首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The E2 glycoprotein of the alphavirus Sindbis is a typical type I membrane protein with a single membrane spanning domain and a cytoplasmic tail (endo domain) containing 33 amino acids. The carboxyl terminal domain of the tail has been implicated as (a) attachment site for nucleocapsid protein, and (b) signal sequence for integration of the other alpha-virus membrane proteins 6K and E1. These two functions require that the carboxyl terminus be exposed in the cell cytoplasm (a) and exposed in the lumen of the endoplasmic reticulum (b). We have investigated the orientation of this glycoprotein domain with respect to cell membranes by substituting a tyrosine for the normally occurring serine, four amino acids upstream of the carboxyl terminus. Using radioiodination of this tyrosine as an indication of the exposure of the glycoprotein tail, we have provided evidence that this domain is initially translocated into a membrane and is returned to the cytoplasm after export from the ER. This is the first demonstration of such a transient translocation of a single domain of an integral membrane protein and this rearrangement explains some important aspects of alphavirus assembly.  相似文献   

2.
Minimal alterations at the carboxyl terminus of the B subunit (EtxB) of heat-labile enterotoxin from Escherichia coli were found to have a marked effect on the assembly and release of this polypeptide into the periplasm. Nine mutant EtxB polypeptides were obtained by genetic manipulation of the 3'-end of the etxB gene using Bal31 nuclease digestion and codon substitution. A correlation was observed between the magnitude of the changes introduced at the carboxyl terminus and the extent to which the mutant polypeptides were defective in assembly and release. Some of the mutant B subunits, exemplified by those in which the last 2 amino acids had been deleted or in which the last 4 residues had been replaced by three different ones, were found to be only partially defective, with a proportion being associated with the periplasmic face of the cytoplasmic membrane and the remainder being exported to the periplasm. The portion associated with membranes was detected as monomers on sodium dodecyl sulfate-polyacrylamide gels, whereas the portion exported to the periplasm were detected as assembled oligomers. We conclude that the last few amino acids at the carboxyl terminus of EtxB exert a profound influence on the assembly and release of the B subunit from the cytoplasmic membrane during export in E. coli.  相似文献   

3.
Polyclonal antibodies were raised in rabbits against a synthetic peptide which corresponds to the 12-amino acid carboxyl-terminal sequence of murine erythrocyte Band 3. Immunoblots of ghost membrane proteins showed that the antibody specifically recognized murine or rat Band 3 but not human or canine Band 3. The antibody also bound to murine ghost membranes applied directly to nitrocellulose but not to human ghost membranes. This shows that the carboxyl terminus of Band 3 is available for antibody binding in ghost membranes and that the carboxyl-terminal sequences of human and mouse Band 3 are not identical. The specificity of the antibody for the carboxyl terminus of Band 3 was confirmed by the loss of antibody binding after digestion of detergent-solubilized ghost membrane proteins with carboxypeptidase Y. In addition, carboxyl-terminal fragments of Band 3 generated by protease treatment of cells or ghost membranes were positive on immunoblots while amino-terminal fragments were negative. In contrast, protease-treated stripped ghost membranes did not contain a carboxyl-terminal fragment of Band 3 that was detectable on immunoblots. The carboxyl terminus of Band 3 was localized to the cytoplasmic side of the erythrocyte membrane since antibody binding as determined by immunofluorescence occurred in ghosts and permeabilized cells but not in intact cells. In addition, competition studies using enzyme-linked immunosorbent assays and immunoblots showed that cells and resealed ghosts competed poorly for antibody compared to ghost membranes, inside-out vesicles, or albumin-conjugated peptide.  相似文献   

4.
The membrane-binding domain of a 23-kDa G-protein is carboxyl methylated   总被引:3,自引:0,他引:3  
We have purified to homogeneity a 23-kDa protein from bovine brain membranes using [35S]guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding as an assay. GTP gamma S binding to the purified protein is inhibited by GDP, GTP, and GTP analogs but not by cGMP, GMP, or adenine nucleotides, consistent with the nucleotide-binding behavior of members of the family of GTP-binding regulatory proteins. On addition of the methyl donor S-adenosyl-L-methionine and a methyltransferase present in bovine brain membranes, the purified 23-kDa G-protein is carboxyl methylated. When subjected to limited tryptic proteolysis, the 23-kDa protein is converted to a 22-kDa major fragment with concomitant release of a carboxyl methylated protein fragment of 1 kDa. Furthermore, when the cleaved protein is reconstituted with stripped bovine brain membranes, the small carboxyl-methylated fragment but not the 22-kDa major fragment is found to reassociate with the membranes. These results indicate that the site of carboxyl methylation and the region responsible for membrane anchoring, most likely, are localized to a small region at the carboxyl terminus. It is attractive to speculate that carboxyl methylation and membrane anchoring are interrelated processes and play key roles in the function of this small G-protein.  相似文献   

