首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
400 MHz 1H NMR of ferric low-spin cytochrome P-450scc purified from bovine adrenal cortex was measured for the first time. As compared with 1H NMR spectra of low-spin P-450cam and metMb- mercaptan complexes, paramagnetic shifts of low-spin P-450scc complexes were more divergent, suggesting that there is a subtle difference in the heme environment between P-450scc and P-450cam [1]. The paramagnetic shifts of low-spin complexes of P-450scc caused by adding nitrogenous inhibitors, aminoglutethimide and metyrapone, were different from those caused by adding an intermediate, 20α-hydroxycholesterol, and a detergent, Tween 20 [2]. The paramagnetic shifts of the metMb-mercaptan complexes were convergent compared with those of ferric low-spin P-450scc and P-450cam, suggesting that the electronic character and/or the conformation of the internal thiolate ligand in P-450scc and P-450cam are different from those of the external thiolate ligand in metMb-thiolate complexes [3]. The paramagetic shifts of the metMb-mercaptan complexes were dependent on the electron donating factor of the alkyl group of the bound mercaptans [4].Magnetic CD(MCD) spectra of ferric low-spin P-450scc, rabbit liver P-450 complexes and metMb- mercaptan complexes were also observed at various temperatures. The temperature dependences of the Soret MCD bands for the low-spin P-450 and metMb- mercaptan complexes were decidedly less pronounced than those for the low-spin metMb-CN? or imidazole complexes, suggesting that thiolate ligands markedly influence the Soret MCD band of the ferric low-spin complexes [1]. The suggestion described in [2] implied by the 1H NMR study was reconfirmed from the temperature dependence study of the Soret MCD [2]. The temperature dependences of the Soret MCD bands for low-spin P-450 complexes having a non-nitrogenous ligand were more pronounced than for those having a nitrogenous ligand.  相似文献   

2.
A new cytochrome P-450 model that simulates the unusual spectral and substrate-oxidation properties of cytochrome P-450 is proposed. The complex, consisting of glutathione(GSH), hemin and pyridine(py), exhibits similar optical and EPR spectra to cytochrome P-450 in ferric low-spin state. On omission of py, a ferric high-spin state was produced. On exposure of the GSH-hemin-py complex to CO, a characteristic absorption band appeared at 450nm, like that typical of cytochrome P-450. Two types of spectral changes were observed when aminopyrine or phenobarbital (Type I) and aniline or quinoline (Type II) were added to the GSH-hemin complex. Hydroxylation, dealkylation and aromatic methyl migration activities were observed with the GSH-hemin complex.  相似文献   

3.
Lipophilic thiol compounds interact spectrally with liver microsomes from phenobarbital-pretreated rats by formation of unusual optical difference spectra with peaks at 378, 471, 522 and 593 nm in the oxidized state. The binding kinetics were biphasic. The EPR spectrum of cytochrome P-450 was slightly modified but the magnitude of the low-spin signal was unchanged. n-Octanethiol competitively displaced metyrapone and n-octane from the active site of cytochrome P-450. Other thiols behaved similarly with variations in the magnitude and the affinity of the binding process. Tertiary thiols caused the formation of the high-spin cytochrome P-450 substrate complex, and model studies with myoglobin revealed that steric hindrance prevented the liganding of the tertiary thiol group to the ferric cytochrome P-450. Addition of thiols to dithionite reduced microsomes resulted in relatively small spectral changes with maxima at 449 nm typical for ligand complexes of the ferrous cytochrome. It was concluded that lipophilic thiols can be bound as ligands by at least two species of oxidized cytochrome P-450 which represent, however, not more than about one fifth of the total cytochrome P-450 content in liver microsomes from phenobarbital-pretreated rats.  相似文献   

