首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple sequence alignments of the eight glutathione (GSH) transferase homologues encoded in the genome of Escherichia coli were used to define a consensus sequence for the proteins. The consensus sequence was analyzed in the context of the three-dimensional structure of the gst gene product (EGST) obtained from two different crystal forms of the enzyme. The enzyme consists of two domains. The N-terminal region (domain I) has a thioredoxin-like alpha/beta-fold, while the C-terminal domain (domain II) is all alpha-helical. The majority of the consensus residues (12/17) reside in the N-terminal domain. Fifteen of the 17 residues are involved in hydrophobic core interactions, turns, or electrostatic interactions between the two domains. The results suggest that all of the homologues retain a well-defined group of structural elements both in and between the N-terminal alpha/beta domain and the C-terminal domain. The conservation of two key residues for the recognition motif for the gamma-glutamyl-portion of GSH indicates that the homologues may interact with GSH or GSH analogues such as glutathionylspermidine or alpha-amino acids. The genome context of two of the homologues forms the basis for a hypothesis that the b2989 and yibF gene products are involved in glutathionylspermidine and selenium biochemistry, respectively.  相似文献   

2.
The alpha(L) I (inserted or interactive) domain of integrin alpha(L)beta(2) undergoes conformational changes upon activation. Recent studies show that the isolated, activated alpha(L) I domain is sufficient for strong ligand binding, suggesting the beta(2) subunit to be only indirectly involved. It has been unclear whether the activity of the alpha(L) I domain is regulated by the beta(2) subunit. In this study, we demonstrate that swapping the disulfide-linked CPNKEKEC sequence (residues 169-176) in the beta(2) I domain with a corresponding beta(3) sequence, or mutating Lys(174) to Thr, constitutively activates alpha(L)beta(2) binding to ICAM-1. These mutants do not require Mn(2+) for ICAM-1 binding and are insensitive to the inhibitory effect of Ca(2+). We have also localized a component of the mAb 24 epitope (a reporter of beta(2) integrin activation) in the CPNKEKEC sequence. Glu(173) and Glu(175) of the beta(2) I domain are identified as critical for mAb 24 binding. Because the epitope is highly expressed upon beta(2) integrin activation, it is likely that the CPNKEKEC sequence is exposed or undergoes conformational changes upon activation. Deletion of the alpha(L) I domain did not eliminate the mAb 24 epitope. This confirms that the alpha(L) I domain is not critical for mAb 24 binding, and indicates that mAb 24 detects a change expressed in part in the beta(2) subunit I domain. These results suggest that the CPNKEKEC sequence of the beta(2) I domain is involved in regulating the alpha(L) I domain.  相似文献   

3.
Stat3 is activated by cytokines and growth factors via specific tyrosine phosphorylation, dimerization, and nuclear translocation. However, the mechanism involved in its nuclear translocation is unclear. In this study, by systematic deletion and site-directed mutagenesis we identified Arg-214/215 in the alpha-helix 2 region of the coiled-coil domain of Stat3 as a novel sequence element essential for its nuclear translocation, stimulated by epidermal growth factor as well as by interleukin-6. Furthermore, we identified Arg-414/417 in the DNA binding domain as also required for the nuclear localization of Stat3. This sequence element corresponds to Lys-410/413 of Stat1, a reported sequence for Stat1 nuclear translocation. On the other hand, Leu-411 of Stat3, corresponding to Leu-407 of Stat1, a necessary residue for Stat1 nuclear transport, is not essential for Stat3 nuclear import. The mutant of Arg-214/215 or Arg-414/417 was shown to be tyrosyl-phosphorylated normally but failed to enter the nucleus in response to epidermal growth factor or interleukin-6. The defect, however, can be rescued by the wild-type Stat3 but cannot be compensated by these two mutants. Mutations on Arg-414/417, but not Arg-214/215, destroy the DNA binding activity of Stat3. Our data for the first time identified a sequence element located in the coiled-coil domain that is involved in the ligand-induced nuclear translocation of Stat3. This novel sequence together with a conserved sequence element in the DNA binding domain coordinates to mediate the nuclear translocation of Stat3.  相似文献   

