首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We reported previously that inhibition ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) by bumetanide abolishes high extracellular K+concentration ([K+]o)-induced swelling andintracellular Cl accumulation in rat cortical astrocytes.In this report, we extended our study by using cortical astrocytes fromNKCC1-deficient (NKCC1/) mice. NKCC1 protein andactivity were absent in NKCC1/ astrocytes.[K+]o of 75 mM increased NKCC1 activityapproximately fourfold in NKCC1+/+ cells (P < 0.05) but had no effect in NKCC1/ astrocytes.Intracellular Cl was increased by 70% inNKCC1+/+ astrocytes under 75 mM[K+]o (P < 0.05) butremained unchanged in NKCC1/ astrocytes. Baselineintracellular Na+ concentration([Na+]i) in NKCC1+/+ astrocyteswas 19.0 ± 0.5 mM, compared with 16.9 ± 0.3 mM[Na+]i in NKCC1/ astrocytes(P < 0.05). Relative cell volume ofNKCC1+/+ astrocytes increased by 13 ± 2% in 75 mM[K+]o, compared with a value of 1.0 ± 0.5% in NKCC1/ astrocytes (P < 0.05).Regulatory volume increase after hypertonic shrinkage was completelyimpaired in NKCC1/ astrocytes.High-[K+]o-induced 14C-labeledD-aspartate release was reduced by ~30% inNKCC1/ astrocytes. Our study suggests that stimulationof NKCC1 is required for high-[K+]o-inducedswelling, which contributes to glutamate release from astrocytes underhigh [K+]o.

  相似文献   

2.
An HEK-293 cell line stably expressing the humanrecombinant ClC-2 Cl channel was used in patch-clampstudies to study its regulation. The relative permeabilityPx/PCl calculated fromreversal potentials was I > Cl = NO3 = SCNBr. Theabsolute permeability calculated from conductance ratios wasCl = Br = NO3  SCN > I. The channel was activatedby cAMP-dependent protein kinase (PKA), reduced extracellular pH, oleicacid (C:18 cis9), elaidic acid (C:18trans9), arachidonic acid (AA; C:20cis5,8,11,14), and by inhibitors of AA metabolism,5,8,11,14-eicosatetraynoic acid (ETYA; C:20trans5,8,11,14),-methyl-4-(2-methylpropyl)benzeneacetic acid (ibuprofen), and2-phenyl-1,2-benzisoselenazol-3-[2H]-one (PZ51, ebselen). ClC-2Cl channels were activated by a combination of forskolinplus IBMX and were inhibited by the cell-permeant myristoylated PKAinhibitor (mPKI). Channel activation by reduction of bath pH wasincreased by PKA and prevented by mPKI. AA activation of the ClC-2Cl channel was not inhibited by mPKI or staurosporine andwas therefore independent of PKA or protein kinase C activation.

  相似文献   

3.
Chloride release from nonpigmented ciliary epithelial (NPE)cells is a final step in forming aqueous humor, and adenosine stimulates Cl transport by these cells. Whole cell patchclamping of cultured human NPE cells indicated that theA3-selective agonist1-deoxy-1-(6-[([3-iodophenyl]methyl)amino]-9H-purin-9-yl)-N-methyl--D-ribofuranuronamide (IB-MECA) stimulated currents (IIB-MECA) by~90% at +80 mV. Partial replacement of external Clwith aspartate reduced outward currents and shifted the reversal potential (Vrev) from 23 ± 2 mV to0.0 ± 0.7 mV. Nitrate substitution had little effect. Perfusionwith the Cl channel blockers5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and niflumic acidinhibited the currents. Partial Cl replacement withaspartate and NO3, and perfusion with NPPB, hadsimilar effects on the swelling-activated whole cell currents(ISwell). Partial cyclamate substitution for external Cl inhibited inward and outward currents of bothIIB-MECA and ISwell. Bothsets of currents also showed outward rectification and inactivation atlarge depolarizing potentials. The results are consistent with theconcept that A3-subtype adenosine agonists and swellingactivate a common population of Cl channels.