4.
3,4,5,3',4'-Pentachlorobiphenyl (PenCB), one of the most potent 3-methylcholanthrene (MC)-type inducers of hepatic enzymes in animals, caused a remarkable induction of liver microsomal monooxygenases, particularly 7-ethoxyresorufin (7-ER) O-deethylase, benzo(a)pyrene (BP) 3-hydroxylase, and testosterone 16 alpha-hydroxylase in chickens, but not NADPH-cytochrome c(P-450) reductase and cytochrome b5. Two forms of cytochrome P-450 (P-450) in liver microsomes of PenCB-treated chickens were purified and characterized. The absorption maxima of the CO-reduced difference spectra of both enzymes (chicken P-448 L and chicken P-448 H) were at 448 nm. From the oxidized form of their absolute spectra, chicken P-448 L was a low-spin form and chicken P-448 H was a high-spin form. They had molecular masses of 56 and 54 kDa, respectively. In a reconstituted system, 7-ER O-deethylation, BP 3-hydroxylation, and testosterone 16 alpha-hydroxylation were catalyzed at high rates by chicken P-448 L but not by chicken P-448 H. Chicken P-448 L also catalyzed N-demethylation of aminopyrine, benzphetamine, and ethylmorphine with relatively low activity. On the other hand, chicken P-448 H functioned only in catalyzing estradiol 2-hydroxylation. These results were supported by an inhibition study of microsomal monooxygenases using an antibody against each enzyme. Immunochemical studies revealed that the enzymes differ from each other but are both inducible by PenCB-treatment. Chicken P-448 L and chicken P-448 H respectively comprise about 82 and 7% of the total P-450 content in chicken liver microsomes.  相似文献   

5.
The stoichiometry of NADPH oxidation in rabbit liver microsomes was studied. It was shown that in uncoupled reactions cytochrome P-450, besides O2- generation catalyzes direct two- and four-electron reduction of O2 to produce H2O2 and water, respectively. With an increase in pH and ionic strength, the amount of O2 reduced via an one-electron route increases at the expense of the two-electron reaction. In parallel, with a rise in pH the steady-state concentration of the oxy-complex of cytochrome P-450 increases, while the synergism of NADPH and NADH action in the H2O2 formation reaction is replaced by competition. The four-electron reduction is markedly accelerated and becomes the main pathway of O2 reduction in the presence of a pseudo-substrate--perfluorohexane. Treatment of rabbit with phenobarbital, which induces the cytochrome P-450 isozyme specific to benzphetamine results in a 2-fold increase in the degree of coupling of NADPH and benzphetamine oxidation. The experimental results suggest that the ratio of reactions of one- and two-electron reduction of O2 is controlled by the ratio of rates of one- and two-electron reduction of cytochrome P-450. In the presence of pseudo-substrates cytochrome P-450 acts predominantly as a four-electron oxidase; one of possible reasons for the uncoupling of microsomal monooxygenase reactions is the multiplicity of cytochrome P-450 isozymes.  相似文献   

