首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Excitation-contraction coupling in both skeletal and cardiac muscle depends on structural and functional interactions between the voltage-sensing dihydropyridine receptor L-type Ca2+ channels in the surface/transverse tubular membrane and ryanodine receptor Ca2+ release channels in the sarcoplasmic reticulum membrane. The channels are targeted to either side of a narrow junctional gap that separates the external and internal membrane systems and are arranged so that bi-directional structural and functional coupling can occur between the proteins. There is strong evidence for a physical interaction between the two types of channel protein in skeletal muscle. This evidence is derived from studies of excitation–contraction coupling in intact myocytes and from experiments in isolated systems where fragments of the dihydropyridine receptor can bind to the ryanodine receptors in sarcoplasmic reticulum vesicles or in lipid bilayers and alter channel activity. Although micro-regions that participate in the functional interactions have been identified in each protein, the role of these regions and the molecular nature of the protein–protein interaction remain unknown. The trigger for Ca2+ release through ryanodine receptors in cardiac muscle is a Ca2+ influx through the L-type Ca2+ channel. The Ca2+ entering through the surface membrane Ca2+ channels flows directly onto underlying ryanodine receptors and activates the channels. This was thought to be a relatively simple system compared with that in skeletal muscle. However, complexities are emerging and evidence has now been obtained for a bi-directional physical coupling between the proteins in cardiac as well as skeletal muscle. The molecular nature of this coupling remains to be elucidated.  相似文献   

4.
The roles played by ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP?Rs) in vascular smooth muscle in the microcirculation remain unclear. Therefore, the function of both RyRs and IP?Rs in Ca(2+) signals and myogenic tone in hamster cremaster muscle feed arteries and downstream arterioles were assessed using confocal imaging and pressure myography. Feed artery vascular smooth muscle displayed Ca(2+) sparks and Ca(2+) waves, which were inhibited by the RyR antagonists ryanodine (10 μM) or tetracaine (100 μM). Despite the inhibition of sparks and waves, ryanodine or tetracaine increased global intracellular Ca(2+) and constricted the arteries. The blockade of IP?Rs with xestospongin D (5 μM) or 2-aminoethoxydiphenyl borate (100 μM) or the inhibition of phospholipase C using U-73122 (10 μM) also attenuated Ca(2+) waves without affecting Ca(2+) sparks. Importantly, the IP?Rs and phospholipase C antagonists decreased global intracellular Ca(2+) and dilated the arteries. In contrast, cremaster arterioles displayed only Ca(2+) waves: Ca(2+) sparks were not observed, and neither ryanodine (10-50 μM) nor tetracaine (100 μM) affected either Ca(2+) signals or arteriolar tone despite the presence of functional RyRs as assessed by responses to the RyR agonist caffeine (10 mM). As in feed arteries, arteriolar Ca(2+) waves were attenuated by xestospongin D (5 μM), 2-aminoethoxydiphenyl borate (100 μM), and U-73122 (10 μM), accompanied by decreased global intracellular Ca(2+) and vasodilation. These findings highlight the contrasting roles played by RyRs and IP?Rs in Ca(2+) signals and myogenic tone in feed arteries and demonstrate important differences in the function of RyRs between feed arteries and downstream arterioles.  相似文献   