  相似文献   

4.
We examined the effects of human cytomegalovirus (HCMV)infection on theNa+-K+-Clcotransporter (NKCC) in a human fibroblast cell line. Using the Cl-sensitive dye MQAE, weshowed that the mock-infected MRC-5 cells express a functional NKCC.1) IntracellularCl concentration([Cl]i)was significantly reduced from 53.4 ± 3.4 mM to 35.1 ± 3.6 mMfollowing bumetanide treatment. 2)Net Cl efflux caused byreplacement of external Clwith gluconate was bumetanide sensitive.3) InCl-depleted mock-infectedcells, the Cl reuptake rate(in HCO3-free media) was reduced inthe absence of external Na+ and bytreatment with bumetanide. After HCMV infection, we found that although[Cl]iincreased progressively [24 h postexposure (PE), 65.2 ± 4.5 mM; 72 h PE, 80.4 ± 5.0 mM], the bumetanide andNa+ sensitivities of[Cl]iand net Cl uptake and losswere reduced by 24 h PE and abolished by 72 h PE. Western blots usingthe NKCC-specific monoclonal antibody T4 showed an approximatelyninefold decrease in the amount of NKCC protein after 72 h ofinfection. Thus HCMV infection resulted in the abolition of NKCCfunction coincident with the severe reduction in the amount of NKCCprotein expressed.

  相似文献   

5.
Rabbit conjunctival epithelium exhibits UTP-dependentCl secretion into the tears. We investigated whetherfluid secretion also takes place. Short-circuit current(Isc) was 14.9 ± 1.4 µA/cm2(n = 16). Four P2Y2 purinergic receptoragonists [UTP and the novel compounds INS365, INS306, and INS440(Inspire Pharmaceuticals)] added apically (10 µM) resulted intemporary (~30 min) Isc increases (88%, 66%,57%, and 28%, respectively; n = 4 each). Importantly, the conjunctiva transported fluid from serosa to mucosa at a rate of6.5 ± 0.7 µl · h1 · cm2 (range2.1-15.3, n = 20). Fluid transport was stimulatedby mucosal additions of 10 µM: 1) UTP, from 7.4 ± 2.3 to 10.7 ± 3.3 µl · h1 · cm2,n = 5; and 2) INS365, from 6.3 ± 1.0 to 9.8 ± 2.5 µl · h1 · cm2,n = 5. Fluid transport was abolished by 1 mMouabain (n = 5) and was drastically inhibited by 300 µM quinidine (from 6.4 ± 1.2 to 3.6 ± 1.0 µl · h1 · cm2,n = 4). We conclude that this epithelium secretes fluidactively and that P2Y2 agonists stimulate bothCl and fluid secretions.

  相似文献   

6.
Transport of fluid by lens epithelium   总被引:2,自引:0,他引:2  
We report for the first time that cultured lens epithelial celllayers and rabbit lenses in vitro transport fluid. Layers of the TN4mouse cell line and bovine cell cultures were grown to confluence onpermeable membrane inserts. Fluid movement across cultured layers andexcised rabbit lenses was determined by volume clamp (37°C).Cultured layers transported fluid from their basal to their apicalsides against a pressure head of 3 cmH2O. Rates were (inµl · h1 · cm2)3.3 ± 0.3 for TN4 cells (n = 27) and 4.7 ± 1.0 for bovine layers (n = 6). Quinidine, a blocker ofK+ channels, andp-chloromercuribenzenesulfonate andHgCl2, inhibitors of aquaporins,inhibited fluid transport. Rabbit lenses transported fluid from theiranterior to their posterior sides against a2.5-cmH2O pressure head at 10.3 ± 0.62 µl · h1 · lens1(n = 5) and along the same pressurehead at 12.5 ± 1.1 µl · h1 · lens1(n = 6). We calculate that this flowcould wash the lens extracellular space by convection about once every2 h and therefore might contribute to lens homeostasis and transparency.  相似文献   