6.
Two forms of cytochrome P-450 (P-450) from liver microsomes of hamsters treated with 2,3,4,7,8-pentachlorodibenzofuran (PenCDF), which possesses the potent acute toxicity and 3-methylcholanthrene (MC)-type inducing ability of liver microsomal monooxygenases in animals, were purified and characterized. These P-450 forms, designated as hamster P-450H and hamster P-450L, had the molecular masses of 52 and 50 kDa, respectively, and showed the absorption maximum of CO-reduced difference spectra at 446 nm. The absolute spectra of their oxidized forms indicated that hamster P-450H was in high-spin state and hamster P-450L was in low-spin state. A part of PenCDF injected into hamster was tightly bound to purified hamster P-450H at a ratio of 0.107 nmol PenCDF/nmol P-450. In a reconstituted system, both hamster P-450H and hamster P-450L showed relatively low catalytic activities for 3-hydroxylation of benzo[a]pyrene and O-deethylations of both 7-ethoxyresorufin and 7-ethoxycoumarin, while they both catalyzed 7 alpha- and 2 alpha-hydroxylations of testosterone effectively to a similar extent. Addition of cytochrome b5-to a reconstituted system accelerated the formation of 7 alpha-hydroxytestosterone 5.3-fold with hamster P-450L and 2.2-fold with hamster P-450H. In addition, hamster P-450H catalyzed estradiol 2-hydroxylation at a high rate but hamster P-450L did not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
T Shimizu  T Nozawa  M Hatano  Y Imai  R Sato 《Biochemistry》1975,14(19):4172-4178
Magnetic circular dichroism (MCD) spectra have been measured for cytochrome P-450 (P-450) purified from phenobarbital-induced rabbit liver microsomes. The temperature dependence of some of the MCD spectra has also been determined. The MCD spectrum of oxidized P-450 seems to suggest that it is in a state intermediate between the ferric low-spin states. Model experiments suggest that this anomaly arises from the coordination of a thiolate anion to the heme. Reduced P-450 shows a very peculiar MCD spectrum; the spectrum as well as its temperature dependence suggest that the heme in reduced P-450 is a "mixture" in terms of redox and/or spin states. The MCD spectrum of the CO complex of reduced P-450 exhibits an apparent Faraday A term around 450 nm which consists of about 50% C term and 50% the other terms, indicating that it is not in a purely ferrous low-spin state. The CO complex of reduced cytochrome P-420 (P-420), on the other hand, shows an MCD spectrum characteristic of a ferrous low-spin heme. It is suggested from model experiments that the thiolate anion coordinates to the heme trans to CO in the P-450-CO complex. The Soret region of the MCD spectrum of the EtNC complex of reduced P-450 is characterized by two apparent A terms around 430 and 455 nm, whereas that of the corresponding complex of P-420 has only one apparent A term around 434 nm.  相似文献   

8.
Chloroperoxidase and H2O2 oxidize styrene to styrene oxide and phenylacetaldehyde but not benzaldehyde. The epoxide oxygen is shown by studies with H2(18)O2 to derive quantitatively from the peroxide. The epoxidation of trans-[1-2H]styrene by chloroperoxidase proceeds without detectable loss of stereochemistry, as does the epoxidation of styrene by rat liver cytochrome P-450, although much more phenylacetaldehyde is produced by chloroperoxidase than cytochrome P-450. Chloroperoxidase and cytochrome P-450 thus oxidize styrene by closely related oxygen-transfer mechanisms. Horseradish peroxidase does not oxidize styrene but does oxidize 2,4,6-trimethylphenol to 2,6-dimethyl-4-hydroxymethylphenol. The new hydroxyl group is partially labeled in incubations with H2(18)O but not H2(18)O2. The hydroxyl group thus appears to be introduced by addition of oxygen to the benzylic radical and water to the quinone methide intermediate but not by a cytochrome P-450-like oxene transfer mechanism. The results support the thesis that substrates primarily or exclusively react with the heme edge of horseradish peroxidase but are able to react with the ferryl oxygen of chloroperoxidase.  相似文献   

9.
A total of nine forms of cytochrome P-450 were purified to homogeneity from liver microsomes of male Wistar rats. They were P-451 I and P-451 II from untreated rats, P-450 II and P-450 III from phenobarbital-treated rats, MC-P-448 L and MC-P-448 H from 3-methylcholanthrene-treated rats, and P-452, P-448 L, and P-448 H from 3,4,5,3',4'-pentachlorobiphenyl-treated rats. Among them, MC-P-448 L and MC-P-448 H were indistinguishable from P-448 L and P-448 H, respectively, with regard to electrophoretic, spectral, catalytic and immunochemical properties, and thus seven forms were distinct hemoproteins. The minimal molecular weight of each form was as follows: P-451 I (49,000), P-451 II (52,000), P-450 II (52,000), P-450 III (53,500), P-452 (48,000), P-448 L (56,000), P-448 H (54,000). Judging from the oxidized absolute spectra, P-448 H was a high-spin form and the others were of low-spin type. In a reconstituted system, N-demethylations of benzphetamine and aminopyrine were catalyzed by most of the forms at comparable rates. On the other hand, the activities for the oxidations of benzo[a]pyrene, 7-ethoxycoumarin, biphenyl, and estradiol-17 beta varied greatly among the forms of cytochrome P-450. The most efficient catalysts were as follows: P-448 L and P-451 II for benzo[a]pyrene 3-hydroxylation; P-448 L for 7-ethoxycoumarin O-deethylation; P-448 L, P-451 II, and P-448 H for biphenyl 4-hydroxylation; P-448 L and P-448 H for biphenyl 2-hydroxylation; and P-451 II and P-448 H for estradiol 2-hydroxylation. P-451 I, P-450 II, and P-450 III were somewhat poorer catalysts in metabolizing all the substrates except for benzphetamine and aminopyrine, but their substrate specificities were still distinguishable from one another. Of all the purified cytochrome P-450's, P-452 showed the least ability to metabolize all the substrates. Judging from the properties, it appears that six forms in male Wistar rats correspond to the distinct forms of cytochrome P-450 in Long-Evans and/or Sprague-Dawley rats reported by other workers, but P-451 I is a new constitutive isozyme in Wistar rats.  相似文献   

