首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteoblastic migration and proliferation in response to growth factors are essential for skeletal development, bone remodeling, and fracture repair, as well as pathologic processes, such as metastasis. We studied migration in response to platelet-derived growth factor (PDGF, 10 ng/ml) in a wounding model. PDGF stimulated a twofold increase in migration of osteoblastic MC3T3-E1 cells and murine calvarial osteoblasts over 24-48 h. PDGF also stimulated a tenfold increase in 3H-thymidine (3H-TdR) incorporation in MC3T3-E1 cells. Migration and DNA replication, as measured by BrdU incorporation, could be stimulated in the same cell. Blocking DNA replication with aphidicolin did not reduce the distance migrated. To examine the role of mitogen-activated protein (MAP) kinases in migration and proliferation, we used specific inhibitors of p38 MAP kinase, extracellular signal regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). For these signaling studies, proliferation was measured by carboxyfluorescein diacetate succinimidyl ester (CFSE) using flow cytometry. Inhibition of the p38 MAP kinase pathway by SB203580 and SB202190 blocked PDGF-stimulated migration but had no effect on proliferation. Inhibition of the ERK pathway by PD98059 and U0126 inhibited proliferation but did not inhibit migration. Inhibition of JNK activity by SP600125 inhibited both migration and proliferation. Hence, the stimulation of migration and proliferation by PDGF occurred by both overlapping and independent pathways. The JNK pathway was involved in both migration and proliferation, whereas the p38 pathway was predominantly involved in migration and the ERK pathway predominantly involved in proliferation.  相似文献   

2.
Mitogen-activated protein (MAP) kinase mediates cell proliferation, cell differentiation, and cell survival by regulating signaling pathways activated by receptor protein tyrosine kinases (RPTKs), including the insulin-like growth factor 1 receptor (IGF-IR). We analyzed the upstream signaling components of the MAP kinase pathway, including RPTKs, in human breast cancer cell lines and found that some of those components were overexpressed. Importantly, signaling molecules such as IGF-IR, insulin receptor, and insulin receptor substrate 1, leading to the MAP kinase pathway, were found to be concomitantly overexpressed within certain tumor lines, i.e., MCF-7 and T-47D. When compared with the nonmalignant and other breast tumor lines examined, MCF-7 and T-47D cells displayed a more rapid, robust, and sustained MAP kinase activation in response to insulin-like growth factor I (IGF-I) stimulation. By contrast, IGF-I treatment led to a sustained down-regulation of MAP kinase in those lines overexpressing ErbB2-related RPTKs. Interestingly, blocking the MAP kinase pathway with PD098059 had the greatest antiproliferative effect on MCF-7 and T-47D among the normal and tumor lines tested. Furthermore, addition of an IGF-IR blocking antibody to growth medium attenuated the ability of PD098059 to suppress the growth of MCF-7 and T-47D cells. Thus, our study suggests that concomitant overexpression of multiple signaling components of the IGF-IR pathway leads to the amplification of IGF-I-mediated MAP kinase signaling and resultant sensitization to PD098059. The enhanced sensitivity to PD098059 implies an increased requirement for the MAP kinase pathway in those breast cancer cells, making this pathway a potential target in the treatment of selected breast malignancies.  相似文献   

3.
Bone metastases from prostate cancer cause abnormal new bone formation, however, the factors involved and the pathways leading to the response are incompletely defined. We investigated the mechanisms of osteoblast stimulatory effects of LNCaP prostate carcinoma cell conditioned media (CM). MC3T3-E1 osteoblastic cells were cultured with CM from confluent LNCaP cells. LNCaP CM stimulated MAP kinase, cell proliferation (3H-thymidine incorporation), and protein synthesis (14C-proline incorporation) in the MC3T3-E1 cells. The increases in cell proliferation and protein synthesis were prevented by inhibition of the MAP kinase pathway. IGF-I mimicked the effects of the CM on the MC3T3-E1 cells and inhibition of IGF-I action decreased the LNCaP CM stimulation of 3H-thymidine and 14C-proline incorporation and MAP kinase activity. The findings indicate that IGF-I is an important factor for the stimulatory effects of LNCaP cell CM on cell proliferation and protein synthesis in osteoblastic cells, and that MAP kinase is a component of the signaling pathway for these effects.  相似文献   