5.
C D Linden  J K Blasie  C F Fox 《Biochemistry》1977,16(8):1621-1625
The lipid fatty acid composition of the cytoplasmic membranes of Escherichia coli can be varied by growing an unsaturated fatty acid auxotroph in the presence of different fatty acid supplements. Electron spin resonance (ESR) studies of spin-label partitioning into the cytoplasmic membranes of different lipid fatty acid compositions as a function of temperature have been interpreted as indicating a broad order-to-disorder transition in the membrane lipids, the end points of the transition depending upon the fatty acid composition. We have utilized x-ray diffraction to confirm the ESR studies for three different fatty acid supplements (oleic, elaidic, and bromostearic). We found that the characteristic end-point temperatures detected by ESR were indeed the end-point temperatures of a broad order-to-disorder transition of the cytoplasmic membrane lipids. In addition, Patterson functions calculated from lamellar x-ray diffraction from partially oriented cytoplasmic membranes indicate a decrease in average membrane thickness upon fatty acid chain melting.  相似文献   

6.
A number of cell-surface proteins are anchored in plasma membranes by a glycosylated phosphatidylinositol (PI) moiety that is covalently attached to the carboxyl-terminal amino acid of the mature protein. We have previously reported the construction of a cDNA clone of a truncated Platelet-derived growth factor (PDGF) receptor that consists of the extracellular domain without the transmembrane and cytoplasmic domains. In the construction of the vector, a sequence of 51 base pairs (bp) from the 3′-untranslated region of the receptor cDNA was linked in frame with the external domain coding sequence. The truncated receptor protein with the peptide VTSGHCHEERVDRHDGE fused to its carboxyl terminus was covalently attached to the membrane by a PI linkage and it was released by phosphatidylinositol specific-phospholipase C (PI-PLC). When the 51 bp sequence was deleted, the external domain receptor protein was secreted into the media. To determine whether the PI linkage of the protein was due to the 17 amino acids added, the peptide was fused to the carboxyl terminus of the secreted protein human Interferon-β (hu-IFN-β). Chinese hamster ovary (CHO) cells transfected with the hu-IFN-β cDNA secreted the protein to theconditioned media, whereas CHO cells transfected with the carboxyl terminus modified-hu-IFN-β cDNA did not secrete detectable levels of protein. CHO cells expressing the carboxyl terminus modified-hu-IFN-β were treated with PI-PLC, the media and cell lysates were analyzed by SDS-PAGE after immunoprecipitation with antibodies against hu-IFN-β. The modified protein is anchored to the plasma membrane by a PI linkage and it is specifically released by PI-PLC, whereas a control preparation of CHO cells expressing wild type hu-IFN-β does not show the same pattern. The 17 amino acid peptide fused to the carboxyl terminus of IFN-β directs attachment of a PI anchor and targets the fusion protein to the plasma membrane.  相似文献   

7.
A dipeptidyl carboxypeptidase activity has been localized in synaptic plasma membranes which have been prepared from isolated rat brain cortical synaptosomes. The specificity of this proteolytic activity towards various synthetic and biological active peptides is compared to the peptidase activities of intact synaptosomes. In contrast to the synaptosomal peptidases which are capable of cleaving all peptide bonds of Met-enkephalin-Arg6-Phe7 the peptidase activity associated with the synaptic plasma membrane exclusively hydrolyses a dipeptide from the carboxyl terminus of all hepta- and hexapeptides tested. The fact that this dipeptidyl carboxypeptidase does not cleave the Gly3-Phe4 peptide bond of Met-enkephalin suggests that this enzyme is different from "enkephalinase". The synaptic membrane dipeptidyl carboxypeptidase is inhibited by metal chelating agents and thiols but is not affected by compounds known to inhibit serine proteases, thermolysin and "enkephalinase".  相似文献   

