首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the preparation of stable dispersion of multiwalled carbon nanotubes (MWCNTs) using carminic acid (CA) as a dispersing agent. The transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) results confirmed that MWCNT is well dispersed in CA aqueous solution and CA has been well adsorbed at MWCNT walls. Fourier transform infrared (FTIR) and UV-vis absorption spectra results also confirmed the adsorption of CA at MWCNT. To develop a highly selective amperometric biosensor for H(2)O(2) and iodate, the model enzyme catalase (CAT) was immobilized at CACNT modified glassy carbon electrode surface. The immobilized CAT exhibits well defined quasi reversible redox peaks at a formal potential (E°') of -0.559V in 0.05M pH 7 phosphate buffer solution (PBS). The proposed CAT/CACNT biosensor exhibits excellent amperometric response towards H(2)O(2) and iodate in the linear concentration range between 10μM to 3.2mM and 0.01-2.16mM. The sensitivity values are 287.98μAmM(-1)cm(-2) and 0.253mAmM(-1)cm(-2), respectively. Moreover, the developed CAT biosensor exhibits high affinity for H(2)O(2) and iodate with good selectivity.  相似文献   

2.
Cui L  Yin H  Dong J  Fan H  Liu T  Ju P  Ai S 《Biosensors & bioelectronics》2011,26(7):3278-3283
An enzymeless biosensor was explored from Cu-Mg-Al calcined layered double hydroxide (CLDH) modified electrode in this study. The Cu-Mg-Al CLDH greatly promotes the electron transfer between H(2)O(2) and GCE, and it is exemplified toward the non-enzymatic sensing of H(2)O(2). The results indicate that the Cu-Mg-Al CLDH exhibits excellent electrocatalytic property, high sensitivity, good reproducibility, long-term stability, and fast amperometric response toward reduction of H(2)O(2), thus is promising for the future development of man-made mimics of enzyme in H(2)O(2) sensors. This work opens a way to utilize simply Cu-Mg-Al CLDH as an electron mediator to fabricate an efficient H(2)O(2) biosensor, which exhibits great potential applications in varieties of simple, robust, and easy-to-make analytical approaches in the future.  相似文献   

3.
Lin J  Qu W  Zhang S 《Analytical biochemistry》2007,360(2):288-293
Indium tin oxide (ITO) electrode is used to fabricate a novel disposable biosensor combined with flow injection analysis for the rapid determination of H2O2. The biosensor is prepared by entrapping horseradish peroxidase (HRP) enzyme in colloidal gold nanoparticle-modified chitosan membrane (Au-chitosan) to modify the ITO electrode. The biosensor is characterized by scanning electron microscope, atomic force microscope, and electrochemical methods. Parameters affecting the performance of the biosensor, including concentrations of o-phenylenediamine (OPD) and pH of substrate solution, were optimized. Under the optimal experimental conditions, H2O2 could be determined in the linear calibration range from 0.01 to 0.5 mM with a correlation coefficient of 0.997 (n=8). The amperometric response of the biosensor did not show an obvious decrease after the substrates were injected continuously 34 times into the flow cell. The prepared biosensor not only is economic and disposable, due to the low-cost ITO film electrode obtained from industrial mass production, but also is capable with good detection precision, acceptable accuracy, and storage stability for the fabrication in batch.  相似文献   

4.
Electrochemistry of microperoxidase-11 (MPx-11) anchored on the mixed self-assembled monolayer (SAM) of 2-(2-mercaptoethylpyrazine) (PET) and 4,4'-dithiodibutyric acid (DTB) on gold (Au) electrode and the biosensing of uric acid (UA) is described. MPx-11 has been covalently anchored on the mixed SAM of PET and DTB on Au electrode. MPx-11 on the mixed self-assembly exhibits reversible redox response characteristic of a surface confined species. The heterocyclic ring of PET promotes the electron transfer between the electrode and the redox protein. The apparent standard rate constant kapps obtained for the redox reaction of MPx-11 on the mixed monolayer is approximately 2.15 times higher than that on the single monolayer of DTB modified electrode. MPx-11 efficiently mediates the electrocatalytic reduction of H2O2. MPx-11 electrode is highly sensitive to H2O2 and it shows linear response for a wide concentration range. The electrocatalytic activity of the MPx-11 electrode is combined with the enzymatic activity of uricase (UOx) to fabricate uric acid biosensor. The bienzyme assembly is highly sensitive towards UA and it could detect UA as low as 2 microM at the potential of -0.1 V. The biosensor shows linear response with a sensitivity of 3.4+/-0.08 nA cm(-2) microM(-1). Ascorbate (AA) and paracetamol (PA) do not significantly interfere in the amperometric sensing of UA.  相似文献   