4.
5.
Bovine carotid artery endothelial (BAE) cells are resistant to tumor necrosis factor-alpha (TNF), like most other cells. We examined if mitogen-activated protein (MAP) kinase and phosphatidylinositol-3 (PI3) kinase/Akt pathways are involved in this effect. In BAE cells, TNF activates MAP kinase in a MAP kinase kinase 1 (MEK1) manner and Akt in PI3-kinase-dependent manner. Pretreatment with either the MEK1 inhibitor U0126 or PI3-kinase inhibitor LY294002 sensitized BAE cells to TNF-induced apoptosis. Neither U0126 nor LY294002 pretreatment affected TNF-induced activation of NF-kappaB, suggesting that the MAP kinase or PI3-kinase/Akt-mediated anti-apoptotic effect induced by TNF was not relevant to NF-kappaB activation. Both MAP kinase and PI3-kinase/Akt -mediated signaling could prevent cytochrome c release and mitochondrial transmembrane potential (Deltapsi) decrease. PI3-kinase/Akt signaling attenuated caspase-8 activity, whereas MAP kinase signaling impaired caspase-9 activity. These results suggest that TNF-induced MAP kinase and PI3-kinase/Akt signaling play important roles in protecting BAE cells from TNF cytotoxicity.  相似文献   

6.
Mechanical strain is necessary for normal lung growth and development. Individuals with respiratory failure are supported with mechanical ventilation, leading to altered lung growth and injury. Understanding signaling pathways initiated by mechanical strain in lung epithelial cells will help guide development of strategies aimed at optimizing strain-induced lung growth while mitigating ventilator-induced lung injury. To study strain-induced proliferative signaling, focusing on the role of reactive oxidant species (ROS) and p42/44 mitogen-activated protein (MAP) kinase, human pulmonary epithelial H441 and MLE15 cells were exposed to equibiaxial cyclic mechanical strain. ROS were increased within 15 min of strain. N-acetylcysteine inactivated strain-induced ROS and inhibited p42/44 MAP kinase phosphorylation and strain-induced proliferation. PD98059 and UO126, p42/44 MAP kinase inhibitors, blocked strain-induced proliferation. To verify the specificity of p42/44 MAP kinase inhibition, cells were transfected with dominant-negative mitogen-activated protein kinase kinase-1 plasmid DNA. Transfected cells did not proliferate in response to mechanical strain. To determine whether strain-induced tyrosine kinase activity is necessary for strain-induced ROS-p42/44 MAP kinase signaling, genistein, a tyrosine kinase inhibitor, was used. Genistein did not block strain-induced ROS production or p42/44 MAP kinase phosphorylation. Gadolinium, a mechanosensitive calcium channel blocker, blocked strain-induced ROS production and p42/44 MAP kinase phosphorylation but not strain-induced tyrosine phosphorylation. These data support ROS production and p42/44 MAP kinase phosphorylation being involved in a common strain-induced signaling pathway, necessary for strain-induced proliferation in pulmonary epithelial cells, with a parallel strain-induced tyrosine kinase pathway.  相似文献   

7.
The mitogen-activated protein (MAP) kinase signal transduction pathway is an intracellular signaling cascade which mediates cellular responses to growth and differentiation factors. The MAP kinase pathway can be activated by a wide range of stimuli dependent on the cell types, and this is normally a transient response. Oncogenes such as ras, src, raf, and mos have been proposed to transform cells in part by prolonging the activated stage of components within this signaling pathway. The human papillomavirus (HPV) oncogenes E6 and E7 play an essential role in the in vitro transformation of primary human keratinocytes and rodent cells. The HPV type 16 E5 gene has also been shown to have weak transforming activity and may enhance the epidermal growth factor (EGF)-mediated signal transduction to the nucleus. In the present study, we have investigated the effects of the oncogenic HPV type 16 E5, E6, and E7 genes on the induction of the MAP kinase signaling pathway. The E5 gene induced an increase in the MAP kinase activity both in the absence and in the presence of EGF. In comparison, the E6 and E7 oncoproteins do not alter the MAP kinase activity or prolong the MAP kinase activity induced with EGF. These findings suggest that E5 may function, at least in part, to enhance the cell response through the MAP kinase pathway. However, the transforming activity of E6 and E7 is not associated with alterations in the MAP kinase pathway. These findings are consistent with E5 enhancing the response to growth factor stimulation.  相似文献   