10.
Surface enhanced resonance Raman scattering (SERRS) was observed from structurally related drug-induced rat liver cytochromes P-450 adsorbed on a silver colloid. Careful control of pH and the sequence of addition of components to the so1 is required to prevent protein denaturation at the surface due to conversion to P-450's biologically inactive form P-420 or haem loss. A low-spin P-450 (PB3a), a mixed low- and high-spin P-450 (PB3b) and a predominantly high-spin P-450 (MC1a) were investigated. Spectra recorded in the 1300-1700 cm-1 frequency region, containing the oxidation state marker v4 at 1375 cm-1 (Fe3+) and spin state markers v10 (1625 cm-1, high-spin; 1633 cm-1, low-spin) and v19 (1575 cm-1, high-spin; 1585 cm-1, low-spin) were used to differentiate between the spin states of the various forms of cytochrome P-450. As well as the established spin state marker bands, the intensity of a band at 1400 cm-1 appeared to depend on the high-spin content. Thus, with this method SERRS from silver colloids can be used to determine spin states of related cytochromes P-450 in dilute solution (10(-8)M) and may be of value in studies of protein-substrate interactions.  相似文献   

11.
The iron-catalysed production of hydroxyl radicals, by rat liver microsomes (microsomal fractions), assessed by the oxidation of substrate scavengers and ethanol, displayed a biphasic response to the concentration of O2 (varied from 3 to 70%), reaching a maximal value with 20% O2. The decreased rates of hydroxyl-radical generation at lower O2 concentrations correlates with lower rates of production of H2O2, the precursor of hydroxyl radical, whereas the decreased rates at elevated O2 concentrations correlate with lower rates (relative to 20% O2) of activity of NADPH-cytochrome P-450 reductase, which reduces iron and is responsible for redox cycling of iron by the microsomes. The oxidation of aniline or aminopyrine and the cytochrome P-450/oxygen-radical-independent oxidation of ethanol also displayed a biphasic response to the concentration of O2, reaching a maximum at 20% O2, which correlates with the dithionite-reducible CO-binding spectra of cytochrome P-450. Microsomal lipid peroxidation increased as the concentration of O2 was raised from 3 to 7 to 20% O2, and then began to level off. This different pattern of malondialdehyde generation compared with hydroxyl-radical production probably reflects the lack of a role for hydroxyl radical in microsomal lipid peroxidation. These results point to the complex role for O2 in microsomal generation of oxygen radicals, which is due in part to the critical necessity for maintaining the redox state of autoxidizable components of the reaction system.  相似文献   