7.
Growth factorsstimulateNa+/H+exchange activity in many cell types but their effects on acidsecretion via this mechanism in renal tubules are poorly understood. Weexamined the regulation of HCO3absorption by nerve growth factor (NGF) in the rat medullary thickascending limb (MTAL), which absorbs HCO3via apical membraneNa+/H+exchange. MTAL were perfused in vitro with 25 mMHCO3 solutions (pH 7.4; 290 mosmol/kgH2O). Addition of 0.7 nMNGF to the bath decreased HCO3absorption from 13.1 ± 1.1 to 9.6 ± 0.8 pmol · min1 · mm1(P < 0.001). In contrast, with1010 M arginine vasopressin(AVP) in the bath, addition of NGF to the bath increasedHCO3 absorption from 8.0 ± 1.6 to12.5 ± 1.3 pmol · min1 · mm1(P < 0.01). Both effects of NGF wereblocked by genistein, consistent with the involvement of tyrosinekinase pathways. However, the AVP-dependent stimulation requiredactivation of protein kinase C (PKC), whereas the inhibition was PKCindependent, indicating that the NGF-induced signaling pathways leadingto inhibition and stimulation of HCO3absorption are distinct. Hypertonicity blocked the inhibition but notthe AVP-dependent stimulation, suggesting that hypertonicity and NGFmay inhibit HCO3 absorption via acommon mechanism. These data demonstrate that NGF inhibitsHCO3 absorption in the MTAL underbasal conditions but stimulates HCO3 absorption in the presence of AVP, effects that are mediated through distinct signal transduction pathways. They also show that AVP is acritical determinant of the response of the MTAL to growth factorstimulation and suggest that NGF can either inhibit or stimulateapical Na+/H+ exchange activitydepending on its interactions with other regulatory factors. Locallyproduced growth factors such as NGF may play a role in regulating renaltubule HCO3 absorption.

  相似文献   

8.
The effect of chronic exposure to transforming growth factor-(TGF-) on bradykinin-stimulated acute prostanoid production and ionsecretion in monolayers of HCA-7 colony 29 colonic epithelial cells hasbeen studied. Monolayers synthesized prostaglandinE2 (PGE2) at a basal rate of 2.10 ± 0.31 pg · monolayer1 · min1over 24 h. Bradykinin(108-105M) dose dependently increased acutePGE2 release by three orders ofmagnitude. This was associated with a rise in cAMP from 1.60 ± 0.14 to 2.90 ± 0.1 pmol/monolayer (P < 0.02) and a dose-dependent increase in short-circuit current (SCC).When monolayers were primed by a 24-h exposure to TGF-, basalPGE2 release rose to 6.31 ± 0.38 pg · monolayer1 · min1(TGF- concn 10 ng/ml; P = 0.001).However, the stimulation of acute prostaglandin release, intracellularcAMP, and increased SCC by bradykinin was significantly reduced bypreincubation with TGF-. Priming withPGE2(108-106M) over 24 h mimicked the effect of TGF- on bradykinin-induced changes in cAMP and SCC. These data suggest that enhanced chronic release of prostaglandins in response to stimulation with TGF- maydownregulate acute responses to bradykinin. In vivo, TGF- could havean important modulatory function in regulating secretion underinflammatory conditions.  相似文献   

9.
Fluid transport across cultures of bovine tracheal epitheliumwas measured with a capacitance probe technique. Baseline fluid absorption (Jv)across bovine cells of 3.2 µl · cm2 · h1was inhibited by ~78% after 1 h of exposure to suspensions of Pseudomonas aeruginosa, with aconcomitant decrease in transepithelial potential (TEP) and increase intransepithelial resistance(Rt). Effectsof P. aeruginosa were blocked byamiloride, which decreased Jv by 112% frombaseline of 2.35 ± 1.25 µl · cm2 · h1,increased Rt by101% from baseline of 610 ± 257  · cm2, anddecreased TEP by 91% from baseline of 55 ± 18.5 mV.Microelectrode studies suggested that effects of P. aeruginosa on amiloride-sensitive Na absorption weredue in part to a block of basolateral membrane K channels. In thepresence of Cl transport inhibitors[5-nitro-2-(3-phenylpropylamino)-benzoic acid,H2-DIDS, and bumetanide],P. aeruginosa induced a fluid secretion of ~2.5 ± 0.4 µl · cm2 · h1and decreased Rtwithout changing TEP. However, these changes were abolished when thetransport inhibitors were used in a medium in which Cl was replaced byan impermeant organic anion. Filtrates of P. aeruginosa suspensions had no effect onJv, TEP, orRt. Mutantslacking exotoxin A or rhamnolipids or with defective lipopolysaccharide still inhibited fluid absorption and altered bioelectrical properties. By contrast, mutations in the rpoN gene encodinga  factor of RNA polymerase abolished actions of P. aeruginosa. In vivo, changes in transepithelial saltand water transport induced by P. aeruginosa may alter viscosity and ionic composition ofairway secretions so as to foster further bacterial colonization.

