 15 microM, respectively. Inorganic phosphate is a noncompetitive inhibitor with Ki values of 19 and 43 mM. Nucleosides and other compounds studied produce only a modest decrease of enzyme activity at 1 mM. Our findings suggest that the enzyme is regulated under physiological conditions by the concentrations of magnesium, nucleoside 5'-monophosphates, and nucleoside di- and triphosphates. The nucleotide pool concentration regulates the enzyme possibly by a mechanism of heterogeneous metabolic pool inhibition. These properties of human placental cytoplasmic 5'-nucleotidase may be related to the control of nucleotide degradation in vivo.  相似文献   

4.
The activity of phosphoribosylpyrophosphate (PRPP) synthetase (ATP: D-ribose-5-phosphate pyrophosphotransferase, EC 2.7.6.1) is decreased in the erythrocyte in hereditary pyrimidine 5'-nucleotidase (P5N) deficiency. Given the increased pyrimidine nucleotide content of the P5N-deficient erythrocyte, we evaluated the effects of prototypic pyrimidine nucleotides on the activity of PRPP synthetase. In normal hemolysate a 1.0 mM combination of cytidine tri-, di- and monophosphate (CTP/CDP/CMP) inhibited PRPP synthetase activity and changed the ribose 5-phosphate (R5P) saturation curve from a hyperbola to a biphasic shape. Untreated crude hemolysate from P5N-deficient erythrocytes showed a biphasic R5P kinetic curve. Since the activity of PRPP synthetase is dependent on its state of subunit aggregation, we examined PRPP synthetase subunit aggregation using gel permeation chromatography. P5N-deficient erythrocytes had a decreased absolute amount of aggregated PRPP synthetase and almost a total loss of disaggregated PRPP synthetase. Using normal hemolysate, 1 mM CTP/CDP/CMP interfered with the ability of 1.0 mM ATP and 2.0 mM MgCl2 to promote PRPP synthetase subunit aggregation. Increasing the MgCl2 to 6.0 mM overcame the inhibitory effect of CTP/CDP/CMP. Thus, the decreased PRPP synthetase activity of the P5N-deficient erythrocyte is due, at least in part, to the ability of the accumulated pyrimidine nucleotides to sequester magnesium and to interfere with the subunit aggregation of PRPP synthetase.  相似文献   

5.
Some properties of human erythrocyte pyrimidine 5'-nucleotidase   总被引:1,自引:0,他引:1  
In haemolysates human erythrocyte pyrimidine 5'-nucleotidase had a single optimum at pH 7.2 with CMP and 6.75 with UMP as substrate. The purified enzyme showed two pH optima at pH 6.25 and 7.2 with UMP as substrate. The enzyme was inhibited by both its products - inorganic phosphate and pyrimidine nucleoside. The inhibition by inorganic phosphate appeared to be non-competitive with Ki = 1.5 mM. Contrary to previous reports adenosine and inosine did not inhibit the enzyme.  相似文献   

6.
The common type of pyrimidine nucleoside monophosphate kinase (ATP:CMP phosphotransferase, EC 2.7.4.14), purified 50 000-fold from human erythrotes, reacted with a wide variety of nucleotides, but only ATP, dATP, UMP and CMP were good substrates. The optimum Mg2+ concentration, 2-3 mM, was generally independent of substrate concentration, of the nature of the substrate, and of the direction of the reaction. Kinetic studies indicated that a ternary complex was formed, that the substrates were bound at two unlike sites, and that the order of addition of substrates was random. Equilibrium constants were ATP + UMP 0.98, ATP + CMP 1.59, dATP + UMP 1.13, and ATP + AMP 1.20.  相似文献   

7.
A protein catalyzing the phosphorylation of CMP to CDP was purified and characterized. Kinase activity for UMP copurified during ammonium sulfate fractionation, DEAE-cellulose and hydroxylapatite chromatography, and gel filtration on Sephadex G-75, the ratios of activities for the two substrates remaining constant. The purified product, possessing both activities was homogeneous as judged by the single band following polyacrylamide gel electrophoresis. The protein showed no kinase activity against purine nucleoside monophosphates or the other pyrimidine nucleoside monophosphates: dCMP, dUMP, and dTMP. Thus unlike the enteric bacteria, Escherichia coli and Salmonella typhimurium which have distinct enzymes which phosphorylate UMP and CMP, Bacillus subtilis produces a single pyrimidine ribonucleoside monophosphokinase. The K mvalues of this enzyme from B. subtilis are 0.04 and 0.25 mM for CMP and UMP, respectively, and 0.04 and 0.4 mM for ATP at saturating concentrations of CMP and UMP, respectively. The properties of this enzyme and the differences between enteric bacteria and B. subtilis with respect to the enzymes which phosphorylate CMP are consistent with the measurements which indicate that turnover of messenger RNA is largely hydrolytic in E. coli but largely phosphorolytic in B. subtilis.Non-Standard Abbreviations PRMK Pyridine ribonucleoside monophosphokinase This paper is affectionately dedicated to Professor R. Y. Stanier  相似文献   