12.
Interactions of various axial ligands with cytochrome P-450d wild type, proximal mutants (Lys453Glu, Ile460Ser), and putative distal mutants (Glu318Asp, Thr319Ala, Thr322Ala) expressed in yeast were studied with optical absorption spectroscopy. P-450d wild type and all five mutants were purified essentially as the high-spin form, but the putative distal mutants contained about 5% low-spin form. Bindings of metyrapone and 4-phenylimidazole to the wild type and all mutants formed nitrogen-bound low-spin forms. In contrast, binding of 2-phenylimidazole to the wild type and most of mutants formed oxygen-bond low-spin forms except for the mutant Glu318Asp in which the nitrogen-bound low-spin form was formed. By analogy with the distal structure of P-450cam, it was thus suggested that Glu318 of P-450d, which corresponds with Asp251 of P-450cam, somehow interacts with 2-phenylimidazole over the heme plane. Addition of 1-butanol and acetanilide, a substrate of P-450d, to the wild type and mutants caused the spin change to the low-spin form. The order of dissociation constants of these oxygen ligands to P-450d was wild type greater than proximal mutants greater than putative distal mutants. Spectral analyses showed that the binding of acetanilide is the same as that of another substrate, 7-ethoxycoumarin, in the putative distal mutants but is not the same in the wild type and proximal mutants. From these findings together with other spectral data, it was suggested that the region from Glu318 to Thr322 is located at the distal region of the heme in membrane-bound P-450d as suggested from the X-ray crystal structure of water-soluble P-450cam and amino acid alignments of P-450s.  相似文献   

13.
The ethanol-inducible form of cytochrome P-450 (P-450IIE1) has previously been shown to exhibit an unusually high rate of oxidase activity with the subsequent formation of reactive oxygen species, e.g., hydrogen peroxide, and to be the main contributor of microsomal oxidase activity in liver microsomes from acetone-treated rats [Ekstr?m & Ingelman-Sundberg (1989) Biochem. Pharmacol. (in press)]. The results here presented indicate that oxygen exposure of rats causes an about 4-fold induction of P-450IIE1 in rat liver and lung microsomes. The induction in liver was not accompanied by any measurable increase in the P-450IIE1 mRNA levels, but the enhanced amount of P-450IIE1 accounted for 60% of the net 50% increase in the level of hepatic P-450 as determined spectrophotometrically. The induction of P-450IIE1 was maximal after 60 h of O2 exposure, and concomitant increases in the rates of liver microsomal CCl4-dependent lipid peroxidation, O2 consumption, NADPH oxidation, O2- formation, H2O2 production, and NADPH-dependent microsomal lipid peroxidation were seen. Liver microsomes from oxygen-treated rats had very similar properties to those of microsomes isolated from acetone-treated rats with respect to the P-450IIE1 content and catalytic properties, but different from those of thyroxine-treated animals. Treatment of rats with the P-450IIE1 inducer acetone in combination with oxygen exposure caused a potentiation of the NADPH-dependent liver and lung microsomal lipid peroxidation and decreased the survival time of the rats. The results reached indicate a role for cytochrome P-450 and, in particular, for cytochrome P-450IIE1 in oxygen-mediated tissue toxicity.  相似文献   

14.
The effect of substrate on the spin state of oxidized cytochrome P-450 in liver microsomes prepared from phenobarbital-pretreated rats has been examined. Formation of the substrate-induced Type I difference spectrum was found to correlate quantitatively with the disappearance of the ferric low-spin esr signal of cytochrome P-450. The dissociation constant of substrate for oxidized cytochrome P-450 obtained by optical methods was found to be the same as that obtained from esr methods provided that the same high microsomal protein concentration was used. However, a decrease in microsomal protein concentration leads to an apparent increase in the affinity of substrate for oxidized cytochrome P-450, indicating a dependence of lipophilic substrate dissociation constants on the membrane concentration.  相似文献   

15.
By administration of allylisopropylacetamide, an inhibitor of cytochrome P-450, we demonstrated that cytochrome P-450 is involved in the production of H2O2 during aminopyrine metabolism and phenobarbital induction in both the unanaesthetized guinea pig and rat. In the guinea pig we also found evidence for the existence of a basal cytochrome P-450-dependent H2O2 production, i.e. in the absence of exogenous substrate. Catalase participates in the decomposition of H2O2 produced in the endoplasmic reticulum where cytochrome P-450 is localized.  相似文献   