4.
5.
A domain exhibiting major sequence divergences among three cloned repeat units of a complex satellite DNA of the Bermuda land crab contains a repetitive polypyrimidine.polypurine segment consisting of a long C.G tract embedded between runs of CCT.AGG and CGCAC.GTGCG and their variations. The domain adopts at least two types of altered conformations that are markedly affected by pH and negative superhelical density; only one is sensitive to ionic strength. Supercoil-dependent distortions in helical structure are most pronounced at points of interruption in compositional bias in this domain and a similar although less extensive, divergent domain nearby. Since the domain is the site of major sequence divergences among individual satellite repeat units, the altered conformations may be involved in site-specific recombination between repeat units, either those arranged in tandem or those scattered throughout the genome.  相似文献   

6.
The 612-residue extracellular domain of the human Ca(2+) receptor (hCaR) has been speculated to consist of a Venus's-flytrap domain (VFT) and a cysteine-rich domain. We studied the function of the hCaR Cys-rich domain by using mutagenesis and chimera approaches. A chimeric hCaR with the sequence from residues 540-601 replaced by the corresponding sequence from the Fugu CaR remained fully functional. Another chimeric hCaR with the same region of sequence replaced by the corresponding sequence from metabotropic glutamate receptor subtype 1 (mGluR1) still was activated by extracellular Ca(2+) ([Ca(2+)](o)), but its function was severely compromised. Chimeric receptors with the hCaR VFT and mGluR1 seven-transmembrane domain plus C-tail domain retained good response to [Ca(2+)](o) whether the Cys-rich domain was from hCaR or from mGluR1. Mutant hCaR with the Cys-rich domain deleted failed to respond to [Ca(2+)](o), although it was expressed at the cell surface and capable of dimerization. Our results indicate that the hCaR Cys-rich domain plays a critical role in signal transmission from VFT to seven-transmembrane domain. This domain tolerates a significant degree of amino acid substitution and may not be directly involved in the binding of [Ca(2+)](o).  相似文献   

7.
The BRCT (Breast Cancer Carboxyl Terminus) domain is widely distributed in proteins involved in DNA metabolism and cell cycle regulation. In most of the representative members of the BRCT family, this domain is usually comprising of about 90-100 amino acid residues and generally present as single motif or in tandem repeats. Although the members of BRCT family share little sequence similarity, structural studies have demonstrated a relatively conserved structure of two or three alpha-helices surrounding the central beta-sheets. This report illustrates an in silico analysis with the aim of understanding the sequential, structural, and phylogenetic features of BRCT domain in higher plant genome. Based on database searches 25 BRCT domain containing proteins were identified and many of them were found to be involved in multiple DNA damage repair pathways. We have further combined the homology modeling in order to address the structure-function relations of BRCT domain in connection with DNA damage repair mechanism in plants.  相似文献   

8.
A cDNA encoding DNA (cytosine-5)-methyltransferase (DNA MeTase) of mouse cells has been cloned and sequenced. The nucleotide sequence contains an open reading frame sufficient to encode a polypeptide of 1573 amino acid residues, which is close to the apparent size of the largest species of DNA MeTase found in mouse cells. The carboxylterminal 570 amino acid residues of the inferred protein sequence shows striking similarities to bacterial type II DNA cytosine methyltransferases and appears to represent a catalytic methyltransferase domain. The amino-terminal portion of the molecule may be involved in regulating the activity of the carboxyl-terminal methyltransferase domain, since antibodies directed against a peptide sequence located within this region inhibits transmethylase activity in vitro. A 5200 base DNA MeTase-specific mRNA was found to be expressed in all mouse cell types tested, and cell lines known to have different genomic methylation patterns were found to contain DNA MeTase proteins of similar or identical sizes and de novo sequence specificities. The implications of these findings for an understanding of the mechanisms involved in the establishment and maintenance of methylation patterns are discussed.  相似文献   