  相似文献   

10.
To investigate the biology of the malegenital duct epithelium, we have established cell cultures from theovine vas deferens and epididymis epithelium. These cells develop tightjunctions, high transepithelial electrical resistance, and alumen-negative transepithelial potential difference as a sign of activetransepithelial ion transport. In epididymis cultures the equivalentshort-circuit current (Isc) averaged 20.8 ± 0.7 µA/cm2 (n = 150) and was partially inhibited byapical application of amiloride with an inhibitor concentration of 0.64 µM. In vas deferens cultures, Isc averaged 14.4 ± 1.1 µA/cm2 (n = 18) and was also inhibited byapical application of amiloride with a half-maximal inhibitorconcentration (Ki) of 0.68 µM. The remainingamiloride-insensitive Isc component in epididymisand vas deferens cells was partially inhibited by apical application ofthe Cl channel blocker diphenylamine-2-carboxylicacid (1 mM). It was largely dependent on extracellularCl and, to a lesser extent, on extracellularHCO3. It was further stimulated bybasolateral application of forskolin (105 M), which increasedIsc by 3.1 ± 0.3 µA/cm2 (n=65) in epididymis and 0.9 ± 0.1 µA/cm2 (n =11) in vas deferens. These findings suggest that cultured ovine vasdeferens and epididymis cells absorb Na+ viaamiloride-sensitive epithelial Na+ channels (ENaC) andsecrete Cl and HCO3via apical cystic fibrosis transmembrane conductance regulator (CFTR)Cl channels. This interpretation is supported byRT-PCR data showing that vas deferens and epididymis cells express CFTRand ENaC mRNA.

  相似文献   

11.
Patch-clamp recordings were used to study ioncurrents induced by cell swelling caused by hypotonicity in humanprostate cancer epithelial cells, LNCaP. The reversal potential of the swelling-evoked current suggested that Cl was the primarycharge carrier (termed ICl,swell). Theselectivity sequence of the underlying volume-regulated anion channels(VRACs) for different anions wasBrI > Cl > F > methanesulfonate glutamate, with relativepermeability numbers of 1.26, 1.20, 1.0, 0.77, 0.49, and 0.036, respectively. The current-voltage patterns of the whole cell currentsas well as single-channel currents showed moderate outwardrectification. Unitary VRAC conductance was determined at 9.6 ± 1.8 pS. Conventional Cl channel blockers5-nitro-2-(3-phenylpropylamino)benzoic acid (100 µM) and DIDS (100 µM) inhibited whole cell ICl,swell in a voltage-dependent manner, with the block decreasing from 39.6 ± 9.7% and 71.0 ± 11.0% at +50 mV to 26.2 ± 7.2% and14.5 ± 6.6% at 100 mV, respectively. Verapamil (50 µM), astandard Ca2+ antagonist and P-glycoprotein functioninhibitor, depressed the current by a maximum of 15%. Protein tyrosinekinase inhibitors downregulated ICl,swell(genistein with an IC50 of 2.6 µM and lavendustin A by60 ± 14% at 1 µM). The protein tyrosine phosphatase inhibitorsodium orthovanadate (500 µM) stimulatedICl,swell by 54 ± 11%. We conclude thatVRACs in human prostate cancer epithelial cells are modulated viaprotein tyrosine phosphorylation.