16.
Benzphetamine demethylase and aniline hydroxylase activities were determined with various hemoproteins including indoleamine 2,3-dioxygenase in a cytochrome P-450-like reconstituted system containing NADPH, NADPH-cytochrome P-450 reductase, and O2. The highest specific activities, almost comparable to those of liver microsomal cytochrome P-450, were detected with indoleamine 2,3-dioxygenase from the rabbit intestine. The indoleamine 2,3-dioxygenase-catalyzed benzphetamine demethylation reaction was inhibited by catalase but not by superoxide dismutase. Exogenous H2O2 or organic hydroperoxides was able to replace the reducing system and O2. The stoichiometry of H2O2 added to the product formed was essentially unity. These results indicate that the dioxygenase catalyzes the demethylation reaction by the so-called "peroxygenation" mechanism using H2O2 generated in the reconstituted system. On the other hand, the dioxygenase-catalyzed aniline hydroxylation reaction was not only completely inhibited by catalase but also suppressed by superoxide dismutase by about 60%. Although the O2- and H2O2-generating system (e.g. hypoxanthine-xanthine oxidase) was also active as the reducing system, neither exogenous H2O2 nor the generation of O2- in the presence of catalase supported the hydroxylation reaction, indicating that both H2O2 and O2- were essential for the hydroxylation reaction. However, typical scavengers for hydroxyl radical and singlet oxygen were not inhibitory. These results suggest that a unique, as yet unidentified active oxygen species generated by H2O2 and O2- participates in the dioxygenase-mediated aniline hydroxylation reaction.  相似文献   

17.
Diarylpropane oxygenase, an H2O2-dependent lignin-degrading enzyme from the basidiomycete fungus Phanerochaete chrysosporium, catalyzes the oxygenation of various lignin model compounds with incorporation of a single atom of dioxygen (O2). Diarylpropane oxygenase is also capable of oxidizing some alcohols to aldehydes and/or ketones. This enzyme (Mr = 41,000) contains a single iron protoporphyrin IX prosthetic group. Previous studies revealed that the Soret maximum of the ferrous-CO complex of diarylpropane oxygenase is at approximately 420 nm, as in ferrous-CO myoglobin (Mb), and not like the approximately 450 nm absorption of the CO complex of the ubiquitous heme monooxygenase, cytochrome P-450. This spectral difference between two functionally similar heme enzymes is of interest. To elucidate the structural requirements for heme iron-based oxygenase reactions, we have compared the electronic absorption, EPR, and resonance Raman (RR) spectral properties of diarylpropane oxygenase with those of other heme proteins and enzymes of known axial ligation. The absorption spectra of native (ferric), cyano, and ferrous diarylpropane oxygenase closely resemble those of the analogous myoglobin complexes. The EPR g values of native diarylpropane oxygenase, 5.83 and 1.99, also agree well with those of aquometMb. The RR spectra of ferric diarylpropane oxygenase have their spin- and oxidation-state marker bands at frequencies analogous to those of aquometMb and indicate a high-spin, hexacoordinate ferric iron. The RR spectra of ferrous diarylpropane oxygenase have frequencies analogous to those of deoxy-Mb that suggest a high-spin, pentacoordinate Fe(II) in the reduced form. The RR spectra of both ferric and ferrous diarylpropane oxygenase are less similar to those of horseradish peroxidase, catalase, or cytochrome c peroxidase and are clearly distinct from those of P-450. These observations suggest that the fifth ligand to the heme iron of diarylpropane oxygenase is a neutral histidine and that the iron environment must resemble that of the oxygen transport protein, myoglobin, rather than that of the peroxidases, catalase, or P-450. Given the functional similarity between diarylpropane oxygenase and P-450, this work implies that the mechanism of oxygen insertion for the two systems is different.  相似文献   

