首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 866 毫秒
1.
There are various diagnostic approaches for parasitic infections, including microscopic identification of parasites in the stool or biopsy samples from the intestinal mucosa, antigen testing of feces or serum, polymerase chain reaction (PCR) testing, and serology. Endoscopy is sometimes used for direct confirmation of parasite infection and as a therapeutic option for removal. In recent years, innovations in endoscopy have advanced remarkably with regards to endoscopic devices as well as diagnostic and therapeutic endoscopical methods. Several new endoscopic devices are now used for diagnostic and therapeutic approaches to parasitic infections. In the present article, we have focused on in vivo imaging of parasitic infections. In vivo images of parasites were obtained using various endoscopic methods such as high-definition endoscopy, super-magnifying endoscopy, and video capsule endoscopy.  相似文献   

2.
Leishmania parasites are well adapted to initiate infection, resist the onslaught of innate immunity and achieve a state of long-lived persistence. In recent years, the tools available to study these interactions have developed enormously and have become much more widely available. Confocal microscopy, live cell imaging, whole animal imaging and intra-vital 2-photon now complement and extend the classical light and electron microscopical techniques. Coupled with approaches to generate transgenic parasites that express imaging friendly reporter proteins, these tools are making the full breadth of the life cycle accessible to imaging studies. New insights into the life history of these highly successful parasites are emerging with increasing frequency, and often with startling clarity and visual drama. In this short review, we focus on how this new generation of imaging-based research tools has augmented our understanding of the complex interplay that occurs between Leishmania and the cells that it infects in mammalian hosts.  相似文献   

3.
The initial phase of malaria infection is the pre-erythrocytic phase, which begins when parasites are injected by the mosquito into the dermis and ends when parasites are released from hepatocytes into the blood. We present here a protocol for the in vivo imaging of GFP-expressing sporozoites in the dermis of rodents, using the combination of a high-speed spinning-disk confocal microscope and a high-speed charge-coupled device (CCD) camera permitting rapid in vivo acquisitions. The steps of this protocol indicate how to infect mice through the bite of infected Anopheles stephensi mosquitoes, record the sporozoites' fate in the mouse ear and to present the data as maximum-fluorescence-intensity projections, time-lapse representations and movie clips. This protocol permits investigating the various aspects of sporozoite behavior in a quantitative manner, such as motility in the matrix, cell traversal, crossing the endothelial barrier of both blood and lymphatic vessels and intravascular gliding. Applied to genetically modified parasites and/or mice, these imaging techniques should be useful for studying the cellular and molecular bases of Plasmodium sporozoite infection in vivo.  相似文献   

4.
Human hydatid disease (cystic echinococcosis, CE) is a chronic parasitic infection caused by the larval stage of the cestode Echinococcus granulosus. As the disease mainly affects the liver, approximately 70% of all identified CE cases are detected in this organ. Optical molecular imaging (OMI), a noninvasive imaging technique, has never been used in vivo with the specific molecular markers of CE. Thus, we aimed to construct an in vivo fluorescent imaging mouse model of CE to locate and quantify the presence of the parasites within the liver noninvasively. Drug-treated protoscolices were monitored after marking by JC-1 dye in in vitro and in vivo studies. This work describes for the first time the successful construction of an in vivo model of E. granulosus in a small living experimental animal to achieve dynamic monitoring and observation of multiple time points of the infection course. Using this model, we quantified and analyzed labeled protoscolices based on the intensities of their red and green fluorescence. Interestingly, the ratio of red to green fluorescence intensity not only revealed the location of protoscolices but also determined the viability of the parasites in vivo and in vivo tests. The noninvasive imaging model proposed in this work will be further studied for long-term detection and observation and may potentially be widely utilized in susceptibility testing and therapeutic effect evaluation.  相似文献   