8.
NCC27 belongs to a family of small, highly conserved, organellar ion channel proteins. It is constitutively expressed by native CHO-K1 and dominantly localized to the nucleus and nuclear membrane. When CHO-K1 cells are transfected with NCC27-expressing constructs, synthesized proteins spill over into the cytoplasm and ion channel activity can then be detected on the plasma as well as nuclear membrane. This provided a unique opportunity to directly compare electrophysiological characteristics of the one cloned channel, both on the nuclear and cytoplasmic membranes. At the same time, as NCC27 is unusually small for an ion channel protein, we wished to directly determine whether it is a membrane-resident channel in its own right. In CHO-K1 cells transfected with epitope-tagged NCC27 constructs, we have demonstrated that the NCC27 conductance is chloride dependent and that the electrophysiological characteristics of the channels are essentially identical whether expressed on plasma or nuclear membranes. In addition, we show that a monoclonal antibody directed at an epitope tag added to NCC27 rapidly inhibits the ability of the expressed protein to conduct chloride, but only when the antibody has access to the tag epitope. By selectively tagging either the amino or carboxyl terminus of NCC27 and varying the side of the membrane from which we record channel activity, we have demonstrated conclusively that NCC27 is a transmembrane protein that directly forms part of the ion channel and, further, that the amino terminus projects outward and the carboxyl terminus inward. We conclude that despite its relatively small size, NCC27 must form an integral part of an ion channel complex.  相似文献   

9.
Previous studies in our laboratory have provided direct evidence for the existence of distinct cholesterol domains within the plasma membranes of human ocular lens fiber cells. The fiber cell plasma membrane is unique in that it contains unusually high concentrations of cholesterol, with cholesterol to phospholipid (C/P) mole ratios ranging from 1 to 4. Since membrane cholesterol content is disturbed in the development of cataracts, it was hypothesized that perturbation of cholesterol domain structure occurs in cataracts. In this study, fiber cell plasma membranes were isolated from both normal (control) and cataractous lenses and assayed for cholesterol and phospholipid. Control and cataractous whole lens membranes had C/P mole ratios of 3.1 and 1.7, respectively. Small angle x-ray diffraction approaches were used to directly examine the structural organization of the cataractous lens plasma membrane versus control. Both normal and cataractous oriented membranes yielded meridional diffraction peaks corresponding to a unit cell periodicity of 34.0 A, consistent with the presence of immiscible cholesterol domains. However, comparison of diffraction patterns indicated that cataractous lens membranes contained more pronounced and better defined cholesterol domains than controls, over a broad range of temperature (5-40 degrees C) and relative humidity (52-92%) levels. In addition, diffraction analyses of the sterol-poor regions of cataractous membranes indicated increased membrane rigidity as compared with control membranes. Modification of the membrane lipid environment, such as by oxidative insult, is believed to be one potential mechanism for the formation of highly resolved cholesterol domains despite significantly reduced cholesterol content. The results of this x-ray diffraction study provide evidence for fundamental changes in the lens fiber cell plasma membrane structure in cataracts, including the presence of more prominent and highly ordered, immiscible cholesterol domains.  相似文献   

10.
Molecular genetic experiments have suggested that the carboxyl terminus of the Saccharomyces cerevisiae plasma membrane H(+)-ATPase is an inhibitory domain involved in the "in vivo" regulation of the enzyme by glucose metabolism. An antibody prepared against a fusion protein including the last 59 amino acids of the ATPase sequence has been affinity purified to yield a preparation which requires the 18 carboxyl-terminal amino acids for recognition. Antibody binding experiments show that the carboxyl-terminal domain of the ATPase can be selectively exposed by concentrations of the detergent Tween-20 which do not break down the permeability barrier of the plasma membrane to the antibody. Both enzyme-linked immunosorbent assay and immunofluorescence analysis demonstrate that the accessibility of the carboxyl-terminal domain in isolated plasma membranes depends on the physiological state of the cell being increased by glucose metabolism. Immunofluorescence analysis of isolated plasma membrane vesicles, using a dual labeling protocol with concanavalin A and antibody to reveal the orientation of individual vesicles, and colloidal gold immunoelectron microscopy of ultrathin cryosections of whole yeast cells separately demonstrate that the ATPase carboxyl terminus is located in the cytoplasmic compartment. The application of a mutant deleted of the epitope(s) recognized by the affinity purified carboxyl-terminal antibody eliminates the possibility of artifacts arising from nonspecific antibody binding. The accessibility properties and cytoplasmic location of the carboxyl-terminal domain appear to be consistent with its role as a negative regulator of the ATPase.  相似文献   

