首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The incorporation of radioactive uracil into 50s and 30s ribosomal subunits and ribosomal ribonucleic acid (rRNA) was studied during the growth cycle of different sporogenic and asporogenic strains of Bacillus subtilis. It was found that partially synchronized cultures of the strains examined incorporated labeled uracil into the two ribosomal subunit species and rRNA during sporulation and during the stationary phase of the asporogenic strains. Kinetic studies have shown that, compared to vegetative cells, the percentage of uracil incorporated into the ribosomal subunits of cells taken 30 min after the end of exponential growth was decreased by about 25 to 35%. This decrease, however, appeared to be a general characteristic of stationary-phase cells and seems to depend on the nature of the sporulation medium and to some extent on the nature of the strain but not on the sp(+) or sp(-) phenotype of the strain. Moreover, by use of actinomycin D it was shown that the labeled uracil incorporated, in the presence of the drug, during the sporulation period was located in the ribosomal subunits (stable RNA). Based on these results, we concluded that during sporulation ribosomal genes are transcribed and consequently rRNA continues to be synthesized, although to a lesser extent than during vegetative growth. These results are discussed in the light of those obtained by Hussey et al.  相似文献   

2.
Data have been obtained which imply that chloramphenicol stimulation of ribonucleic acid (RNA) synthesis is a result of the accumulation of aminoacyl transfer RNA (tRNA) molecules. The data also support the hypothesis that chloramphenicol exerts an additional effect upon the stimulation of RNA synthesis. This effect may be at the level of the ribosome or the aminoacyl tRNA, or of both. It is this effect combined with the presence of aminoacyl tRNA that results in stimulation by chloramphenicol of RNA synthesis.  相似文献   

3.
A "nuclear fraction" prepared from Bacillus subtilis was a more efficient template than purified deoxyribonucleic acid for the synthesis of ribonucleic acid by exogenously added ribonucleic acid polymerase isolated from B. subtilis. The initial rate of synthesis with the nuclear fraction was higher and synthesis continued for several hours, yielding an amount of ribonucleic acid greater than the amount of deoxyribonucleic acid used as the template. The product was heterogenous in size, with a large portion exceeding 23S. When purified deoxyribonucleic acid was the template, a more limited synthesis was observed with a predominantly 7S product. However, the ribonucleic acids produced in vitro from these templates were very similar to each other and to in vivo synthesized ribonucleic acid as determined by the competition of ribonucleic acid from whole cells in the annealing of in vitro synthesized ribonucleic acids to deoxyribonucleic acid. Treatment of the nuclear fraction with heat (60 C for 15 min) or trypsin reduced the capacity of the nuclear fraction to synthesize ribonucleic acid to the level observed with purified deoxyribonucleic acid.  相似文献   

4.
Derepression of tyrosyl-transfer ribonucleic acid synthetase in Bacillus subtilis was observed in strains grown with limiting tyrosine, but not in regulatory mutants derepressed in biosynthetic enzyme synthesis.  相似文献   

5.
Messenger Ribonucleic Acid of Dormant Spores of Bacillus subtilis   总被引:1,自引:3,他引:1       下载免费PDF全文
Evidence of the presence of messenger ribonucleic acid (mRNA) in dormant spores of Bacillus subtilis has been obtained. The bulk RNA from spores was isolated and labeled in vitro with tritiated dimethyl sulfate. The spore RNA hybridized to 2.4 to 3.2% of the B. subtilis genome. The RNA hybridized to both the complementary heavy and light fractions of deoxyribonucleic acid (DNA). Bulk RNA from log-phase cells competed with virtually all the spore RNA for the heavy DNA fraction and with part of the spore RNA for the light DNA fraction. Bulk RNA from stage IV cells in sporulation also competed with all of the spore RNA for the heavy DNA fraction and with essentially all the spore RNA for the light DNA fraction. These results indicate that dormant spores contain mRNA species present in both log-phase cells and stage IV cells of sporulation. The RNA polymerase in the developing forespore must be able to recognize promotor sites for both log-phase and sporulation genes.  相似文献   