5.
The liver stages of Plasmodium parasites are important targets for the development of anti-malarial vaccine candidates and chemoprophylaxis approaches that aim to prevent clinical infection. Analyzing the impact of interventions on liver stages in the murine malaria model system Plasmodium yoelii has been cumbersome and requires terminal procedures. In vivo imaging of bioluminescent parasites has previously been shown to be an effective and non-invasive alternative to monitoring liver stage burden in the Plasmodium berghei model. Here we report the generation and characterization of a transgenic P. yoelii parasite expressing the reporter protein luciferase throughout the parasite life cycle. In vivo bioluminescent imaging of these parasites allows for quantitative analysis of P. yoelii liver stage burden and parasite development, which is comparable to quantitative RT-PCR analysis of liver infection. Using this system, we show that both BALB/cJ and C57BL/6 mice show comparable susceptibility to P. yoelii infection with sporozoites and that bioluminescent imaging can be used to monitor protective efficacy of attenuated parasite immunizations. Thus, this rapid, simple and noninvasive method for monitoring P. yoelii infection in the liver provides an efficient system to screen and evaluate the effects of anti-malarial interventions in vivo and in real-time.  相似文献   

6.
Macrophages are the major target cell population of the obligate intracellular parasites LEISHMANIA: Although polymorphonuclear neutrophil granulocytes (PMN) are able to internalize Leishmania promastigotes, these cells have not been considered to date as host cells for the parasites, primarily due to their short life span. In vitro coincubation experiments were conducted to investigate whether Leishmania can modify the spontaneous apoptosis of human PMN. Coincubation of PMN with Leishmania major promastigotes resulted in a significant decrease in the ratio of apoptotic neutrophils as detected by morphological analysis of cell nuclei, TUNEL assay, gel electrophoresis of low m.w. DNA fragments, and annexin V staining. The observed antiapoptotic effect was found to be associated with a significant reduction of caspase-3 activity in PMN. The inhibition of PMN apoptosis depended on viable parasites because killed Leishmania or a lysate of the parasites did not have antiapoptotic effect. L. major did not block, but rather delayed the programmed cell death of neutrophils by approximately 24 h. The antiapoptotic effect of the parasites could not be transferred by the supernatants, despite secretion of IL-8 by PMN upon coculture with L. major. In vivo, intact parasites were found intracellularly in PMN collected from the skin of mice 3 days after s.c. infection. This finding strongly suggests that infection with Leishmania prolongs the survival time of neutrophils also in vivo. These data indicate that Leishmania induce an increased survival of neutrophil granulocytes both in vitro and in vivo.  相似文献   

7.
Malarial infection needs to be imaged to reveal the mechanisms behind malaria pathophysiology and to provide insights to aid in the diagnosis of the disease. Recent advances in optical imaging methods are now being transferred from physics laboratories to the biological field, revolutionizing how we study malaria. To provide insight into how these imaging techniques can improve the study and treatment of malaria, we summarize recent progress on optical imaging techniques, ranging from in vitro visualization of the disease progression of malaria infected red blood cells (iRBCs) to in vivo imaging of malaria parasites in the liver.  相似文献   

8.
Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is a major public health problem in Central and South America. The pathogenesis of Chagas disease is complex and the natural course of infection is not completely understood. The recent development of bioluminescence imaging technology has facilitated studies of a number of infectious and non-infectious diseases. We developed luminescent T. cruzi to facilitate similar studies of Chagas disease pathogenesis. Luminescent T. cruzi trypomastigotes and amastigotes were imaged in infections of rat myoblast cultures, which demonstrated a clear correlation of photon emission signal strength to the number of parasites used. This was also observed in mice infected with different numbers of luminescent parasites, where a stringent correlation of photon emission to parasite number was observed early at the site of inoculation, followed by dissemination of parasites to different sites over the course of a 25-day infection. Whole animal imaging from ventral, dorsal and lateral perspectives provided clear evidence of parasite dissemination. The tissue distribution of T. cruzi was further determined by imaging heart, spleen, skeletal muscle, lungs, kidneys, liver and intestines ex vivo. These results illustrate the natural dissemination of T. cruzi during infection and unveil a new tool for studying a number of aspects of Chagas disease, including rapid in vitro screening of potential therapeutical agents, roles of parasite and host factors in the outcome of infection, and analysis of differential tissue tropism in various parasite-host strain combinations.  相似文献   