5.
Gamma-aminobutyric acid (GABA) is synthesized by two isoforms of the pyridoxal 5'-phosphate-dependent enzyme glutamic acid decarboxylase (GAD65 and GAD67). GAD67 is constitutively active and is responsible for basal GABA production. In contrast, GAD65, an autoantigen in type I diabetes, is transiently activated in response to the demand for extra GABA in neurotransmission, and cycles between an active holo form and an inactive apo form. We have determined the crystal structures of N-terminal truncations of both GAD isoforms. The structure of GAD67 shows a tethered loop covering the active site, providing a catalytic environment that sustains GABA production. In contrast, the same catalytic loop is inherently mobile in GAD65. Kinetic studies suggest that mobility in the catalytic loop promotes a side reaction that results in cofactor release and GAD65 autoinactivation. These data reveal the molecular basis for regulation of GABA homeostasis.  相似文献   

6.
Purified homogenous glutamic acid decarboxylase (GAD) from mouse brain and rabbit antiserum prepared to partially purified GAD gave only one sharp precipitin band in the Ouchterlony double diffusion test. GAD activity was inhibited partially by incubating with the antiserum. The maximal extent of inhibition was approximately 50 per cent. In the presence of antiserum all enzyme activity could be precipitated. The precipitates formed by GAD and antiserum had about 50 per cent of the enzyme activity and the Km values for both glutamic acid and pyridoxal phosphate were significantly higher than those of the control system. Pyridoxal phosphate protected GAD from inhibition only slightly, even at very high concentrations. The results suggest that the antibodies may not react with the catalytic site, but rather that the inhibition of enzyme activity is attributable to indirect effects.  相似文献   

7.
The present work reports the gallic acid (GA) interference on polyphenolic amperometric biosensing using Trametes versicolor laccase (TvLac). GA′ inhibitory effect on TvLac activity was investigated on the oxidation of caffeic acid (CA) by free TvLac and its immobilised form on modified polyethersulfone membrane (PES/TvLac), using spectrophotometric and amperometric biosensor detection methods. The results have indicated that GA presents inhibitory behaviour on TvLac activity in a concentration-dependent manner. The GA concentration leading to 50% activity lost, IC50, was determined to be 19.15 ± 0.11 μM and 5.11 ± 0.19 μM for free and immobilised enzyme, respectively. The results have also shown that GA exhibited a competitive and a mixed inhibition types on the TvLac activity for spectrophotometric and amperometric biosensor methods, respectively. Further GA′ and CA′ cyclic voltammetry studies have demonstrated that GA′ oxidation products interfered with CA′ redox reaction products. In fact, a decrease of the reduction current was observed at cyclic voltammograms of CA, when mixed with GA. Therefore, the GA′ interference on polyphenolic amperometric biosensing is the result of the combination of two factors: on one hand, we have the inhibitory enzymatic effect, and on the other, the reaction of GA′ oxidation products with the o-quinones obtained by the enzymatic oxidation of CA. Both gave rise to the amperometric signal decreasing effect.  相似文献   

8.
The level of uric acid (UA) has a high relationship with gout, hyperuricemia and Lesch-Nyan syndrome. The determination of UA is an important indicator for clinics and diagnoses of kidney failure. An amperometric UA biosensor based on an Ir-modified carbon (Ir-C) working electrode with immobilizing uricase (EC 1.7.3.3) was developed by thick film screen printing technique. This is the first time to report the utilization of an uricase/Ir-C electrode for the determination of UA by using chronoamperometric (CA) method. The high selectivity of UA biosensor was achieved due to the reduction of H(2)O(2) oxidation potential based on Ir-C electrode. Using uricase/Ir-C as the sensing electrode, the interference from the electroactive biological species, such as ascorbic acid (AA) and UA (might be directly oxidized on the sensing electrode) was slight at the sensing potential of 0.25 V (versus Ag/AgCl). UA was detected amperometrically based on uricase/Ir-C electrode with a sensitivity of 16.60 microAmM(-1) over the concentration range of 0.1-0.8 mMUA, which was within the normal range in blood. The detection limit of UA biosensor was 0.01 mM (S/N=6.18) in pH 7 phosphate buffer solution (PBS) at 37 degrees C. The effects of pH, temperature, and enzymatic loading on the sensing characteristics of the UA biosensor were also investigated in this study.  相似文献   