  相似文献   

12.
We examined the effect of peroxynitrite(ONOO) on the cloned ratepithelial Na+ channel(-rENaC) expressed in Xenopusoocytes. 3-Morpholinosydnonimine (SIN-1) was used to concurrentlygenerate nitric oxide (· NO) and superoxide(O2 ·), which react toform ONOO, a species knownto promote protein nitration and oxidation. Under control conditions,oocytes displayed an amiloride-sensitive whole cell conductance of 7.4 ± 2.8 (SE) µS. When incubated at 18°C with SIN-1 (1 mM) for 2 h (final ONOO concentration = 10 µM), the amiloride-sensitive conductance was reduced to0.8 ± 0.5 µS. To evaluate whether the observed inhibition was due to ONOO, as opposedto · NO, we also exposed oocytes to SIN-1 in the presence ofurate (500 µM), a scavenger ofONOO and superoxidedismutase, which scavengesO2 ·, converting SIN-1from an ONOO to an· NO donor. Under these conditions, conductance values remained at control levels following SIN-1 treatment.Tetranitromethane, an agent that oxidizes sulfhydryl groups at pH6, also inhibited the amiloride-sensitive conductance. These datasuggest that oxidation of critical sulfhydryl groups within rENaC byONOO directly inhibitschannel activity.

  相似文献   

13.
The fluorescence of quinolinium-basedCl indicators such as6-methoxy-N-(3-sulfopropyl)quinolinium(SPQ) is quenched by Cl bya collisional mechanism without change in spectral shape. A series of"chimeric" dual-wavelengthCl indicators weresynthesized by conjugatingCl-sensitive and-insensitive chromophores with spacers. The SPQ chromophore(N-substituted 6-methoxyquinolinium; MQ) was selected as theCl-sensitive moiety[excitation wavelength(ex) 350 nm, emission wavelength (em) 450 nm]. N-substituted 6-aminoquinolinium (AQ) waschosen as theCl-insensitive moietybecause of its different spectral characteristics (ex 380 nm,em 546 nm), insensitivity toCl, positive charge (tominimize quenching by chromophore stacking/electron transfer), andreducibility (for noninvasive cell loading). The dual-wavelengthindicators were stable and nontoxic in cells and were distributeduniformly in cytoplasm, with occasional staining of the nucleus. Thebrightest and mostCl-sensitive indicatorswere -MQ-'-dimethyl-AQ-xylene dichloride andtrans-1,2-bis(4-[1-'-MQ-1'-'-dimethyl-AQ-xylyl]-pyridinium)ethylene (bis-DMXPQ). At 365-nm excitation, emission maxima were at 450 nm(Cl sensitive; Stern-Volmerconstants 82 and 98 M1)and 565 nm (Clinsensitive). Cystic fibrosis transmembrane conductanceregulator-expressing Swiss 3T3 fibroblasts were labeled with bis-DMXPQby hypotonic shock or were labeled with its uncharged reduced form(octahydro-bis-DMXPQ) by brief incubation (20 µM, 10 min). Changes inCl concentration inresponse to Cl/nitrateexchange were recorded by emission ratio imaging (450/565 nm) at 365-nmexcitation wavelength. These results establish a first-generation setof chimeric bisquinoliniumCl indicators forratiometric measurement ofCl concentration.  相似文献   