9.
Cytoplasmic peptide:N-glycanase (PNGase) is a de-N-glycosylating enzyme which may be involved in the proteasome-dependent pathway for degradation of misfolded glycoproteins formed in the endoplasmic reticulum (ER) that are exported into the cytoplasm. A cytoplasmic PNGase found in Saccharomyces cerevisiae, Png1p, is widely distributed in higher eukaryotes as well as in yeast (Suzuki, T., et al. J. Cell Biol. 149, 1039-1051, 2000). The recently uncovered complete genome sequence of Arabidopsis thaliana prompted us to search for the protein homologue of Png1p in this organism. Interestingly, when the mouse Png1p homologue sequence was used as a query, not only a Png1p homologue containing a transglutaminase-like domain that is believed to contain a catalytic triad for PNGase activity, but also four proteins which had a domain of 46 amino acids in length that exhibited significant similarity to the N-terminus of mouse Png1p were identified. Moreover, three of these homologous proteins were also found to possess a UBA or UBX domain, which are found in various proteins involved in the ubiquitin-related pathway. We name this newly found homologous region the PUB (Peptide:N-glycanase/UBA or UBX-containing proteins) domain and propose that this domain may mediate protein-protein interactions.  相似文献   

10.
W McGinnis  C P Hart  W J Gehring  F H Ruddle 《Cell》1984,38(3):675-680
Some of the homeotic genes of Drosophila, involved in the control of segmental development, form a diverged multigene family. A conserved DNA sequence common to these genes has been used to isolate a clone (Mo-10) from the mouse genome which contains a sequence coding for a protein domain that is homologous to the domain conserved in the Drosophila homeotic genes. By structural analogy, this sequence may be involved in the control of metameric pattern formation in the mouse. Mo-10 has been mapped to the proximal portion of mouse chromosome 6, and its position in relationship to genes known to influence mouse morphogenesis is discussed.  相似文献   

11.
ABSTRACT

In the Pezizomycotina (filamentous ascomycete) species, genes that encode proteins with an HET domain (Pfam: PF06985) are reportedly involved in heterokaryon incompatibility (HI) in which cell death or growth defects are induced after fusion of cells that are genetically incompatible owing to diversities in their nucleotide sequence. HET domain genes are commonly found in Pezizomycotina genomes and are functionally characterized in only a few species. Here, we compared 44 HET domain genes between an incompatible strain pair of Aspergillus oryzae RIB40 and RIB128 and performed inter-strain expression of 37 sequence-diverse genes for mimicking HI. Four HET domain genes were identified to cause severe growth inhibition in a strain- or sequence-specific manner. Furthermore, SNPs responsible for the inhibition of cell growth were identified. This study provides an important insight into the physiological significance of sequence diversity of HET domain genes and their potential functions in HI of A. oryzae.  相似文献   

12.
Myosin light chain kinase (MLCK) phosphorylates the light chain of smooth muscle myosin enabling its interaction with actin. This interaction initiates smooth muscle contraction. MLCK has another role that is not attributable to its phosphorylating activity, i.e., it inhibits the ATP-dependent movement of actin filaments on a glass surface coated with phosphorylated myosin. To analyze the inhibitory effect of MLCK, the catalytic domain of MLCK was obtained with or without the regulatory sequence adjacent to the C-terminal of the domain, and the inhibitory effect of the domain was examined by the movement of actin filaments. All the domains work so as to inhibit actin filament movement whether or not the regulatory sequence is included. When the domain includes the regulatory sequence, calmodulin in the presence of calcium abolishes the inhibition. Since the phosphorylation reaction is not involved in regulating the movement by MLCK, and a catalytic fragment that shows no kinase activity also inhibits movement, the kinase activity is not related to inhibition. Higher concentrations of MLCK inhibit the binding of actin filaments to myosin-coated surfaces as well as their movement. We discuss the dual roles of the domain, the phosphorylation of myosin that allows myosin to cross-bridge with actin and a novel function that breaks cross-bridging.  相似文献   