5.
6.
7.
Calcium signal transmission between ryanodine receptors and mitochondria   总被引:19,自引:0,他引:19  
Control of energy metabolism by increases of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)) may represent a fundamental mechanism to meet the ATP demand imposed by heart contractions, but the machinery underlying propagation of [Ca(2+)] signals from ryanodine receptor Ca(2+) release channels (RyR) to the mitochondria remains elusive. Using permeabilized cardiac (H9c2) cells we investigated the cytosolic [Ca(2+)] ([Ca(2+)](c)) and [Ca(2+)](m) signals elicited by activation of RyR. Caffeine, Ca(2+), and ryanodine evoked [Ca(2+)](c) spikes that often appeared as frequency-modulated [Ca(2+)](c) oscillations in these permeabilized cells. Rapid increases in [Ca(2+)](m) and activation of the Ca(2+)-sensitive mitochondrial dehydrogenases were synchronized to the rising phase of the [Ca(2+)](c) spikes. The RyR-mediated elevations of global [Ca(2+)](c) were in the submicromolar range, but the rate of [Ca(2+)](m) increases was as large as it was in the presence of 30 microm global [Ca(2+)](c). Furthermore, RyR-dependent increases of [Ca(2+)](m) were relatively insensitive to buffering of [Ca(2+)](c) by EGTA. Therefore, RyR-driven rises of [Ca(2+)](m) appear to result from large and rapid increases of perimitochondrial [Ca(2+)]. The falling phase of [Ca(2+)](c) spikes was followed by a rapid decay of [Ca(2+)](m). CGP37157 slowed down relaxation of [Ca(2+)](m) spikes, whereas cyclosporin A had no effect, suggesting that activation of the mitochondrial Ca(2+) exchangers accounts for rapid reversal of the [Ca(2+)](m) response with little contribution from the permeability transition pore. Thus, rapid activation of Ca(2+) uptake sites and Ca(2+) exchangers evoked by RyR-mediated local [Ca(2+)](c) signals allow mitochondria to respond rapidly to single [Ca(2+)](c) spikes in cardiac cells.  相似文献   

8.
9.
The versatility of Ca2+ as an intracellular messenger stems largely from the impressive, but complex, spatiotemporal organization of the Ca2+ signals. For example, the latter when initiated by IP3 (inositol 1,4,5-trisphosphate) in many cells manifest hierarchical recruitment of elementary Ca2+ release events ('blips' and then 'puffs') en route to global regenerative Ca2+ waves as the cellular IP3 concentration rises. The spacing of IP3Rs (IP3 receptors) and their regulation by Ca2+ are key determinants of these spatially organized Ca2+ signals, but neither is adequately understood. IP3Rs have been proposed to be pre-assembled into clusters, but their composition, geometry and whether clustering affects IP3R behaviour are unknown. Using patch-clamp recording from the outer nuclear envelope of DT40 cells expressing rat IP3R1 or IP3R3, we have recently shown that low concentrations of IP3 cause IP3Rs to aggregate rapidly and reversibly into small clusters of approximately four IP3Rs. At resting cytosolic Ca2+ concentrations, clustered IP3Rs open independently, but with lower open probability, shorter open duration and lesser IP3-sensitivity than lone IP3Rs. This inhibitory influence of clustering on IP3R is reversed when the [Ca2+]i (cytosolic free Ca2+ concentration) increases. The gating of clustered IP3Rs exposed to increased [Ca2+]i is coupled: they are more likely to open and close together, and their simultaneous openings are prolonged. Dynamic clustering of IP3Rs by IP3 thus exposes them to local Ca2+ rises and increases their propensity for a CICR (Ca2+-induced Ca2+ rise), thereby facilitating hierarchical recruitment of the elementary events that underlie all IP3-evoked Ca2+ signals.  相似文献   

10.
Spontaneously generated calcium (Ca2+) waves can trigger arrhythmias in ventricular and atrial myocytes. Yet, Ca2+ waves also serve the physiological function of mediating global Ca2+ increase and muscle contraction in atrial myocytes. We examine the factors that influence Ca2+ wave initiation by mathematical modeling and large-scale computational (supercomputer) simulations. An important finding is the existence of a strong coupling between the ryanodine receptor distribution and Ca2+ dynamics. Even modest changes in the ryanodine receptor spacing profoundly affect the probability of Ca2+ wave initiation. As a consequence of this finding, we suggest that there is information flow from the contractile system to the Ca2+ control system and this dynamical interplay could contribute to the increased incidence of arrhythmias during heart failure.  相似文献   