14.
Mammary epithelial 31EG4 cells (MEC) were grown as monolayers onfilters to analyze the apical membrane mechanisms that help mediate ionand fluid transport across the epithelium. RT-PCR showed the presenceof cystic fibrosis transmembrane conductance regulator (CFTR) andepithelial Na+ channel (ENaC) message, and immunomicroscopyshowed apical membrane staining for both proteins. CFTR was alsolocalized to the apical membrane of native human mammary ductepithelium. In control conditions, mean values of transepithelialpotential (apical-side negative) and resistance(RT) are 5.9 mV and 829  · cm2, respectively. The apical membranepotential (VA) is 40.7 mV, and the mean ratioof apical to basolateral membrane resistance (RA/RB) is 2.8. Apicalamiloride hyperpolarized VA by 19.7 mV andtripled RA/RB. AcAMP-elevating cocktail depolarized VA by 17.6 mV, decreased RA/RB by60%, increased short-circuit current by 6 µA/cm2,decreased RT by 155  · cm2, and largely eliminated responses toamiloride. Whole cell patch-clamp measurements demonstratedamiloride-inhibited Na+ currents [linear current-voltage(I-V) relation] and forskolin-stimulated Clcurrents (linear I-V relation). A capacitance probe methodshowed that in the control state, MEC monolayers either absorbed orsecreted fluid (2-4µl · cm2 · h1). Fluidsecretion was stimulated either by activating CFTR (cAMP) or blockingENaC (amiloride). These data plus equivalent circuit analysis showedthat 1) fluid absorption across MEC is mediated byNa+ transport via apical membrane ENaC, and fluid secretionis mediated, in part, by Cl transport via apicalCFTR; 2) in both cases, appropriate counterions move throughtight junctions to maintain electroneutrality; and 3)interactions among CFTR, ENaC, and tight junctions allow MEC to eitherabsorb or secrete fluid and, in situ, may help control luminal[Na+] and [Cl].

  相似文献   

15.
The effects of serotonin[5-hydroxytryptamine (5-HT)] on the transepithelial electricalproperties of the short-circuited rabbit conjunctiva were examined.With this epithelium, the short-circuit current(Isc) measures Cl secretion plusan amiloride-resistant Na+ absorptive process. Apicaladdition of 5-HT (10 µM) elicited a prompt Iscreduction from 14.2 ± 1.2 to 10.9 ± 1.2 µA/cm2 and increased transepithelial resistance from0.89 ± 0.05 to 1.03 ± 0.06 k · cm2(means ± SE, n = 21, P < 0.05).Similar changes were obtained with conjunctivae bathed withoutNa+ in the apical bath, as well as with conjunctivaepreexposed to bumetanide with the Cl-dependentIsc sustained by the parallel activities ofbasolateral Na+/H+ andCl/HCO exchangers. In contrast, the5-HT-evoked effects were attenuated by the absence of Cl(Isc = 0.5 ± 0.2, n = 5), suggesting that reduced Clconductance(s) is an effect of 5-HT exposure. In amphotericin B-treatedconjunctiva and in the presence of a transepithelial K+gradient, 5-HT addition reduced K+ diffusion across thepreparation by 13% and increased transepithelial resistance by 4%(n = 6, P < 0.05), indicating that aninhibition in K+ conductance(s) was also detectable.Significant electrical responses also occurred under physiologicalconditions when 5-HT was introduced to epithelia pretreated withadrenergic agonists or protein kinase C, phospholipase C,phosphodiesterase, or adenylyl cyclase inhibitors or after perturbationof Ca2+ homeostasis. Briefly, the conjunctiva harbors theonly known Cl-secreting epithelium in which 5-HT evokesCl transport inhibition; receptor subtype and signaltransduction mechanism were not determined.

  相似文献   

16.
Thickening of airway mucus and lungdysfunction in cystic fibrosis (CF) results, at least in part, fromabnormal secretion of Cl and HCO3across the tracheal epithelium. The mechanism of the defect in HCO3 secretion is ill defined; however, a lack ofapical Cl/HCO3 exchange may exist inCF. To test this hypothesis, we examined the expression ofCl/HCO3 exchangers in trachealepithelial cells exhibiting physiological features prototypical ofcystic fibrosis [CFT-1 cells, lacking a functional cystic fibrosistransmembrane conductance regulator (CFTR)] or normal trachea (CFT-1cells transfected with functional wild-type CFTR, termed CFT-WT). Cellswere grown on coverslips and were loaded with the pH-sensitive dye2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, andintracellular pH was monitored. Cl/HCO3exchange activity increased by ~300% in cells transfected with functional CFTR, with activities increasing from 0.034 pH/min in CFT-1cells to 0.11 in CFT-WT cells (P < 0.001, n = 8). This activity was significantly inhibited byDIDS. The mRNA expression of the ubiquitous basolateral AE-2Cl/HCO3 exchanger remained unchanged.However, mRNA encoding DRA, recently shown to be aCl/HCO3 exchanger (Melvin JE, Park K,Richardson L, Schultheis PJ, and Shull GE. J Biol Chem 274:22855-22861, 1999.) was abundantly expressed in cells expressingfunctional CFTR but not in cells that lacked CFTR or that expressedmutant CFTR. In conclusion, CFTR induces the mRNA expression of"downregulated in adenoma" (DRA) and, as a result, upregulates theapical Cl/HCO3 exchanger activity intracheal cells. We propose that the tracheal HCO3secretion defect in patients with CF is partly due to thedownregulation of the apical Cl/HCO3exchange activity mediated by DRA.