11.
Specific chemical cleavage of diphtheria toxin with hydroxylamine was performed to remove peptides of 10 and 7 kDa from the carboxyl terminus. The resulting modified proteins of 51 and 48 kDa (HA51DT and HA48DT, respectively) were purified and characterized with respect to structural and biological properties. The 51-kDa toxin binds to ATP-agarose, as does intact diphtheria toxin, while HA48DT does not bind to the nucleotide matrix. Neither modified toxin binds to the membranes of diptheria toxin-sensitive cells, and, consequently, neither is toxic. However, when covalently linked to a membrane binding moiety, both HA51DT and HA48DT are toxic. Cell-killing ability during a short exposure time indicated that concanavalin A (Con A) derivatives of diphtheria toxin and HA51DT are equally toxic, ConA HA48DT being somewhat less toxic, while the conjugate of ConA to A-chain kills a small number of cells only at inordinately high concentration (1 microM). We have thus separated the cell membrane binding function of diphtheria toxin from its membrane permeation function by removing specific small peptides from the carboxyl terminus. These modified toxins may have applications in the preparation of highly potent hybrid toxins.  相似文献   

12.
We investigated the membrane topology of Bves/Pop1A as a foundation to dissect the molecular basis and function of Bves/Pop1A trafficking during development. Bves contains two asparagine-linked glycosylation sites within the amino terminus and three putative membrane domains. Therefore, glycosylation assays were performed to determine if the amino terminus of Bves is delivered into the endoplasmic reticulum lumen and glycosylated. We establish that Bves from chick heart and transfected cells is glycosylated, implying that the amino terminus of cell surface molecules is extracellular. Three biochemically distinct approaches were utilized to determine the orientation of the carboxyl terminus of Bves. First, glycosylation of Bves at exogenous sites within the carboxyl terminus was only observed in a construct that lacked the third membrane domain, which presumably reversed the orientation of the carboxyl terminus. Second, co-expression of full-length Bves with soluble, carboxyl-terminal Bves constructs that reside in different subcellular compartments revealed that Bves-Bves interactions occur in the cytoplasm. Third, the immunoreactivity of endogenous Bves at the cell surface of epicardial cells was dramatically enhanced with detergent. These results suggest that the membrane topology of cell surface Bves/Pop1A is composed of an extracellular amino terminus, three transmembrane domains, and a cytoplasmic carboxyl terminus. We therefore hypothesize that the carboxyl terminus regulates the cellular distribution of Bves/Pop1A during coronary vessel development.  相似文献   

13.
The carboxyl-terminal decapeptide NH2-Leu-Leu-Arg-Arg-Gln-Val-Asn-Glu-Val-Ala-OH of the lactose carrier protein, the product of the lac Y gene of Escherichia coli, was synthesized, and specific anti-peptide antibodies were raised in rabbits. These antibodies bind to membrane-bound lactose carrier showing that the carboxyl terminus is accessible from the aqueous phase. The antibodies bind only to the surface of inverted cytoplasmic membrane vesicles (but not to closed, right-side-out membrane vesicles), demonstrating that the carboxyl terminus of the carrier protein is directed towards the cytoplasmic side of the plasma membrane in cells. The carboxyl terminus is a potent immunogenic epitope on the purified, detergent-solubilized carrier. Binding of peptide-specific antibodies to the carrier protein inhibits neither substrate binding nor translocation.  相似文献   