8.
To understand the mechanism of Axl signaling, we have initiated studies to delineate downstream components in interleukin-3-dependent 32D cells by using a chimeric receptor containing the recombinant epidermal growth factor (EGF) receptor extracellular and transmembrane domains and the Axl kinase domain (EAK [for EGF receptor-Axl kinase]). We have previously shown that upon exogenous EGF stimulation, 32D-EAK cells are capable of proliferation in the absence of interleukin-3. With this system, we determined that EAK-induced cell survival and mitogenesis are dependent upon the Ras/extracellular-signal-regulated protein kinase (ERK) cascade. Although the phosphatidylinositol-3 kinase pathway is activated upon EAK signaling, it appears to be dispensable for the biological actions of the Axl kinase. Furthermore, we demonstrated that different threshold levels of Ras/ERK activation are needed to induce a block to apoptosis or proliferation in 32D cells. Recently, we have identified an Axl ligand, GAS6. Surprisingly, GAS6-stimulated 32D-Axl cells exhibited no blockage to apoptosis or mitogenic response which is correlated with the absence of Ras/ERK activation. Taken together, these data suggest that different extracellular domains dramatically alter the intracellular response of the Axl kinase. Furthermore, our data suggest that the GAS6-Axl interaction does not induce mitogenesis and that its exact role remains to be determined.  相似文献   

9.
The intracellular redox state is a key determinant of cell fate, such as cell survival, proliferation, differentiation, and apoptosis. Redox imbalance is closely linked to a variety of human diseases, so that the intracellular redox condition should be tightly regulated. The redox state of the cell is a consequence of the precise balance between the levels of oxidizing and reducing equivalents, such as reactive oxygen species (ROS) and endogenous antioxidants. ROS are not only toxicants to the cell, but also second messengers in intracellular signal transduction, and control the action of several signaling pathways, including mitogen-activated protein (MAP) kinases. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase of the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways, which is preferentially activated in response to various types of stress such as oxidative stress and plays pivotal roles in a wide variety of cellular responses. Recent studies have revealed that ASK1 is also required for innate immune response through ROS production. In this review, we focus on redox control of cell function by MAP kinase signaling, and provide the advanced mechanism of redox-regulated ASK1 activation and physiological roles of the ASK1-MAP kinase pathway in stress signaling.  相似文献   

10.
Differentiation of the mammalian blastocyst generates two distinct cell lineages: the trophectoderm, which contributes to the trophoblast layers of the placenta, and the inner cell mass, which forms the embryo. We and others recently demonstrated that the MAP kinase ERK2 is essential for trophoblast development. Erk2 mutant embryos fail to form extra-embryonic ectoderm and the ectoplacental cone, suggesting a role for ERK2 activation in the proliferation of trophoblast stem (TS) cells. Previous studies have documented that ERK1/2 activity is dispensable for proliferation of embryonic stem (ES) cells and rather interferes with self-renewal. Thus, signaling by the ERK1/2 MAP kinase pathway appears to be critical for the regulation of self-renewal and propagation of early embryo stem cell populations.  相似文献   

11.
Choi HK  Kim TH  Jhon GJ  Lee SY 《Cellular signalling》2011,23(10):1633-1639
Macrophage colony-stimulating factor (M-CSF) stimulation results in the production of reactive oxygen species (ROS) that participate in the proliferation of monocyte/macrophage. However, the molecular mechanisms whereby ROS modulate the signaling processes of M-CSF remain poorly defined. We report here that the redox-sensitive Src homology region 2 domain-containing phosphatase 1 (SHP1) is a critical regulator of M-CSF-mediated signaling in bone marrow monocyte/macrophage lineage cells (BMMs). Application of diphenylene iodonium (DPI) inhibited the responses of BMMs to M-CSF, including ROS production, cell proliferation, and phosphorylation of c-Fms as well as Akt kinase, but not of MAP kinases such as ERK, p38, and JNK. Dysregulation of SHP1 by overexpression or RNA interference in BMMs showed that SHP1 specifically regulates PI3 kinase (PI3K)/Akt signaling, but not MAP kinases in a redox-dependent manner, thereby regulating proliferation of BMMs through cyclins D1 and D2. These findings demonstrate that M-CSF-mediated ROS generation leads to SHP1 oxidation, which promotes cell proliferation through the PI3K/Akt-dependent signaling pathway.  相似文献   