  相似文献   

17.
Cell pH was monitored in medullary thick ascending limbs todetermine effects of ANG II onNa+-K+(NH+4)-2Clcotransport. ANG II at 1016to 1012 M inhibited30-50% (P < 0.005),but higher ANG II concentrations were stimulatory compared with the1012 M ANG II levelcotransport activity; eventually,106 M ANG II stimulated34% cotransport activity (P < 0.003). Inhibition by 1012M ANG II was abolished by phospholipase C (PLC), diacylglycerol lipase,or cytochrome P-450-dependentmonooxygenase blockade; 1012 M ANG II had no effectadditive to inhibition by 20-hydroxyeicosatetranoic acid (20-HETE).Stimulation by 106 M ANG IIwas abolished by PLC and protein kinase C (PKC) blockade and waspartially suppressed when the rise in cytosolicCa2+ was prevented. All ANG IIeffects were abolished by DUP-753 (losartan) but not by PD-123319. Thus1012 M ANG II inhibitsvia 20-HETE, whereas 5 × 1011 M ANG II stimulatesvia PKCNa+-K+(NH+4)-2Clcotransport; all ANG II effects involveAT1 receptors and PLC activation.

  相似文献   

18.
Patch-clamping and cell imageanalysis techniques were used to study the expression of thevolume-activated Cl current,ICl(vol), and regulatory volume decrease (RVD)capacity in the cell cycle in nasopharyngeal carcinoma cells (CNE-2Z). Hypotonic challenge caused CNE-2Z cells to swell and activated aCl current with a linear conductance, negligibletime-dependent inactivation, and a reversal potential close to theCl equilibrium potential. The sequence of anionpermeability was I > Br > Cl > gluconate. The Cl channelblockers tamoxifen, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB),and ATP inhibited ICl(vol). Synchronous cultures of cells were obtained by the mitotic shake-off technique and by adouble chemical-block (thymidine and hydroxyurea) technique. Theexpression of ICl(vol) was cell cycle dependent,being high in G1 phase, downregulated in S phase, butincreasing again in M phase. Hypotonic solution activated RVD, whichwas cell cycle dependent and inhibited by the Cl channelblockers NPPB, tamoxifen, and ATP. The expression of ICl(vol) was closely correlated with the RVDcapacity in the cell cycle, suggesting a functional relationship.Inhibition of ICl(vol) by NPPB (100 µM)arrested cells in G0/G1. The data also suggest that expression of ICl(vol) and RVD capacity areactively modulated during the cell cycle. The volume-activatedCl current associated with RVD may therefore play animportant role during the cell cycle progress.