9.
Eosinophils have been shown to be potent effector cells for the killing of helminth parasites in in vitro cultures. However, an in vivo role for eosinophils has been more difficult to establish. Early data showed close associations between eosinophils and damaged or dead parasites in histological sections, and significant correlations between resistance to parasites and the capacity to induce eosinophilia after infection. However, more recent studies, using mice that have reduced or increased eosinophil levels through targeting of the eosinophil-specific cytokine interleukin 5, have not unanimously supported an in vivo role for eosinophils in resistance to parasites. Here, Els Meeusen and Adam Balic review these studies and suggest a major role for the innate immune response in unnatural mouse-parasite models to explain some of the findings. They conclude that the data so far are consistent with a role for eosinophils in the killing of infective larval stages, but not adults, of most helminth parasites.  相似文献   

10.
In this study, we have established conditions for generating Leishmania amazonensis recombinants stably expressing the firefly luciferase gene. These parasites produced significant bioluminescent signals for both in vitro studies and the development of an in vivo model, allowing the course of the parasitism to be readily monitored in real time in the living animals such as laboratory mice. First, a model was established, using parasite-infected mouse macrophages for rapidly determining the activity of drugs against intracellular amastigotes. Results indicated that recombinant Leishmania can be reliably and confidently used to monitor compounds acting on intracellular amastigote-harbouring macrophages. Secondly, temporal analyses were performed following inoculation of metacyclic promastigotes into the ear dermis of BALB/c mice and the bioluminescent light transmitted through the tissue was imaged externally using a charge coupled device (CCD) camera. Bioluminescent signals, measured at the inoculation site and in the draining lymph node of mice containing these parasites correlated well with the more classical quantification of parasites. These assays prove that the real-time bioluminescent assay is not only sensitive but also more rapid than culture-base techniques allowing to monitor parasite-load before any clinical signs of leishmaniasis are detectable. In short, this luciferase imaging study is useful to monitor the efficacy of anti-leishmanial drugs on live cell culture and to trace leishmanial infection in animal models.  相似文献   

11.
Since Toxoplasma gondii is transmitted in the wild through the ingestion of infective cysts, oral infection is a preferred model for studying the natural mode of parasite dissemination and pathogenesis. Using luciferase-expressing strains of T. gondii and in vivo imaging, we observed different patterns of disease progression in mice depending of the method of oral infection. Oral gavage of infective cysts (e.g., bradyzoites) resulted in an inconsistent pattern of parasite dissemination; in the majority (20/29) of infected mice, luciferase-derived signal (indicating high numbers of Toxoplasma tachyzoites) was first observed in the right chest area. At later time points this signal spread to other parts of the mouse, including the abdominal area. In the remaining mice (9/29), parasites were first observed replicating in the abdominal area, as might be expected. In contrast, when mice were infected naturally (either via ingestion of whole brains from previously infected mice or brain cyst homogenate-soaked bread), parasites were first observed replicating in the abdominal area in all mice examined (10/10). Based on the inconsistency of infections initiated with oral gavage, it is recommended that natural feeding be used to infect mice when a consistent oral infection is desired.  相似文献   