13.
We report that the cytoplasmic domains of the T-lymphocyte glycoproteins CD4 and CD8 alpha contain short related amino acid sequences that are involved in binding the amino-terminal domain of the intracellular tyrosine protein kinase, p56lck. Transfer of as few as six amino acid residues from the cytoplasmic domain of the CD8 alpha protein to the cytoplasmic domain of an unrelated protein conferred p56lck binding to the hybrid protein in HeLa cells. The common sequence motif shared by CD4 and CD8 alpha contains two cysteines, and mutation of either cysteine in the CD4 sequence eliminated binding of p56lck.p56lck also contains two cysteine residues within its CD4-CD8 alpha-binding domain, and both are critical to the interaction with CD4 or CD8 alpha. Because the interaction does not involve disulfide bond formation, a metal ion could stabilize the complex.  相似文献   

14.
DNA binding by the Oct-1 protein is directed by its POU domain, a bipartite DNA-binding domain made up of a POU-specific (POUS) domain and a POU-homeo (POUH) domain, two helix-turn-helix-containing DNA-binding modules that cooperate in DNA recognition. Although the best-characterized DNA target for Oct-1 binding is the octamer sequence ATGCAAAT, Oct-1 also binds a number of different DNA sequence elements. For example, Oct-1 recognizes a form of the herpes simplex virus VP16-responsive TAATGARAT element, called the (OCTA-)TAATGARAT site, that lacks octamer site similarity. Our studies suggest two mechanisms by which Oct-1 achieves flexible DNA sequence recognition. First, an important arginine found in the Oct-1 POUS domain tolerates substitutions of its base contacts within the octamer site. Second, on the (OCTA-)TAATGARAT site, the POUS domain is located on the side of the POUH domain opposite from where it is located on an octamer site. This flexibility of the Oct-1 POU domain in DNA binding also has an impact on its participation in a multiprotein-DNA complex with VP16. We show that Oct-1 POUS domain residues that contact DNA have different effects on VP16-induced complex formation depending on whether the VP16-responsive element involved has overlapping octamer similarity or not.  相似文献   

15.
Functional dissection and sequence of yeast HAP1 activator   总被引:50,自引:0,他引:50  
K Pfeifer  K S Kim  S Kogan  L Guarente 《Cell》1989,56(2):291-301
  相似文献   

16.
Lymphocyte trafficking is a fundamental aspect of the immune system that allows B and T lymphocytes with diverse antigen recognition specificities to be exposed to various antigenic stimuli in spatially distinct regions of an organism. A lymphocyte adhesion molecule that is involved with this trafficking phenomenon has been termed the homing receptor. Previous work (Lasky, L., T. Yednock, M. Singer, D. Dowbenko, C. Fennie, H. Rodriguez, T. Nguyen, S. Stachel, and S. Rosen. 1989. Cell. 56:1045-1055) has characterized a cDNA clone encoding a murine homing receptor that is involved in trafficking of lymphocytes to peripheral lymph nodes. This molecule was found to contain a number of protein motifs, the most intriguing of which was a carbohydrate binding domain, or lectin, that is apparently involved in the adhesive interaction between murine lymphocytes and peripheral lymph node endothelium. In this study, we have used the murine cDNA clone to isolate a human homologue of this peripheral lymph node-specific adhesion molecule. The human receptor was found to be highly homologous to the murine receptor in overall sequence, but showed no sequence similarity to another surface protein that may be involved with human lymphocyte homing, the Hermes glycoprotein. The extracellular region of the human receptor contained an NH2 terminally located carbohydrate binding domain followed by an EGF-like domain and a domain containing two repeats of a complement binding motif. Transient cell transfection assays using the human receptor cDNA showed that it encoded a surface glycoprotein that cross reacted with a polyclonal antibody directed against the murine peripheral lymph node homing receptor. Interestingly, the human receptor showed a high degree of sequence homology to another human cell adhesion glycoprotein, the endothelial cell adhesion molecule ELAM.  相似文献   