  相似文献   

19.
Forskolin,UTP, 1-ethyl-2-benzimidazolinone (1-EBIO), NS004, 8-methoxypsoralen(Methoxsalen; 8-MOP), and genistein were evaluated for theireffects on ion transport across primary cultures of human bronchialepithelium (HBE) expressing wild-type (wt HBE) and F508(F-HBE) cystic fibrosis transmembrane conductance regulator. In wtHBE, the baseline short-circuit current (Isc)averaged 27.0 ± 0.6 µA/cm2 (n = 350). Amiloride reduced this Isc by 13.5 ± 0.5 µA/cm2 (n = 317). In F-HBE,baseline Isc was 33.8 ± 1.2 µA/cm2 (n = 200), and amiloride reducedthis by 29.6 ± 1.5 µA/cm2 (n = 116), demonstrating the characteristic hyperabsorption of Na+ associated with cystic fibrosis (CF). In wt HBE,subsequent to amiloride, forskolin induced a sustained,bumetanide-sensitive Isc(Isc = 8.4 ± 0.8 µA/cm2; n = 119). Addition ofacetazolamide, 5-(N-ethyl-N-isopropyl)-amiloride, and serosal 4,4'-dinitrostilben-2,2'-disulfonic acid further reduced Isc, suggesting forskolin also stimulatesHCO3 secretion. This was confirmed by ionsubstitution studies. The forskolin-induced Iscwas inhibited by 293B, Ba2+, clofilium, and quinine,whereas charybdotoxin was without effect. In F-HBE the forskolinIsc response was reduced to 1.2 ± 0.3 µA/cm2 (n = 30). In wt HBE, mucosal UTPinduced a transient increase in Isc ( Isc = 15.5 ± 1.1 µA/cm2;n = 44) followed by a sustained plateau, whereas inF-HBE the increase in Isc was reduced to5.8 ± 0.7 µA/cm2 (n = 13). In wtHBE, 1-EBIO, NS004, 8-MOP, and genistein increased Isc by 11.6 ± 0.9 (n = 20), 10.8 ± 1.7 (n = 18), 10.0 ± 1.6 (n = 5), and 7.9 ± 0.8 µA/cm2(n = 17), respectively. In F-HBE, 1-EBIO, NS004, and8-MOP failed to stimulate Cl secretion. However, additionof NS004 subsequent to forskolin induced a sustained Clsecretory response (2.1 ± 0.3 µA/cm2,n = 21). In F-HBE, genistein alone stimulatedCl secretion (2.5 ± 0.5 µA/cm2,n = 11). After incubation of F-HBE at 26°C for24 h, the responses to 1-EBIO, NS004, and genistein were allpotentiated. 1-EBIO and genistein increased Na+ absorptionacross F-HBE, whereas NS004 and 8-MOP had no effect. Finally,Ca2+-, but not cAMP-mediated agonists, stimulatedK+ secretion across both wt HBE and F-HBE in aglibenclamide-dependent fashion. Our results demonstrate thatpharmacological agents directed at both basolateral K+ andapical Cl conductances directly modulate Clsecretion across HBE, indicating they may be useful in ameliorating theion transport defect associated with CF.

  相似文献   

20.
Serous cells secreteCl and HCO3 and play an importantrole in airway function. Recent studies suggest that aCl/HCO3 anion exchanger (AE) maycontribute to Cl secretion by airway epithelial cells.However, the molecular identity, the cellular location, and thecontribution of AEs to Cl secretion in serous epithelialcells in tracheal submucosal glands are unknown. The goal of thepresent study was to determine the molecular identity, the cellularlocation, and the role of AEs in the function of serous epithelialcells. To this end, Calu-3 cells, a human airway cell line with aserous-cell phenotype, were studied by RT-PCR, immunoblot, andelectrophysiological analysis to examine the role of AEs inCl secretion. In addition, the subcellular location of AEproteins was examined by immunofluorescence microscopy. Calu-3 cellsexpressed mRNA and protein for AE2 as determined by RT-PCR and Westernblot analysis, respectively. Immunofluorescence microscopy identified AE2 in the basolateral membrane of Calu-3 cells in culture and rattracheal serous cells in situ. InCl/HCO3/Na+-containingmedia, the 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate(CPT-cAMP)-stimulated short-circuit anion current (Isc) was reduced by basolateral but not byapical application of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid(50 µM) and 4,4'-dinitrostilbene-2,2'-disulfonic acid [DNDS (500 µM)], inhibitors of AEs. In the absence of Na+ in thebath solutions, to eliminate the contributions of the Na+/HCO3 andNa+/K+/2Cl cotransporters toIsc, CPT-cAMP stimulated a small DNDS-sensitive Isc. Taken together with previous studies, theseobservations suggest that a small component of cAMP-stimulatedIsc across serous cells may be referable toCl secretion and that uptake of Cl acrossthe basolateral membrane may be mediated by AE2.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号