11.
Steroid hormones are expressed at low levels in mesenchymal cells and are highly expressed in soft tissue sarcoma. In human soft tissue fibrosarcoma cell line (HT-1080), the epidermal growth factor (EGF) stimulates the express of matrix metal (MMPs) expression through a Src-dependent mechanism. In human fibrosarcomas, increased expression of MMPs correlates with the metastatic progression. Our recent data in human breast cancer cell line MCF-7, demonstrates that EGF stimulates estradiol receptor (ER) phosphorylation on tyrosine at position 537 thereby promoting the association of a complex among EGF receptor (EGFR), androgen receptor (AR), ER, and Src that activates EGF-dependent signaling pathway. In the present study, we demonstrate that, in HT-1080 cells, the Src kinase activity is involved in EGFR phosphorylation and this activity is regulated by an interplay between Src, steroid receptors, and EGFR. In these cells, estradiol (E(2) )/ER and synthetic androgen (R1881)/AR trans-activate EGFR leading to the downstream signaling and to ERK activation. Indeed, the association between ER/AR and EGFR enhances metastatic progression of fibrosarcoma tumors. A population pilot study performed on 16 patients with soft tissue neoplasias highlights that MMPs expression correlates with progression of anaplastic sarcoma as well as overexpression of EGFR. These findings suggest that there is a crosstalk among AR, ER, and EGFR that lead to src activation also in fibrosarcoma cells.  相似文献   

12.
13.
14.
Ryanodine receptors (RyRs) are calcium release channels found in the membrane of the endoplasmic reticulum (ER). We recently described the crystal structure of the RyR1 N-terminal disease hot spot. It is built up by three domains that show clear structural homology with the inositol-1,4,5-triphosphate (IP3) binding core and suppressor domain of IP3 receptors (IP3Rs) . Here we analyze the structural features of the domains in both calcium release channels, and propose a model for the closed state of the IP3R N-terminal region. This model explains the effect of the suppressor domain on the affinity for IP3 and is supported by mutational studies performed previously. We propose a mechanism whereby opening of both RyR and IP3R is allosterically coupled to a displacement of the N-terminal domain from the following two domains. This displacement can be affected by disease mutations, glutathionylation of a highly reactive cysteine residue, or ligand binding.  相似文献   

15.
Type 3 Inositol 1,4,5-trisphosphate (IP3) receptors (IP3R3s) have been identified as anti-oncogenic channels by propelling pro-apoptotic Ca2+ signals to mitochondria. Yet, recent studies (Rezuchova et al, Cell Death Dis, 2019; Ueasilamongkol et al, Hepathology, 2019; Guerra et al, Gut, 2019) revealed that IP3R3 upregulation drives oncogenesis via ER-mitochondrial Ca2+ crosstalk, adding complexity to IP3R3’s role in cancer.  相似文献   

16.
The Molecular, structural and functional characteristics of the intracellular Ca2+ release channel activated by inositol 1,4,5-trisphosphate (IP3), also named IP3 receptor (IP3R), are described here. We also discuss the differences in primary structure, expression and modulation of the receptor subtypes and their physiological roles. The similarity and differences between the IP3R and the other intracellular Ca2+ channel, the ryanodine receptor, are briefly presented.  相似文献   

17.
Ryanodine receptors (RyRs) are calcium release channels found in the membrane of the endoplasmic reticulum (ER). We recently described the crystal structure of the RyR1 N-terminal disease hot spot. It is built up by three domains that show clear structural homology with the inositol-1,4,5-triphosphate (IP3) binding core and suppressor domain of IP3 receptors (IP3Rs) . Here we analyze the structural features of the domains in both calcium release channels, and propose a model for the closed state of the IP3R N-terminal region. This model explains the effect of the suppressor domain on the affinity for IP3 and is supported by mutational studies performed previously. We propose a mechanism whereby opening of both RyR and IP3R is allosterically coupled to a displacement of the N-terminal domain from the following two domains. This displacement can be affected by disease mutations, glutathionylation of a highly reactive cysteine residue, or ligand binding.  相似文献   