8.
Abstract— Purine and pyrimidine nucleotides were measured in the brain of normal and electroshocked rats after chromatographic separation on ion-exchange resin of mono-, di- and tri-phosphorylated derivatives.
CMP, IMP and NAD did not show any significant quantitative change. Adenine nucleotides showed an abrupt change followed by a rapid return to the control value. GTP was the only purine nucleotide exhibiting a relatively slow return to its starting concentration. The greatest percentage increase after electroshock was observed in UMP, which returned to its control value only after 5 min; UDPCoenzymes (i.e. UDPA plus UDPG) showed a relatively small drop during the development of the seizure and the slowest return to the base line; UTP showed a late transistory increase above the normal level after an initial drop associated with convulsant activity.
Tritiated uridine was injected intracisternally to investigate the turnover of pyrimidine nucleotides. UTP showed the highest specific radioactivity at the earliest time, followed by UMP, UDPCoenzymes and CMP. It was found that convulsant activity is associated with dramatic changes in the specific radioactivity of pyrimidine nucleotides.  相似文献   

9.
The activity of phosphoribosylpyrophosphate (PRPP) synthetase (ATP:d-ribose-5-phosphate pyrophosphotransferase, EC 2.7.6.1) is decreased in the erythrocyte in hereditary pyrimidine 5′-nucleotidase (P5N) deficiency. Given the increased pyrimidine nucleotide content of the P5N-deficient erythrocyte, we evaluated the effects of prototypic pyrimidine nucleotides on the activity of PRPP synthetase. In normal hemolysate a 1.0 mM combination of cytidine tri-, di-, and monophosphate (CTP/CDP/CMP) inhibited PRPP synthetase activity and changed the ribose 5-phosphate (R5P) saturation curve from a hyperbola to a biphasic shape. Untreated crude hemolysate from P5N-deficient erythrocytes showed a biphasic R5P kinetic curve. Since the activity of PRPP synthetase is dependent on its state of subunit aggregation, we examined PRPP synthetase subunit aggregation using gel permeation chromatography. P5N-deficient erythrocytes had a decreased absolute amount of aggregated PRPP synthetase and almost a total loss of disaggregated PRPP synthetase. Using normal hemolysate, 1 mM CTP/CDP/CMP interfered with the ability of 1.0 mM ATP and 2.0 mM MgCl2 to promote PRPP synthetase subunit aggregation. Increasing the MgCl2 to 6.0 mM overcame the inhibitory effect of CTP/CDP/CMP. Thus, the decreased PRPP synthetase activity of the P5N-deficient erythrocyte is due, at least in part, to the ability of the accumulated pyrimidine nucleotides to sequester magnesium and to interfere with the subunit aggregation of PRPP synthetase.  相似文献   

10.
To evaluate the regulation of adenine nucleotide metabolism in relation to purine enzyme activities in rat liver, human erythrocytes and cultured human skin fibroblasts, rapid and sensitive assays for the purine enzymes, adenosine deaminase (EC 2.5.4.4), adenosine kinase (EC 2.7.1.20), hyposanthine phosphoribosyltransferase (EC 2.4.28), adenine phosphoribosyltransferase (EC 2.4.2.7) and 5'-nucleotidase (EC 3.1.3.5) were standardized for these tissues. Adenosine deaminase was assayed by measuring the formation of product, inosine (plus traces of hypoxanthine), isolated chromatographically with 95% recovery of inosine. The other enzymes were assayed by isolating the labelled product or substrate nucleotides as lanthanum salts. Fibroblast enzymes were assayed using thin-layer chromatographic procedures because the high levels of 5'-nucleotidase present in this tissue interferred with the formation of LaCl3 salts. The lanthanum and the thin-layer chromatographic methods agreed within 10%. Liver cell sap had the highest activities of all purine enzymes except for 5'-nucleotidase and adenosine deaminase which were highest in fibroblasts. Erythrocytes had lowest activities of all except for hypoxanthine phosphoribosyltransferase which was intermediate between the liver and fibroblasts. Erhthrocytes were devoid of 5'-nucleotidase activity. Hepatic adenosine kinase activity was thought to control the rate of loss of adenine nucleotides in the tissue. Erythrocytes had excellent purine salvage capacity, but due to the relatively low activity of adenosine deaminase, deamination might be rate limiting in the formation of guanine nucleotides. Fibroblasts, with high levels of 5'-nucleotidase, have the potential to catabolize adenine nucleotides beyond the control od adenosine kinase. The purine salvage capacity in the three tissues was erythrocyte greater than liver greater than fibroblasts. Based on purine enzyme activities, erythrocytes offer a unique system to study adenine salvage; fibroblasts to study adenine degradation; and liver to study both salvage and degradation.  相似文献   