17.
The alpha-subunit of Escherichia coli F1-ATPase contains an adenine-specific noncatalytic nucleotide-binding domain. A recent proposal (Maggio, M. B., Pagan, J., Parsonage, D., Hatch, L., and Senior, A. E. (1987) J. Biol. Chem. 262, 8981-8984) suggested that this domain is formed by residues 160-340, approximately, in alpha-subunit. Within this proposed domain is a sequence Gly-X-X-X-X-Gly-Lys which is conserved in a large and diverse group of nucleotide-binding proteins and is thought to interact with phosphate groups of bound nucleotide. In this work, residue alpha Lys-175, the terminal residue of the above conserved sequence in F1-alpha-subunit, was mutagenized to Ile or Glu. The specific activity of purified mutant F1-ATPase was reduced by 2.5-fold (Ile) or 3-fold (Glu). Apparent binding of ATP to alpha-subunit, as measured by the centrifuge column procedure, was strongly impaired and ATP-induced conformational change in alpha-subunit, as measured by protection against trypsin proteolysis, was nearly abolished in both mutants. The results suggest that residue alpha Lys-175 is located within the nucleotide-binding domain of alpha-subunit, and that this residue is functionally involved in nucleotide binding. The results support previous suggestions that the alpha-subunit nucleotide-binding site is not involved, directly or indirectly, in catalysis.  相似文献   

18.
The mechanism by which the mitochondrial large rRNA is involved in the restoration of the pole cell-forming ability in Drosophila embryos is still unknown. We identified a 15-ribonucleotide sequence which is conserved from the protobacterium Wolbachia to the higher eukaryotes in domain V of the mitochondrial large rRNA. This short sequence is sufficient to restore pole cell determination in UV-irradiated Drosophila embryos. Here, we provide evidence that the conserved 15-base sequence is sufficient to restore luciferase activity in vitro. Moreover, we show that the internal GAGA sequence is involved in protein binding and that mutations in this tetranucleotide affect the sequence’s ability to restore luciferase activity. The obtained results lead us to propose that mtlrRNA may be involved either in damaged protein reactivation or in protein biosynthesis during pole cell determination.  相似文献   

19.
The molybdenum cofactor is modified by the addition of GMP or CMP to the C4' phosphate of molybdopterin forming the molybdopterin guanine dinucleotide or molybdopterin cytosine dinucleotide cofactor, respectively. The two reactions are catalyzed by specific enzymes as follows: the GTP:molybdopterin guanylyltransferase MobA and the CTP:molybdopterin cytidylyltransferase MocA. Both enzymes show 22% amino acid sequence identity and are specific for their respective nucleotides. Crystal structure analysis of MobA revealed two conserved motifs in the N-terminal domain of the protein involved in binding of the guanine base. Based on these motifs, we performed site-directed mutagenesis studies to exchange the amino acids to the sequence found in the paralogue MocA. Using a fully defined in vitro system, we showed that the exchange of five amino acids was enough to obtain activity with both GTP and CTP in either MocA or MobA. Exchange of the complete N-terminal domain of each protein resulted in the total inversion of nucleotide specificity activity, showing that the N-terminal domain determines nucleotide recognition and binding. Analysis of protein-protein interactions showed that the C-terminal domain of either MocA or MobA determines the specific binding to the respective acceptor protein.  相似文献   

20.
Rad23 proteins are involved both in the ubiquitin-proteasome pathway and in nucleotide excision repair (NER), but the relationship between these two pathways is not yet understood. The two human homologs of Rad23, hHR23A and B, are functionally redundant in NER and interact with xeroderma pigmentosum complementation group C (XPC) protein. The XPC-hHR23 complex is responsible for the specific recognition of damaged DNA, which is an early step in NER. The interaction of the XPC binding domain (XPCB) of hHR23A/B with XPC protein has been shown to be important for its optimal function in NER. We have determined the solution structure of XPCB of hHR23A. The domain consists of five amphipathic helices and reveals hydrophobic patches on the otherwise highly hydrophilic domain surface. The patches are predicted to be involved in interaction with XPC. The XPCB domain has limited sequence homology with any proteins outside of the Rad23 family except for sacsin, a protein involved in spastic ataxia of Charlevoix-Saguenay, which contains a domain with 35% sequence identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号