9.
The preparations and performances of the novel amperometric biosensors for glucose based on immobilized glucose oxidase (GOD) on modified Pt electrodes are described. Two types of modified electrodes for the enzyme immobilization were used in this study, polyvinylferrocene (PVF) coated Pt electrode and gold deposited PVF coated Pt electrode. A simple method for the immobilization of GOD enzyme on the modified electrodes was described. The enzyme electrodes developed in this study were called as PVF-GOD enzyme electrode and PVF-Au-GOD enzyme electrode, respectively. The amperometric responses of the enzyme electrodes were measured at constant potential, which was due to the electrooxidation of enzymatically produced H2O2. The electrocatalytic effects of the polymer, PVF, and the gold particles towards the electrooxidation of the enzymatically generated H2O2 offers sensitive and selective monitoring of glucose. The biosensor based on PVF-Au-GOD electrode has 6.6 times larger maximum current, 3.8 times higher sensitivity and 1.6 times larger linear working portion than those of the biosensor based on PVF-GOD electrode. The effects of the applied potential, the thickness of the polymeric film, the amount of the immobilized enzyme, pH, the amount of the deposited Au, temperature and substrate concentration on the responses of the biosensors were investigated. The optimum pH was found to be pH 7.4 at 25 degrees C. Finally the effects of interferents, stability of the biosensors and applicability to serum analysis of the biosensor were also investigated.  相似文献   

10.
Monosodium glutamate (MSG) produces neurodegeneration in several brain regions when it is administered to neonatal rats. From an early embryonic age to adulthood, GABA neurons appear to have functional glutamatergic receptors, which could convert them in an important target for excitotoxic neurodegeneration. Changes in the activity of the GABA synthesizing enzyme, glutamic acid decarboxylase (GAD), have been shown after different neuronal insults. Therefore, this work evaluates the effect of neonatal MSG treatment on GAD activity and kinetics in the cerebral cortex, striatum, hippocampus and cerebellum of the rat brain during postnatal development. Neonatal MSG treatment decreased GAD activity in the cerebral cortex at 21 and 60 postnatal days (PD), mainly due to a reduction in the enzyme affinity (K(m)). In striatum, the GAD activity and the enzyme maximum velocity (V(max)) were increased at PD 60 after neonatal MSG treatment. Finally, in the hippocampus and cerebellum, the GAD activity and V(max) were increased, but the K(m) was found to be lower in the experimental group. The results could be related to compensatory mechanisms from the surviving GABAergic neurons, and suggest a putative adjustment in the GAD isoform expression throughout the development of the postnatal brain, since this enzyme is regulated by the synaptic activity under physiological and/or pathophysiological conditions.  相似文献   

11.
Glutamic acid decarboxylase (GAD) from Neurospora crassa was assayed in dormant and germinating conidia that had been permeabilized by toluene and methanol. N. crassa conidia contained 10 times the GAD activity found in vegetativemycelia. During conidial germination, GAD activity rapidly decreased to low levels before germ tubes appeared. GAD activity in germinating conidia closely followed the decreasing rate of glutamic acid metabolism. Inhibiting protein synthesis partially blocked the decrease in GAD activity, but eliminating exogenous carbon sources did not alter the initial rate of decrease in this enzyme. However, when conidia were incubated for more than 3 h in distilled water, GAD activity began to increase and eventually reached levels comparable to those in dormant conidia. Either GAD was reversibly inactivated or this enzyme could be synthesized from endogenous storage compounds when conidia were incubated in distilled water. These results are consistent with the hypothesis that GAD is a developmentally regulated enzyme that is responsible for catalyzing the first step in the metabolism of the large pool of free glutamic acid during conidial germination.  相似文献   

12.
Astrocytes expressing glutamic acid decarboxylase GAD67 directed by the glial fibrillary acidic protein promoter were shown to provide enhanced protection of PC12 cells from H(2)O(2) treatment and serum deprivation in the presence of glutamate. In addition, they protected non-differentiated, but not differentiated, embryonic rat cortical neurons from glutamate toxicity. Glutamic acid decarboxylase (GAD)-expressing astrocytes showed increased glutathione synthesis and release compared to control astrocytes. These changes were due to GAD transgene expression, as transient expression of a GAD antisense plasmid resulted in partial suppression of the increase in glutathione release. In addition to the previously demonstrated increases in NADH and ATP levels and lactate release, GAD-expressing astrocytes show increased antioxidant activity, explaining their ability to protect neurons from various injuries.  相似文献   