12.
Alveolins, or inner membrane complex (IMC) proteins, are components of the subpellicular network that forms a structural part of the pellicle of malaria parasites. In Plasmodium berghei, deletions of three alveolins, IMC1a, b, and h, each resulted in reduced mechanical strength and gliding velocity of ookinetes or sporozoites. Using time lapse imaging, we show here that deletion of IMC1h (PBANKA_143660) also has an impact on the directionality and motility behaviour of both ookinetes and sporozoites. Despite their marked motility defects, sporozoites lacking IMC1h were able to invade mosquito salivary glands, allowing us to investigate the role of IMC1h in colonisation of the mammalian host. We show that IMC1h is essential for sporozoites to progress through the dermis in vivo but does not play a significant role in hepatoma cell transmigration and invasion in vitro. Colocalisation of IMC1h with the residual IMC in liver stages was detected up to 30 hours after infection and parasites lacking IMC1h showed developmental defects in vitro and a delayed onset of blood stage infection in vivo. Together, these results suggest that IMC1h is involved in maintaining the cellular architecture which supports normal motility behaviour, access of the sporozoites to the blood stream, and further colonisation of the mammalian host.  相似文献   

13.
The invasive stages of Apicomplexa parasites, called zoites, have been largely studied in in vitro systems, with a special emphasis on their unique gliding and host cell invasive capacities. In contrast, the means by which these parasites reach their destination in their hosts are still poorly understood. We summarize here our current understanding of the cellular basis of in vivo parasitism by two well-studied Apicomplexa zoites, the Toxoplasma tachyzoite and the Plasmodium sporozoite. Despite being close relatives, these two zoites use different strategies to reach their goal and establish infection.  相似文献   

14.
The growing use of protozoan parasites expressing fluorescent reporter genes, together with advances in microscopy, is enabling visualisation of their behaviour and functions within the host from the very earliest stages of infection with previously unparalleled spatiotemporal resolution. These developments have begun to provide novel insights, which are informing our understanding of where host immune responses may be initiated, which cells are involved and the types of response that are elicited. Here we will review some of these recent observations that highlight the importance of cellular communication between the site of infection and the draining lymph node (dLN) in establishing infection and immunity. We also highlight a number of remaining challenges and unknowns that arise through our inability to follow and fate map the journey of a single cell between spatially separated tissue sites. In response to these challenges, we review a recently described experimental strategy that extends the spatial and temporal limits of previous imaging approaches, most significantly allowing longitudinal analysis of cellular migration between the skin and draining lymph nodes in vivo, without the requirement for invasive surgery.  相似文献   

15.
Using a sensitive transgenic reporter mouse system and in vivo biophotonic imaging techniques, we present a dynamic analysis of eosinophil responses to schistosome infection. Use of this methodology provided previously unattainable detail on the spatial and temporal distribution of tissue eosinophilia and eosinopoietic responses to schistosome worms and eggs. Dramatic hepatic and intestinal eosinophilia in response to the deposition of schistosome eggs, with accompanying eosinopoiesis in the bone marrow, was observed between weeks 8 and 10 p.i., with subsequent downregulation evident by week 11. Contrary to expectations, we also demonstrate that schistosome parasites themselves induce significant intestinal eosinophilia and eosinopoiesis in the bone marrow at very early stages during prepatent infection.  相似文献   

16.
Perkinsus marinus is a highly contagious pathogen of the eastern oyster Crassostrea virginica. Until recently, transmission studies have employed wild-type parasites isolated directly from infected oysters. Newly developed methods to propagate P. marinus in vitro have led to using cultured parasites for infection studies, but results suggest that cultured parasites are less virulent than wild-type parasites In this paper, we report results of experiments designed to quantify differences between wild-type and cultured P. marinus virulence and to test the following hypotheses: (1) in vitro-cultured parasites are less virulent than wild-type parasites; (2) virulence decreases gradually during in vitro culture; (3) virulence of in vitro cultures can be restored by in vivo passage; (4) virulence changes with culture phase. Our results demonstrate that parasites freshly isolated from infected hosts are much more virulent than those propagated in culture, indicating a potential deficiency in the culture medium used. Virulence was lost immediately in culture and, for that reason, the practice of repassing cultured cells through the host to restore virulence does not work for P. marinus. Virulence was also associated with culture phase: log-phase parasites were significantly more virulent than those obtained from lag- or stationary-phase cultures.  相似文献   