18.
Molecular and physiological studies of cells implicate interactions between the cytoskeleton and the intracellular calcium signalling machinery as an important mechanism for the regulation of calcium signalling. However, little is known about the functions of such mechanisms in animals. A key component of the calcium signalling network is the intracellular release of calcium in response to the production of the second messenger inositol 1,4,5-trisphosphate (IP(3)), mediated by the IP(3) receptor (IP(3)R). We show that C. elegans IP(3)Rs, encoded by the gene itr-1, interact directly with myosin II. The interactions between two myosin proteins, UNC-54 and MYO-1, and ITR-1 were identified in a yeast two-hybrid screen and subsequently confirmed in vivo and in vitro. We defined the interaction sites on both the IP(3)R and MYO-1. To test the effect of disrupting the interaction in vivo we overexpressed interacting fragments of both proteins in C. elegans. This decreased the animal's ability to upregulate pharyngeal pumping in response to food. This is a known IP(3)-mediated process [15]. Other IP(3)-mediated processes, e.g., defecation, were unaffected. Thus it appears that interactions between IP(3)Rs and myosin are required for maintaining the specificity of IP(3) signalling in C. elegans and probably more generally.  相似文献   

19.
Agonist stimulation of exocrine cells leads to the generation of intracellular Ca(2+) signals driven by inositol 1,4,5-trisphosphate receptors (IP(3)Rs) that rapidly become global due to propagation throughout the cell. In many types of excitable cells the intracellular Ca(2+) signal is propagated by a mechanism of Ca(2+)-induced Ca(2+) release (CICR), mediated by ryanodine receptors (RyRs). Expression of RyRs in salivary gland cells has been demonstrated immunocytochemically although their functional role is not clear. We used microfluorimetry to measure Ca(2+) signals in the cytoplasm, in the endoplasmic reticulum (ER) and in mitochondria. In permeabilized acinar cells caffeine induced a dose-dependent, transient decrease of Ca(2+) concentration in the endoplasmic reticulum ([Ca(2+)](ER)). This decrease was inhibited by ryanodine but was insensitive to heparin. Application of caffeine, however, did not elevate cytosolic Ca(2+) concentration ([Ca(2+)](i)) suggesting fast local buffering of Ca(2+) released through RyRs. Indeed, activation of RyRs produced a robust mitochondrial Ca(2+) transient that was prevented by addition of Ca(2+) chelator BAPTA but not EGTA. When mitochondrial Ca(2+) uptake was blocked, activation of RyRs evoked only a non-transient increase in [Ca(2+)](i) and substantially smaller Ca(2+) release from the ER. Upon simultaneous inhibition of mitochondrial Ca(2+) uptake and either plasmalemmal or ER Ca(2+) ATPase, activation of RyRs caused a transient rise in [Ca(2+)](i). Collectively, our data suggest that Ca(2+) released through RyRs is mostly "tunnelled" to mitochondria, while Ca(2+) ATPases are responsible for the fast initial sequestration of Ca(2+). Ca(2+) uptake by mitochondria is critical for maintaining continuous CICR. A complex interplay between RyRs, mitochondria and Ca(2+) ATPases is accomplished through strategic positioning of mitochondria close to both Ca(2+) release sites in the ER and Ca(2+) pumping sites of the plasmalemma and the ER.  相似文献   

20.
Inositol 1,4,5-trisphosphate receptors (IP3R) are the most widely expressed intracellular Ca2+ release channels. Their activation by IP3 and Ca2+ allows Ca2+ to pass rapidly from the ER lumen to the cytosol. The resulting increase in cytosolic [Ca2+] may directly regulate cytosolic effectors or fuel Ca2+ uptake by other organelles, while the decrease in ER luminal [Ca2+] stimulates store-operated Ca2+ entry (SOCE). We are close to understanding the structural basis of both IP3R activation, and the interactions between the ER Ca2+-sensor, STIM, and the plasma membrane Ca2+ channel, Orai, that lead to SOCE. IP3Rs are the usual means through which extracellular stimuli, through ER Ca2+ release, stimulate SOCE. Here, we review evidence that the IP3Rs most likely to respond to IP3 are optimally placed to allow regulation of SOCE. We also consider evidence that IP3Rs may regulate SOCE downstream of their ability to deplete ER Ca2+ stores. Finally, we review evidence that IP3Rs in the plasma membrane can also directly mediate Ca2+ entry in some cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号