6.
A mutant of Bacillus subtilis 168 (strain 168 KL), which had lost its normal capacity to accumulate K(+), was used to explore the interrelationship between protein and ribonucleic acid (RNA) synthesis. In contrast to the wild type, the growth rate of strain 168 KL was markedly dependent on the K(+) concentration in the medium. K(+) uptake in the mutant strain was identical to that in the parent, but the mutant was unable to retain and accumulate K(+). Protein synthesis was markedly dependent on the K(+) concentration in the medium, whereas RNA synthesis was relatively unaffected by changes in the level of K(+). Most of the RNA synthesized during K(+) depletion was ribosomal RNA; it appeared in crude extracts in the form of ribonucleoproteins particles with sedimentation values between 4S and 30S. These particles were converted into mature ribosomes when growth was allowed to resume by the addition of K(+). Simultaneous synthesis of RNA and protein was necessary for the quantitative conversion of the ribonucleoprotein particles into ribosomes. During recovery from K(+) depletion, ribosomal protein was synthesized in preference to the other proteins of the cell.  相似文献   

7.
Bacillus subtilis transfer ribonucleic acid (tRNA) was analyzed for the occurrence of thionucleotides by in vivo labeling with (35)S and fractionation by methylated albumin kieselguhr column chromatography. Alkaline hydrolysates of tRNA were also examined by column chromatography and paper electrophoresis, and the amino acid-accepting ability of thionucleotide-containing tRNA was tested after iodine oxidation. The results showed that B. subtilis tRNA contains 4-thiouridylate, a second nucleotide with properties similar to 2-thiopyrimidine, and a third unidentified thionucleotide. The amino acid-accepting ability for serine, tyrosine, lysine, and glutamic acid was markedly inhibited after oxidation of the tRNA with iodine, suggesting the presence of thionucleotides in these tRNA species. This inhibition could be reversed by thiosulfate reduction. The iodine treatment totally inactivated all lysine tRNA species, partially inactivated the serine tRNA species, and did not affect the accepting ability for valine. A comparison of tRNA from cells in the log and stationary phases and from spores revealed similar iodine inactivation patterns in all cases. The thionucleotide content in B. subtilis tRNA differed from that in Escherichia coli, both in extent and in distribution. A possible function of the thionucleotides in tRNA is discussed.  相似文献   

8.
When starved for leucine, strains of Bacillus subtilis do not complete chromosome replication to the terminus. The amount of deoxyribonucleic acid (DNA) made poststarvation is characteristic of the strain. In this study, four strains differing in their DNA response were examined for ribonucleic acid (RNA) regulation during leucine starvation. Each of the strains was judged to be stringent for RNA control based on the amount of RNA made poststarvation. Sucrose gradient profiles on RNA made with and without leucine starvation support this conclusion. Accumulation of guanosine tetraphosphate during leucine starvation showed no correlation with the amount of DNA synthesized. We concluded that modulation control of DNA synthesis during leucine starvation is independent of RNA control.  相似文献   

9.
Itoic Acid Synthesis in Bacillus subtilis   总被引:8,自引:5,他引:3  
Under conditions of iron deficiency, strains of Bacillus subtilis produced 2,3-dihydroxybenzoic acid (DHB), 2,3-dihydroxybenzolyglycine (DHBG), or both of these compounds. DHB(G) production [production of DHB(G) refers to the production of DHB, or DHBG, or both] was proportional to the amount of iron present and occurred logarithmically, paralleling growth. Supplementation of media with more than 150 mug of iron per liter at zero-time inhibited DHB accumulation completely. In the presence of DHB, lower levels of iron inhibited DHB(G) production, so that the actual inhibitor of synthesis may involve the Fe(3+):[DHB(G)](3) complex. The strains producing DHBG also produced coproporphyrin III during iron-deficient growth, whereas a strain producing DHB did not produce coproporphyrin III under these conditions. Accumulation of DHB(G) was influenced by the levels of aromatic amino acids and anthranilic acid in the medium. In vivo experiments with strain B-1471 demonstrated that DHB was coupled to added glycine to form DHBG. Metabolism of DHB(G) was observed in two of the strains studied.  相似文献   