13.
A new third-generation biosensor for H(2)O(2) assay was developed on the basis of the immobilization of horseradish peroxidase (HRP) in a nanocomposite film of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ)/multiwalled carbon nanotubes (MWCNTs) modified gold electrode. The prepared HRP/TTF-TCNQ/MWCNTs/Au electrode was used for the bioelectrocatalytic reduction of H(2)O(2), with a linear range from 0.005 to 1.05mM and a detection limit of 0.5muM for amperometric sensing of H(2)O(2). In addition, a novel method on the basis of electrochemical quartz crystal microbalance (EQCM) measurements was proposed to determine the effective enzymatic specific activity (ESA) of the immobilized HRP for the first time, and the ESA was found to be greater at the TTF-TCNQ/MWCNTs/Au electrode than that at the MWCNTs/Au or TTF-TCNQ/Au electrode, indicating that the TTF-TCNQ/MWCNTs film is a good HRP-immobilization matrix to achieve the direct electron transfer between the enzyme and the electrode.  相似文献   

14.
A new highly sensitive amperometric method for the detection of organophosphorus compounds has been developed. The method is based on a ferophthalocyanine chemically modified carbon paste electrode coupled with acetylcholinesterase and choline oxidase co-immobilized onto the surface of a dialysis membrane. The activity of cholinesterase is non-competitively inhibited in the presence of pesticides. The highest sensitivity to inhibitors was found for a membrane containing low enzyme loading and this was subsequently used for the construction of an amperometric biosensor for pesticides. Analyses were done using acetylcholine as substrate; choline produced by hydrolysis in the enzymatic layer was oxidized by choline-oxidase and subsequently H(2)O(2) produced was electrochemically detected at +0.35 V vs. Ag/AgCl. The decrease of substrate steady-state current caused by the addition of pesticide was used for evaluation. With this approach, up to 10(-10) M of paraoxon and carbofuran can be detected.  相似文献   

15.
Hemoglobin (Hb) was immobilized on glassy carbon (GC) electrode by a kind of synthetic water-soluble polymer, poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide] (PHEA). A pair of well-defined and quasi-reversible cyclic voltammetric peaks was achieved, which reflected the direct electron-transfer of the Fe(III)/Fe(II) couple of Hb. The formal potential (E degrees'), the apparent coverage (Gamma(*)) and the electron-transfer rate constant (k(s)) were calculated by integrating cyclic voltammograms experimental data. Scanning electron microscopy (SEM) demonstrated the morphology of Hb-PHEA film very different from the Hb and PHEA films. Ultraviolet visible (UV-vis) spectroscopy showed Hb in PHEA film remained its secondary structure similar to the native state. In respect that the immobilized protein remained its biocatalytic activity to the reduction of hydrogen peroxide (H(2)O(2)), a kind of mediator-free biosensor for H(2)O(2) could be developed. The apparent Michaelis-Menten constant (K(m)(app)) was estimated to be 18.05 microM. The biosensor exhibited rapid electrochemical response and good stability. Furthermore, uric acid (UA), ascorbic acid (AA) and dopamine (DA) had little interferences with the amperometric signal of H(2)O(2), which provide the perspective of this H(2)O(2) sensor to be used in biological environments.  相似文献   

16.
Four electrode materials: Pt, Au, Pd and glassy carbon (GC), were studied to investigate their suitability as substrates in the development of two different classes of glutamate biosensor. Glutamate oxidase cross-linked onto poly(o-phenylenediamine) was chosen as the type 1 biosensor (PPD/GluOx), incorporating PPD as the permselective element to detect H(2)O(2) directly on the electrode surface at relatively high applied potentials. GluOx and horseradish peroxidase/redox polymer modified electrodes (Os(2+)PVP/HRP/GluOx) that relied on enzyme-catalysed H(2)O(2) detection at lower applied potentials were used as type 2 biosensors. The voltammetric and amperometric responses to the enzyme signal transduction molecule, H(2)O(2), and the archetypal interference species in biological applications, ascorbic acid, were determined on the bare and PPD/GluOx-modified surfaces. The amperometric responses of these electrodes were stable over several days of continuous recording in phosphate buffered saline (pH 7.4). The sensitivity of the type 1 biosensors to H(2)O(2) and glutamate showed parallel trends with low limits of detection and good linearity at low concentrations: Pt>Au approximately Pd>GC. Type 2 biosensors out-performed the type 1 design for all electrode substrates, except Pt. However, the presence of the permselective PPD membrane in the type 1 biosensors, not feasible in the type 2 design, suggests that Pt/PPD/GluOx might have the best all-round characteristics for glutamate detection in biological media containing interference species such as ascorbic acid. Other points affecting a final choice of substrate should include factors such as mass production issues.  相似文献   