17.
In Toxoplasma gondii, lactate dehydrogenase is encoded by two independent and developmentally regulated genes LDH1 and LDH2. These genes and their products have been implicated in the control of a metabolic flux during parasite differentiation. To investigate the significance of LDH1 and LDH2 in this process, we generated stable transgenic parasite lines in which the expression of these two expressed isoforms of lactate dehydrogenase was knocked down in a stage-specific manner. These LDH knockdown parasites exhibited variable growth rates in either the tachyzoite or the bradyzoite stage, as compared with the parental parasites. Their differentiation processes were impaired when the parasites were grown under in vitro conditions. In vivo studies in a murine model system revealed that tachyzoites of these parasite lines were unable to form significant numbers of tissue cysts and to establish a chronic infection. Most importantly, all mice that were initially infected with tachyzoites of either of the four LDH knockdown lines survived a subsequent challenge with tachyzoites of the parental parasites (10(4)), a dose that usually causes 100% mortality, suggesting that live vaccination of mice with the LDH knockdown tachyzoites can confer protection against T. gondii. Thus, we conclude that LDH expression is essential for parasite differentiation. The knockdown of LDH1 and LDH2 expression gave rise to virulence-attenuated parasites that were unable to exhibit a significant brain cyst burden in a murine model of chronic infection.  相似文献   

18.
The holy grail of infection biology is to study a pathogen within its natural infectious environment, the living host. Advances in in vivo imaging techniques have begun to introduce the possibility to visualize, in real time, infection progression within a living model. In this review we detail the current advancements and knowledge in multiphoton microscopy and how it can be related to the field of microbial infections. This technology is a new and very valuable tool for in vivo imaging, and using this technique it is possible to begin to study various microbes within their natural infectious environment - the living host.  相似文献   

19.
Previous studies using both in vitro and in vivo mouse models have demonstrated that a subtle balance between pro- and anti-inflammatory cytokines, among which interleukin-12 (IL-12) and interleukin-10 (IL-10), respectively is crucial to control Toxoplasma infection. However, the few studies performed with human cell lines highlighted important host-related differences in the immune response to Toxoplasma gondii. The goal of our work was thus to study the production of both IL-12 and IL-10 by the THP-1 human monocytic cell line in response to Toxoplasma. We demonstrated that infection by live parasites (RH strain) triggers secretion of IL-12, but low level of IL-10. IL-12 secretion appeared within 8 h, up to 48 h. We also showed that infection by live parasites is not mandatory since heat-killed parasites, crude tachyzoite lysate as well as excreted/secreted antigens induced significant, yet reduced production of IL-12.  相似文献   

20.
The most critical bottleneck in the generation of recombinant Plasmodium berghei parasites is the mandatory in vivo cloning step following successful genetic manipulation. This study describes a new technique for rapid selection of recombinant P. berghei parasites. The method is based on flow cytometry to isolate isogenic parasite lines and represents a major advance for the field, in that it will speed the generation of recombinant parasites as well as cut down on animal use significantly. High expression of GFP during blood infection, a prerequisite for robust separation of transgenic lines by flow cytometry, was achieved. Isogenic recombinant parasite populations were isolated even in the presence of a 100-fold excess of wild-type (WT) parasites. Aquaglyceroporin (AQP) loss-of-function mutants and parasites expressing a tagged AQP were generated to validate this approach. aqp? parasites grow normally within the WT phenotypic range during blood infection of NMRI mice. Similarly, colonization of the insect vector and establishment of an infection after mosquito transmission were unaffected, indicating that AQP is dispensable for life cycle progression in vivo under physiological conditions, refuting its use as a suitable drug target. Tagged AQP localized to perinuclear structures and not the parasite plasma membrane. We suggest that flow-cytometric isolation of isogenic parasites overcomes the major roadblock towards a genome-scale repository of mutant and transgenic malaria parasite lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号