10.
Asporogenous mutants of Bacillus subtilis were examined for the change in template specificity of ribonucleic acid (RNA) polymerase characteristic of wild-type cells undergoing sporulation. Mutants blocked at stages II, III, and IV showed a changed specificity of the enzyme after the end of growth and were in this respect indistinguishable from the wild type. The RNA polymerase of eight stage-zero mutants (out of nine tested) which possess mutations that map at six distinct loci retained the template specificity of vegetative cells.  相似文献   

11.
A relatively simple immunochemical procedure for estimating flagellar protein was developed. This procedure involved measuring the binding of purified, radioactively labeled, antiflagellar antibodies to bacteria. The assay was used to determine the requirements for ribonucleic acid (RNA) and protein synthesis during flagellar regeneration in Bacillus subtilis. Immediate inhibition of flagella development was observed when chloramphenical or puromycin was added to cells. This inhibition indicated the absence of a large pool of flagella precursors that could be assembled in the absence of protein synthesis. When the cells were starved for uracil or treated with actinomycin D to inhibit RNA synthesis, the ability of the cells to regenerate flagella decayed with a half-life of 5.5 min. When B. subtilis auxotrophs were starved for tryptophan, they continued to synthesize flagella, although this process was also inhibited by actinomycin D. On the basis of these results, we concluded that (i) the system involved in flagellar regeneration does not have unusual metabolic stability, (ii) regeneration requires both concomitant protein and RNA syntheses, and (iii) B. subtilis continues to synthesize messenger RNA during tryptophan starvation.  相似文献   

12.
Escherichia coli strain 9D3 possesses a highly temperature-sensitive valyl-transfer ribonucleic acid (tRNA) synthetase (EC 6.1.1.9). Since 9D3 is a rel(+) strain, it cannot carry out net RNA synthesis at high temperature. A 100-mug amount of chloramphenicol (CAP) per ml added in the absence of valine cannot stimulate RNA synthesis. Either 300 mug of CAP or 100 mug of CAP plus 50 mug of valine per ml, however, promotes nearly maximal RNA synthesis. These results can be understood as follows. (i) Valyl-tRNA is required for net RNA synthesis, (ii) the synthetase lesion is incomplete, (iii) the rate of mutant acylation of tRNA(val) at high temperature is valine-dependent, and (iv) the CAP concentration determines the rate of residual protein synthesis. Data are also presented which demonstrate that the rate of net RNA synthesis can greatly increase long after the addition of CAP, if the amount of valyl-tRNA increases.  相似文献   

13.
The presence or absence of certain amino acids has different effects on the ability of Bacillus subtilis to sporulate, and the intracellular pool size of amino acids has been reported to vary during sporulation. The idea that these variations might exert a regulatory effect through aminoacylation of transfer ribonucleic acid (tRNA) was investigated by studying the levels of aminoacylation in vivo in the logarithmic or stationary phase of growth. Both the periodate oxidation method and the amino acid analyzer were used to evaluate in vivo aminoacylation. The results indicated that in general the level of aminoacylation of tRNA's remained constant through stage III of sporulation, although there were detectable variations for specific amino acid groups. Our studies also showed that periodate oxidation damaged certain tRNA's; therefore, the results obtained by such a method should be interpreted with caution. Because the damage can affect certain isoaccepting species specifically, the periodate oxidation method cannot be used to establish which isoaccepting species are acylated in vivo. We also investigated the possibility of preferential use of particular tRNA species by polyribosomes. These results demonstrated a preferential use of lysyl-tRNA's at different growth stages. Control mechanisms operating during the early stages of sporulation, therefore, do not affect the overall level of aminoacylation. However, there is an effect on the levels of aminoacylation of specific amino acids and on which isoaccepting species are utilized by the polyribosome system.  相似文献   

14.
The effect of nalidixic acid on deoxyribonucleic acid (DNA) synthesis in Bacillus subtilis cells infected with bacteriophage SPO1 was studied. Nalidixic acid had little inhibitory effect on SPO1 DNA synthesis at concentrations that drastically inhibited B. subtilis DNA synthesis. Inhibition of DNA synthesis, appropriate to the concentration used, was imposed within 1 min after addition of nalidixic acid, suggesting that it acts directly on DNA synthesis in both infected and uninfected cells. The SPO1 DNA synthesized in the presence of high concentrations of nalidixic acid had a density characteristic of normal SPO1 DNA and was packaged into viable progeny phage particles, but its rate of synthesis was reduced and bacterial lysis was delayed.  相似文献   