12.
Thrombopoietin (TPO) promotes megakaryocyte growth and development. Its receptor, c-MPL, is restricted to cells of megakaryocytic lineage and stem cells. We have previously shown that activation of c-MPL by thrombopoietin rapidly activates at least two cytoplasmic tyrosine kinases, JAK2 and TYK2, after ligand binding. Phosphatidylinositol-3′ kinase (PI3K) has been shown to play an important role in downstream signaling for many receptors. Thrombopoietin was found to also rapidly activate phosphatidylinositol-3′ kinase, and the phosphatidylinositol-3′ kinase inhibitor wortmannin decreased proliferation of thrombopoietin-stimulated cells, implying that phosphatidylinositol-3′ kinase may have a regulatory role in thrombopoietin signaling. In immunoprecipitation studies, the regulatory subunit of phosphatidylinositol-3′ kinase, p85PI3K, associated with several tyrosine phosphoproteins, and the major phosphoprotein was a 120 kDa protein identified as p120CBL. The phosphatidylinositol-3′ kinase-enzyme activity in p120CBL immunoprecipitates was elevated in thrombopoietin-stimulated cells as compared to immunoprecipitates from unstimulated cells. p120CBL may be involved in signaling pathways activated by c-MPL which involve phosphatidylinositol-3′ kinase. J. Cell. Physiol. 171:28–33, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Integrin cooperation with growth factor receptors to enable permissive signaling to the mitogen-activated protein (MAP) kinase pathway has important implications for cell proliferation, differentiation, and survival. Here we have sought to determine whether anchorage regulation of the MAP kinase pathway is specific to the alpha chain subunit of the integrins employed during adhesion. Human umbilical vein endothelial cells (HUVECs) anchored via endogenous alpha(2), alpha(3), or alpha(5) integrin subunits or NIH3T3 fibroblast cells lines anchored via ectopically expressed human integrin alpha(2) or alpha(5) subunits displayed comparable MAP kinase activation upon growth factor stimulation, regardless of the integrin alpha chain employed. In contrast, when either cell type was maintained in suspension, growth factor treatment inefficiently activated the MAP kinase pathway. The integrin-mediated enhancement of MAP kinase activation by growth factor correlated with the tyrosine phosphorylation of focal adhesion kinase but was independent of Shc. These data indicate that integrin modulation of the MAP kinase pathway is supported by a variety of integrin complexes and imply that other pathways may be required for the previously reported alpha chain-specific effects on cell cycle regulation and cell differentiation.  相似文献   

14.
Our previous work has demonstrated that the insulin-like growth factors (IGFs), acting through a single receptor, stimulate both proliferation and differentiation of L6A1 myoblasts. This unique model system has enabled us to closely examine the switch that regulates these two opposing responses. We have previously shown, using specific inhibitors of the IGF-I signal transduction pathway, that the mitogenic response is mediated by the Ras/Raf/MAP kinase pathway and the myogenic response by the PI 3-kinase/p70s6k pathway (Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR, J Biol Chem 1997; 272: 6653-62). In that study we found that PD098059, an inhibitor of MEK activation, inhibited the proliferative response, but dramatically enhanced IGF-stimulated differentiation which was associated with elevation of p70s6k activity. Since there have been reports of elevation of Raf-1 activity in PD098059-treated L6 myoblasts, and stimulation of p70s6k activity in cells expressing an activated Raf-1, it was important to determine whether or not Raf-1 elevation plays a role in the myogenic response. To test this, we have transfected L6A1 myoblasts with delta Raf-1:ER, an estradiol-regulated form of oncogenic Raf-1. We found that activation of Raf-1 by estradiol resulted in increased phosphorylation of p42 and p44 MAP kinases and stimulation of proliferation. In contrast, Raf-1 activation inhibited all measured aspects of the myogenic response: myogenin expression, creatine kinase elevation, and fusion of myoblasts to form myotubes. In addition, we found no elevation of p70s6k activity upon Raf-1 activation. These results indicate the following: (1) stimulation of myogenic differentiation by PD098059 treatment is not simply due to the elevation of Raf-1, (2) Raf-1 has a positive role in the MAP kinase pathway and myoblast proliferation, and (3) Raf-1 activation inhibits myogenesis, possibly by forcing cells to remain in the proliferative state.  相似文献   