17.
肌苷酶电极生物传感器   总被引:1,自引:0,他引:1  
为了构建肌苷酶电极生物传感器,以固定化核苷磷酸化酶(EC 2.4.2.1)、黄嘌呤氧化酶(EC 1.2.3.2)与过氧化氢电极组成电流型酶电极生物传感器,用于检测肌苷片中的肌苷,其输出电流可达500nA.结果发现,肌苷测定的线性范围为1-268 mg/L,精度:RSD小于0.14%,响应时间:60 s,使用寿命大于25 d,实际测定肌苷片中肌苷含量回收率:100.8%.由此表明:采用双酶电极法测定肌苷片中的肌苷含量,由于酶促反应专一性高、样品不需分离直接进样分析、处理条件温和、反应时间短暂因而结果较为可靠.  相似文献   

18.
We prepared a new inorganic sorbent based on modified triazine (2-[4,6-bis (aminoethylamine)-1,3,5-triazine]-Silasorb; BAT-Silasorb) which binds pea seedlings amine oxidase (PSAO) very tightly without loss of its catalytic activity. This unique feature as well as the wide substrate specificity of PSAO was successfully utilised in the construction of an amperometric biosensor based on a carbon paste electrode for the fast and sensitive detection of various amines at a formal potential 0 mV versus Ag/AgCl reference electrode. The reaction layer of the biosensor is created by the direct immobilisation of PSAO at the electrode surface via affinity carrier BAT-Silasorb. Used arrangement facilitates a simple restoration of the inactive biosensor. An amperometric signal results from horseradish peroxidase catalysed reduction of H2O2, a secondary product of the oxidative deamination of amines, catalysed by PSAO. The sensor was used for the basic characterisation of 55 biogenic and synthetic amines, from numerous mono-, di- and polyamines to various hydroxy-, thio-, benzyl- and aromatic derivatives in order to establish its suitability as a postcolumn detector. Its high sensitivity to putrescine 20.0 +/- 0.64 mA l-1 per mol (636.9 +/- 2.03 mA l-1 per mol per cm2), a limit of detection of 10 nmol l-1 (determined with respect to a signal-to-noise ratio 3:1), a linear range of current response to 0.01-100 mumol l-1 concentration of substrate and good reproducibility all indicate that the sensor could be applied to future industrial and clinical analyses.  相似文献   

19.
A bienzymatic glucose biosensor was proposed for selective and sensitive detection of glucose. This mediatorless biosensor was made by simultaneous immobilization of glucose oxidase (GOD) and horseradish peroxidase (HRP) in an electropolymerized pyrrole (PPy) film on a single-wall carbon nanotubes (SWNT) coated electrode. The amperometric detection of glucose was assayed by potentiostating the bienzymatic electrode at -0.1 versus Ag/AgCl to reduce the enzymatically produced H(2)O(2) with minimal interference from the coexisting electroactive compounds. The single-wall carbon nanotubes, sandwiched between the enzyme loading polypyrrole (PPy) layer and the conducting substrate (gold electrode), could efficiently promote the direct electron transfer of HRP. Operational characteristics of the bienzymatic sensor, in terms of linear range, detection limit, sensitivity, selectivity and stability, were presented in detail.  相似文献   

20.
The yeast cell factory is a potentially useful source of proteins in general. They include glutamic acid decarboxylase (GAD), which is one of the major autoantigens for Type 1 diabetes. We have created a hybrid form of GAD consisting of amino acids 1–101 of the human GAD67 protein fused to amino acids 96–585 of the human GAD65 protein, and have modified this to include a C-terminal hexa-Histidine (H6) tag sequence. This hybrid GAD67/65-H6 was expressed in two yeast hosts: constitutively under the control of the plasmid phosphoglycerate kinase promoter (PGK1) in Saccharomyces cerevisiae, and inducibly under the control of the chromosomal alcohol oxidase promoter (AOX1) in Pichia pastoris. Enzymatically active hybrid GAD was prepared from yeast lysates by purification either on an affinity column based on the GAD-1 monoclonal antibody, or by metal-affinity chromatography. The purified GAD67/65-H6 was radiolabelled with iodine-125 and tested with Type 1 diabetes sera in a radioimmunoprecipitation assay, and results were compared with those using untagged GAD67/65 and those using porcine brain GAD. The results of enzymatic and immunological assays show hybrid GAD67/65 is isolated at high specific activity and moderate yield, and the addition of the H6 tag sequences or the choice of yeast strain did not appreciably affect enzyme activity, percentage recovery of GAD, protein purification, or the utility in diagnosis of diabetes in terms of specificity and sensitivity to the various sera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号