11.
Carbamoyl phosphate synthetase of pea shoots (Pisum sativum L.) was purified 101-fold. Its stability was greatly increased by the addition of substrates and activators. The enzyme was strongly inhibited by micromolar amounts of UMP (Ki less than 2 mum). UDP, UTP, TMP, and ADP were also inhibitory. AMP caused either slight activation (under certain conditions) or was inhibitory. Uridine nucleotides were competitive inhibitors, as was AMP, while ADP was a noncompetitive inhibitor. Enzyme activity was increased manyfold by the activator ornithine. Ornithine acted by increasing the affinity for Mg.ATP by a factor of 8 or more. Other activators were IMP, GMP, ITP, and GTP, IMP, like ornithine, increased the Michaelis constant for Mg.ATP. The activators ornithine, GMP, and IMP (but not GTP and ITP) completely reversed inhibition caused by pyrimidine nucleotides while increasing the inhibition caused by ADP and AMP.  相似文献   

12.
13.
Escherichia coli has many periplasmic phosphatase activities. To test whether it can take up and excrete purine nucleotides, we attempted to completely disrupt periplasmic 5'-nucleotidase activity. A 5'-nucleotidase activity was induced in ushA knockout mutant cells, which lack major 5'-nucleotidase activity, when they were grown with purine nucleotides as the sole carbon source. Using DNA macroarrays to compare global gene expression in wild-type and ushA knockout mutant cells cultured with IMP or GMP as the sole carbon source, we identified two genes that were induced in the ushA knockout mutant cells and encoded signal sequence needed for secretion. One of the genes, aphA, encoded a 5'-nucleotidase activity and was induced by IMP or inosine. An ushA aphA double knockout mutant was shown to be unable to grow on purine nucleotides as the sole carbon source. To investigate the excretion of purine nucleotides, we constructed an ushAaphA double knockout mutant of an inosine-producing strain and found that it accumulated IMP in the medium. In addition, when the guaBA operon was introduced into the ushAaphA double knockout IMP producer, GMP was released into the medium. These observations imply the existence of efflux activity for purine nucleotides in E. coli.  相似文献   

14.
This report describes a two-column scheme for purifying a pyrimidine nucleoside monophosphate kinase from rat bone marrow cells. Purification was achieved by affinity chromatography on Blue Sepharose and cellulose phosphate, with selective elution of the enzyme by substrates (UMP, ATP). The enzyme preparation appeared to be about 90% pure upon polyacrylamide gel electrophoresis, exhibited an exceptionally high specific activity (greater than 600 mumol/min/mg protein), and was obtained with 30-36% recovery of enzyme activity. It was concluded that UMP, dUMP, and CMP serve as phosphate acceptors for the enzyme, based on the parallel behavior displayed by enzyme activity with these substrates both during the purification process and during other procedures. The purified enzyme preparation did not display dTMP kinase activity. This report also describes a simplified radiotracer assay for pyrimidine nucleoside monophosphate kinases. Thin-layer chromatography on polyethyleneimine-cellulose is used to resolve residual substrates and products. Because both nucleoside di- and triphosphates remain at the origin, the assay is insensitive to the action of nucleoside diphosphate kinases and does not require the use of marker compounds. A variety of radiolabeled substrates can be used with this assay, including UMP, dUMP, CMP, and dTMP.  相似文献   

15.
Dillerent chicken tissues are shown to display a clearly pronounced specificity relative to [2-14C] orotic acid and [5-3H]uridine as precursors of synthesis of the pool and RNA pyrimidine nucleotides. The fraction of pyrimidine nucleotides synthetized relative to the reserve pathway (uridine utilization) decreases in the series: kidneys greater than duodenum mucosa greater than lungs greater than liver greater than pancreas greater than bone marrow greater than brain greater than spleen. The results of [2-14C]orotic acid and [53H]uridine incorporation into UMP and CMP of the liver and spleen tissues RNA are interpreted in terms of the concept on existence of separate pools of pyrimidine phosphates--RNA precursors.  相似文献   