15.
Naturally occurring alkyl- and alkenyl-lysophosphatidic acids (al-LPAs) are detected and elevated in ovarian cancer ascites compared with ascites from non-malignant diseases. Here we describe the biological functions and signaling properties of these ether-linked LPAs in ovarian cancer cells. They are elevated and stable in ovarian cancer ascites, which represents an in vivo environment for ovarian cancer cells. They stimulated DNA synthesis and proliferation of ovarian cancer cells. In addition, they induced cell migration and the secretion of a pro-angiogenic factor, interleukin-8 (IL-8), in ovarian cancer cells. The latter two processes are potentially related to tumor metastasis and angiogenesis, respectively. Al-LPAs induced diverse signaling pathways in ovarian cancer cells. Their mitogenic activity depended on the activation of the G(i/o) protein, phosphatidylinositol-3 kinase (PI3K), and mitogen-activated protein (MAP) kinase kinase (MEK), but not p38 mitogen activated protein kinase (MAP kinase). S473 phosphorylation of protein kinase B (Akt) by these lipids required activation of the G(i/o) protein, PI3K, MEK, p38 MAP kinase, and Rho. However, T308 phosphorylation of Akt stimulated by al-LPAs did not require activation of p38 MAP kinase. On the other hand, cell migration induced by al-LPAs depended on activities of the G(i/o) protein, PI3K, and Rho, but not MEK. These data suggest that ether-linked LPAs may play an important role in ovarian cancer development.  相似文献   

16.
17.
L-ascorbic acid (LAA) shows cytotoxicity and induces apoptosis of malignant cells in vitro, but the mechanisms by which such effects occur have not been elucidated. In the present study, we provide evidence that the ERK MAP kinase pathway is activated in response to LAA (< 1 mM) in acute myeloid leukemia cell lines. LAA treatment of cells induces a dose-dependent phosphorylation of extracellular signal-regulated kinases (ERK) and results in activation of its catalytic domain. Our data also demonstrate that the small G protein Raf1 and MAPK-activated protein kinase 2 are activated by LAA as an upstream and a downstream regulator of ERK, respectively. Although the ERK pathway has been known to activate cell proliferation, pharmacologic inhibition of ERK reduces LAA-dependent apoptosis and growth inhibitory response of acute myeloid leukemia cell lines, suggesting that this signaling cascade positively regulates induction of apoptotic response by LAA.  相似文献   

18.
CD4(+) and CD8(+) T cells play specific roles during an immune response. Different molecular mechanisms could regulate the proliferation, death, and effector functions of these two subsets of T cells. The p38 mitogen-activated protein (MAP) kinase pathway is induced by cytokines and environmental stress and has been associated with cell death and cytokine expression. Here we report that activation of the p38 MAP kinase pathway in vivo causes a selective loss of CD8(+) T cells due to the induction of apoptosis. In contrast, activation of p38 MAP kinase does not induce CD4(+) T-cell death. The apoptosis of CD8(+) T cells is associated with decreased expression of the antiapoptotic protein Bcl-2. Regulation of the p38 MAP kinase pathway in T cells is therefore essential for the maintenance of CD4/CD8 homeostasis in the peripheral immune system. Unlike cell death, gamma interferon production is regulated by the p38 MAP kinase pathway in both CD4(+) and CD8(+) T cells. Thus, specific aspects of CD4(+) and CD8(+) T-cell function are differentially controlled by the p38 MAP kinase signaling pathway.  相似文献   

19.
The TOR pathway is a kinase signaling pathway that regulates cellular growth and proliferation in response to nutrients and growth factors. TOR signaling is also important in lifespan regulation - when this pathway is inhibited, either naturally, by genetic mutation, or by pharmacological means, lifespan is extended. MAP4K3 is a Ser/Thr kinase that has recently been found to be involved in TOR activation. Unexpectedly, the effect of this protein is not mediated via Rheb, the more widely known TOR activation pathway. Given the role of TOR in growth and lifespan control, we looked at how inhibiting MAP4K3 in Caenorhabditiselegans affects lifespan. We used both feeding RNAi and genetic mutants to look at the effect of MAP4K3 deficiency. Our results show a small but significant increase in mean lifespan in MAP4K3 deficient worms. MAP4K3 thus represents a new target in the TOR pathway that can be targeted for pharmacological intervention to control lifespan.  相似文献   

20.
Yersinia effector, YopJ, inhibits the innate immune response by blocking MAP kinase and NFkappaB signaling pathways in mammalian cells. Herein, YopJ is shown to disrupt the MAP kinase signaling pathways in Saccharomyces cerevisiae. Expression of YopJ in yeast blocks the ability of yeast to respond to alpha factor by disrupting activation of the pheromone signaling pathway upstream of the activation of the MAPK Fus3p. YopJ also blocks the high osmolarity growth (HOG) MAP kinase pathway in yeast upstream of the activation of the MAPK Hog1p. YopJ is proposed to block the MAP kinase pathways in yeast in a similar manner to the way it blocks mammalian signaling pathways, implicating that a novel, evolutionarily conserved mechanism of regulation is utilized for signal transduction by these pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号