14.
Specific amino acid sequence segments have been assigned to locations in the structural map of bacteriorhodopsin using two-dimensional neutron diffraction data and a model building analysis. Models are constructed computationally by building specific regions of the amino acid sequence as alpha helices and then positioning the helices on axes indicated by the density map of Henderson and Unwin (Nature [Lond.]. 1975, 257:28-32). Neutron diffraction data were collected from samples of stacked, oriented "native" purple membranes as well as purple membranes containing different kinds of deuterated amino acids. Models differing in the assignments of helices to specific axes and in rotations of the helices about those axes were tested against the neutron data using a weighted residual factor to rank the models. This residual factor was calculated between observed and predicted intensity differences for pairs of data sets. Using this approach, a small set of related models has been found that predicts the observed intensity changes between five independent data sets. These models are inconsistent with the proposed locations of the retinal chromophore and the carboxyl terminus and with any of the previously proposed models for bacteriorhodopsin.  相似文献   

15.
The loop between alpha-helix 6 and beta-strand 6 in the alpha/beta-barrel active site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) plays a key role in discriminating between gaseous substrates CO(2) and O(2). Based on numerous x-ray crystal structures, loop 6 is either closed or open depending on the presence or absence, respectively, of substrate ligands. The carboxyl terminus folds over loop 6 in the closed conformation, prompting speculation that it may trigger or latch loop 6 closure. Because an x-ray crystal structure of tobacco Rubisco revealed that phosphate is located at a site in the open form that is occupied by the carboxyl group of Asp-473 in the closed form, it was proposed that Asp-473 may serve as the latch that holds the carboxyl terminus over loop 6. To assess the essentiality of Asp-473 in catalysis, we used directed mutagenesis and chloroplast transformation of the green alga Chlamydomonas reinhardtii to create D473A and D473E mutant enzymes. The D473A and D473E mutant strains can grow photoautotrophically, indicating that Asp-473 is not essential for catalysis. However, both substitutions caused 87% decreases in carboxylation catalytic efficiency (V(max)/K(m)) and approximately 16% decreases in CO(2)/O(2) specificity. If the carboxyl terminus is required for stabilizing loop 6 in the closed conformation, there must be additional residues at the carboxyl terminus/loop 6 interface that contribute to this mechanism. Considering that substitutions at residue 473 can influence CO(2)/O(2) specificity, further study of interactions between loop 6 and the carboxyl terminus may provide clues for engineering an improved Rubisco.  相似文献   

16.
We have recently developed x-ray diffraction methods to derive the profile structure of ultrathin lipid multilayer films having one to five bilayers (e.g., Skita, V., W. Richardson, M. Filipkowski, A.F. Garito, and J.K. Blasie. 1987. J. Physique. 47:1849-1855). Furthermore, we have employed these techniques to determine the location of a monolayer of cytochrome c bound to the carboxyl group surface of various ultrathin lipid multilayer substrates via nonresonance x-ray diffraction (Pachence, J.M., and J.K. Blasie. 1987. Biophys. J. 52:735-747). Here an intense tunable source of x-rays (beam line X9-A at the National Synchrotron Light Source at the Brookhaven National Laboratory) was utilized to measure the resonance x-ray diffraction effect from the heme-Fe atoms within the cytochrome c molecular monolayer located on the carboxyl surface of a five monolayer arachidic acid film. Lamellar x-ray diffraction was recorded for energies above, below, and at the Fe K-absorption edge (E = 7,112 eV). An analysis of the resonance x-ray diffraction effect is presented, whereby the location of the heme-Fe atoms within the electron density profile of the cytochrome c/arachidic acid ultrathin multilayer film is indicated to +/- 3 A accuracy.  相似文献   