16.
The granular ATP released from chromaffin cells during the secretory response can be hydrolyzed by ectonucleotidases that are present in the plasma membrane of these cells. The ecto-ATPase activity showed a Km for ATP of 250 +/- 18 microM and a VMAX value of 167 +/- 25 nmol/10(6) cells x min (1.67 mumol/mg protein x min) for cultured chromaffin cells, while the ecto-ADPase activity showed a Km value for ADP of 375 +/- 40 microM and a VMAX of 125 +/- 20 nmol/10(6) cells x min (1.25 mumol/mg protein x min). The ecto 5'-nucleotidase activity of cultured chromaffin cells was more specific for the purine nucleotides, AMP and IMP, than for the pirimidine nucleotides, CMP and TMP. The Km for AMP was 55 +/- 5 microM and the VMAX value was 4.3 +/- 0.8 nmol/10(6) cells x min (43 nmol/mg protein x min). The nonhydrolyzable analogs of ADP and ATP, alpha, beta-methylene-adenosine 5'-diphosphate and adenylyl-(beta, gamma-methylene)-diphosphonate were good inhibitors of ecto 5'-nucleotidase activity, the KI values being 73.3 +/- 3.5 nM and 193 +/- 29 nM, respectively. The phosphatidylinositol-specific phospholipase C released the ecto-5'-nucleotidase from the chromaffin cells in culture, thus suggesting an anchorage through phosphatidylinositol to plasma membranes. The presence of ectonucleotidases in chromaffin cells may permit the recycling of the extracellular ATP exocytotically released from these neural cells.  相似文献   

17.
It was shown earlier that a variety of vertebrate cells could grow indefinitely in sugar-free medium supplemented with either uridine or cytidine at greater than or equal to 1 mM. In contrast, most purine nucleosides do not support sugar-free growth for one of the following reasons. The generation of ribose-1-P from nucleoside phosphorylase activity is necessary to provide all essential functions of sugar metabolism. Some nucleosides, e.g. xanthosine, did not support growth because they are poor substrates for this enzyme. De novo pyrimidine synthesis was inhibited greater than 80% by adenosine or high concentrations of inosine, e.g. 10 mM, which prevented growth on these nucleosides; in contrast, pyrimidine synthesis was inhibited only marginally on 1 mM inosine or guanosine, but normal growth was only seen on 1 mM inosine, not on guanosine. The inhibition of de novo adenine nucleotide synthesis prevented growth on guanosine, since guanine nucleotides could not be converted to adenine nucleotides. Guanine nucleotides were necessary for this inhibition of purine synthesis, since a mutant blocked in their synthesis grew normally on guanosine. De novo purine synthesis was severely inhibited by adenosine, inosine, or guanosine, but in contrast to guanosine, adenosine and inosine could provide all purine requirements by direct nucleotide conversions.  相似文献   

18.
Erythrocytes from patients with hereditary pyrimidine 5'-nucleotidase (P5N, EC 3.1.3.5) deficiency accumulate large quantities of several pyrimidine nucleotides and their derivatives. In addition, the reduced glutathione (GSH) concentration is elevated in erythrocytes from patients with this enzyme deficiency. In the present study, we were unable to demonstrate any effect of various pyrimidine nucleotides and their derivatives on enzymes of glutathione biosynthesis and metabolism. Thus, elevation of GSH levels in erythrocytes from P5N patients is not a result of modulation of these enzymes by pyrimidine nucleotides and their derivatives.  相似文献   

19.
An adenosine-sensitive mutant was isolated from Escherichia coli K12 derivative strain C600. This mutant (designated as PS100) grew slower than parental strain C600in a minimal medium, and its growth was completely inhibited by addition of all kinds of purine bases, nucleosides and nucleotides tested. On the other hand, this growth inhibitory effect of purine derivatives was reversed by co-addition of uridine to the medium. Other pyrimidine derivatives such as uracil, UMP,cytosine, cytidine, CMP and thymidine were also effective for this reversal. The mutant strain, PS100, showed a lower level (7%) of activity for orotate phosphoribosyltransferase than strain C600 did, and accumulated orotic acid in the growth medium. Lysogenization of strain PS100 with λ transducing phage containing the gene for orotate phosphoribosyltransferase (pyrE) resulted in restoration of the activity for orotate phosphoribosyltransferase and removal of growth inhibition by purine derivatives.  相似文献   

20.
Cyclization of 2',3'-seco-5'- CMP and UMP with dicyclohexylcarbodiimide leads to 2',3'-seco-3':5'- cCMP and cUMP, formal structural analogues of 3':5'- cCMP and cUMP. POCl3 phosphorylation of 2',3'-secocytidine gave the same product in 50% yield, plus three additional seco nucleotides, one of which was independently obtained by enzymatic phosphorylation with the wheat shoot phosphotransferase system. The behaviour of these nucleotides has been examined in several enzyme systems. In particular, the seco 3':5'- cyclic phosphates are resistant to beef heart cyclic nucleotide phosphodiesterase, but are slowly hydrolyzed to the monophosphates by higher plant cyclic nucleotide phosphodiesterase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号