18.
The g values from low-spin ferric hemes can be related through the t2g hole model to rhombic (V/lambda) and tetragonal (delta/lambda) ligand field components and to the lowest Kramer's doublet energy (E/lambda). The latter is also a measure of unpaired electron sharing among the iron 3d (t2g) orbitals. For a series of ligands (X), there is a monotonic increase in myoglobin complex (Mb . X) [E/lambda] values with nonheme hexacoordinate metal complex (M . X6) [eg-t2gPg] orbital separations. As the aqueous solution pKa values of the sulfurous or nitrogenous ligands in model heme complexes increase, values of V/lambda and delta/lambda increase linearly, but those of [E/lambda] decrease linearly. The greater the electron-acceptor ability of the ligand, as suggested by its position in the spectrochemical series or its pKa, the more the unpaired electron sharing among the heme t2g orbitals increases. The rate of change of [E/lambda] with V/lambda and the pKa is different with sulfurous and nitrogenous ligands, and the magnitude of both rates increases with two sulfurs less than sulfur and nitrogen less than two nitrogens bound to the heme. The maximum magnitude of this rate with V/lambda for cytochrome P-450 is four times less than that for myoglobin, which may explain, in part, the differences in ligand binding between these two hemeproteins. The perturbation of [E/lambda], V/lambda, and delta/lambda induced by strain of iron-ligand bonds is quantitated for several hemeproteins and heme models. In addition, energy level comparisons suggest that the largest-magnitude g value falls approximately along the iron-chlorin ring normal. This suggestion implies that the electron distribution of the iron at the catalytic sites of cytochrome P-450 and certain chlorin-containing enzymes is in some way similar, but distinct from that at the transport site of myoglobin.  相似文献   

19.
Both purified cytochrome P-450 (P-450) and free ferriprotoporphyrin IX are destroyed by NADPH-P-450 reductase in the presence of NADPH and O2. The process appears to be mediated by H2O2 generated by reduction of O2. Six major products were identified from the reaction of H2O2 with ferri-protoporphyrin IX-hematinic acid, methylvinylmaleimide, and four dipyrrolic propentdyopents. The structures of the propentdyopents were elucidated by mass spectrometry and 1H NMR methods. Both free ferriprotoporphyrin IX and P-450 yielded these same products in similar relative ratios. P-450 heme in rat liver microsomes was degraded in the presence of O2 and NADPH and either NaN3 (a catalase inhibitor) or Fe-ADP (which promotes lipid peroxidation); the products were primarily hematinic acid, methylvinylmaleimide, and small quantities of one propentdyopent. Only the two maleimides were detected in the destruction of microsomal P-450 heme by cumene hydroperoxide and iodosylbenzene. On the basis of the reaction of H2O2 with several metal-octaethylethylporphyrin complexes and free octaethylporphyrin, the iron chelated in ferriprotoporphyrin IX is required for degradation by H2O2. Biliverdin is not an intermediate in the formation of maleimides and propentdyopents from heme. Experiments using the tetraethylpropentdyopent produced from ferrioctaethylporphyrin suggest that propentdyopents are not further cleaved to form the maleimides. A mechanism for oxidative heme destruction consistent with these observations is proposed.  相似文献   

20.
The application of cytochrome P-450 in substrate conversion is complicated both due to the limited stability and the cofactor regeneration problems. To overcome the disadvantages of NADPH consumption the transfer of the reduction equivalents from an electrode into the cytochrome P-450-system was studied: 1. NADPH was cathodically reduced at a mercury pool electrode. By immobilization of NADP on dialdehyde Sephadex the reductive recycling was possible. 2. Different forms of reduced oxygen were produced by the cathode: a) The reaction of O2- with deoxycorticosterone yields a carboxylic acid derivative. In contrast the cytochrome P-450 catalyzed NADPH-dependent reaction with the same substrate gives corticosterone, O2- represents only an intermediate in the activation of oxygen and is not the "activated oxygen" species. b) Molecular oxygen was reduced to HO2- and H2O2, respectively. The interaction of adsorbed cytochrome P-450 on the electrode surface with the reduced oxygen species in the absence of NADPH was studied. The electrochemically generated peroxide seems to be more active than added H2O2. 3. In a model of electro-enzyme-reactor several substrates were hydroxylated by microsomal cytochrome P-450 with cathodically reduced oxygen which substitutes NADPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号