17.
The alpha 1 subunit of the dihydropyridine-sensitive calcium channel is a protein which is critical for excitation-contraction coupling and L-type calcium current in skeletal muscle. Using antibodies generated against peptides from three regions of the deduced amino acid sequence of the alpha 1 subunit, we have identified two distinct proteins in rabbit skeletal muscle. Both proteins appeared to be recognized by antibodies against the amino (N) terminus of the alpha 1 subunit sequence. One protein was also recognized by antibodies against an internal (I) region of the predicted sequence but not by antibodies against the carboxyl (C) terminus. In contrast, the other protein was recognized by antibodies against the carboxyl terminus but not by the antibodies against the internal region. We have designated these proteins pNI and pNC based on their patterns of antibody recognition. No protein was detected which was recognized by all three antibodies. pNI is the protein commonly identified as the alpha 1 subunit of the dihydropyridine-sensitive calcium channel. Of note is that pNI, which apparently lacks sequences from the predicted carboxyl tail, is the protein present in preparations which we have previously demonstrated contain dihydropyridine-sensitive calcium channel activity. pNC is herein identified as a skeletal muscle protein that is immunologically related to the alpha 1 subunit of the dihydropyridine-sensitive calcium channel. Its function is unknown. In addition to their distinct patterns of antibody recognition, pNI and pNC were also distinguishable by several other properties. pNC migrated as a protein of approximately 160 kDa in 5% sodium dodecyl sulfate-polyacrylamide gels versus approximately 165 kDa for pNI. pNI was enriched in transverse tubule membranes, whereas pNC was found to be enriched in triad and junctional sarcoplasmic reticulum membrane fractions and was not found in transverse tubule membranes. Under conditions in which pNI bound to wheat germ agglutinin-Sepharose, pNC did not bind. The results demonstrate that there are two proteins in skeletal muscle which are immunologically related to the alpha 1 subunit of the dihydropyridine-sensitive calcium channel but which are distinguishable by several biochemical and immunological characteristics.  相似文献   

18.
Heterotrimeric G proteins interact with receptors and effectors at the membrane-cytoplasm interface. Structures of soluble forms have not revealed how they interact with membranes. We have used electron crystallography to determine the structure in ice of a helical array of the photoreceptor G protein, transducin, bound to the surface of a tubular lipid bilayer. The protein binds to the membrane with a very small area of contact, restricted to two points, between the surface of the protein and the surface of the lipids. Fitting the x-ray structure into the membrane-bound structure reveals one membrane contact near the lipidated Ggamma C terminus and Galpha N terminus, and another near the Galpha C terminus. The narrowness of the tethers to the lipid bilayer provides flexibility for the protein to adopt multiple orientations on the membrane, and leaves most of the G protein surface area available for protein-protein interactions.  相似文献   

19.
Abstract: The molecular forms and membrane association of SPC2, SPC3, and furin were investigated in neuroendocrine secretory vesicles from the anterior, intermediate, and neural lobes of bovine pituitary and bovine adrenal medulla. The major immunoreactive form of SPC2 was the full-length enzyme with a molecular mass of 64 kDa. The major immunoreactive form of SPC3 was truncated at the carboxyl terminus and had a molecular mass of 64 kDa. Full-length 86-kDa SPC3 with an intact carboxyl terminus was found only in bovine chromaffin granules. Immunoreactive furin was also detected in secretory vesicles. The molecular masses of 80 and 76 kDa were consistent with carboxyl-terminal truncation of furin to remove the transmembrane domain. All three enzymes were distributed between the soluble and membrane fractions of secretory vesicles although the degree of membrane association was tissue specific and, in the case of SPC3, dependent on the molecular form of the enzyme. Significant amounts of membrane-associated and soluble forms of SPC2, SPC3, and furin were found in pituitary secretory vesicles, whereas the majority of the immunoreactivity in chromaffin granules was membrane associated. More detailed analyses of chromaffin granule membranes revealed that 86-kDa SPC3 was more tightly associated with the membrane fraction than the carboxyl terminus-truncated 64-kDa form.  相似文献   

20.
Ammonium transport across plant plasma membranes is facilitated by AMT/Rh-type ammonium transporters (AMTs), which also have homologs in most organisms. In the roots of the plant Arabidopsis (Arabidopsis thaliana), AMTs have been identified that function directly in the high-affinity NH4+ acquisition from soil. Here, we show that AtAMT1;2 has a distinct role, as it is located in the plasma membrane of the root endodermis. AtAMT1;2 functions as a comparatively low-affinity NH4+ transporter. Mutations at the highly conserved carboxyl terminus (C terminus) of AMTs, including one that mimics phosphorylation at a putative phosphorylation site, impair NH4+ transport activity. Coexpressing these mutants along with wild-type AtAMT1;2 substantially reduced the activity of the wild-type transporter. A molecular model of AtAMT1;2 provides a plausible explanation for the dominant inhibition, as the C terminus of one monomer directly contacts the neighboring subunit. It is suggested that part of the cytoplasmic C terminus of a single monomer can gate the AMT trimer. This regulatory mechanism for rapid and efficient inactivation of NH4+ transporters may apply to several AMT members to prevent excess influx of cytotoxic ammonium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号