15.
16.
Chloramphenicol resistant mutants of Bacillus subtilis   总被引:12,自引:0,他引:12  
Summary Telve chloramphenicol resistant (CM r)-mutants were isolated from B. subtilis ATCC 6633 and were classified into the following six groups. Group I. No 50s ribosomal protein change was detectable. Ribosomes did not show alteration of the binding ability to CM or to erythromycin in vitro. Group II. A 50s protein, 50a, was altered. Ribosomes did not show alteration of the binding ability to CM or to erythromycin in vitro. The genes specifying the 50a protein was in the cysA-str region on B. subtilis chromosome. Group III. A 50s protein, 50b, was altered. Biological properties of the ribosomes were the same as Group I or II so fas as examined. The genes for 50b protein was in the cysA-str region. Group IV. A 50s protein, 50c, was altered. Ribosomes showed a definite decrease in ability to bind to CM in vitro. The binding of erythromycin to the ribosomes was not impaired. The chromosomal locus of the CM r (and for 50c protein) was in the cysA-str region. Group V. A 50s protein, 50e, was changed. The ability of the ribosomes to bind in vitro both to CM and to erythromycin was greatly reduced. The genetic locus of the CM r (and for 50e protein) was in the cysA-str region. Group VI. A 50s protein, 50f, was altered. Ribosomes showed a decrease in ability to bind in vitro both to CM and to erythromycin. The genes for 50f protein was in the cysA-str region.The results suggest that the ribosomal resistance to CM may be caused by an independent change of at least several 50s ribosomal protein species. The genetic data shown here and those reported previously show that at least two 30s and seven 50s ribosomal protein genes are situated in the cysA-str region on B. subtilis chromosome.  相似文献   

17.
The activity of dihydrodipicolinate synthase increased late in sporulation in Bacillus subtilis. Mutants blocked at several stages of sporulation due to having an altered ribonucleic acid polymerase failed to exhibit this increase.  相似文献   

18.
Gimlin, Dixie M. (Oklahoma State University, Stillwater), Sue D. Hardman, Betty N. Kelley, Grace C. Butler, and Franklin R. Leach. Effect of bromouracil-containing deoxyribonucleic acid on Bacillus subtilis. J. Bacteriol. 92:366-374. 1966.-Replacement of one-half of the thymine with bromouracil in Bacillus subtilis transforming deoxyribonucleic acid (DNA) resulted in a slight decrease in transforming activity, but, when used at high concentrations, this DNA preparation inhibited cell growth. Acid-hydrolyzed DNA, or addition of equivalent concentrations of the free base bromouracil in a transforming mixture, was without effect on cell growth. Treatment of the DNA preparation with deoxyribonuclease completely destroyed transforming activity and killing effect, whereas treatments with ribonuclease and trypsin were without effect on either transformation or killing activity. Growth of competent B. subtilis cells in test tubes was inhibited by high concentrations of both normal and bromouracil-containing DNA, with the bromouracil-containing DNA being significantly more inhibitory. This type of inhibition was also reflected in the time of division of the cells. The inhibitory effect was not due to viscosity, or to mutagenicity. The time course of killing paralleled transformation, and competency was required. These results can be interpreted as being due to uptake of homologous but imperfect DNA (containing bromouracil instead of thymine) by means of the systems involved in transformation, followed by either integration (resulting in lethal transformation, activation of a defective, nonlytic but lethal prophage) or interference with the recombination mechanism.  相似文献   

19.
Morphological studies of a conditionally temperature-sensitive ribonucleic acid polymerase mutant of Bacillus subtilis have revealed that sporulation is inhibited at stage II when the cells are grown at 47.5 C. Growth and sporulation occur normally at 30 C with the mutant. The mutant grows normally at 47.5 C but is prevented from sporulating at the nonpermissive temperature by an abnormal septation during forespore membrane formation which prevents the subsequent engulfment process (stage III). The mutation affects the normal functioning of ribonucleic acid polymerase at the nonpermissive temperature resulting in abortive sporulation.  相似文献   

20.
Partially synchronized cultures of a Bacillus subtilis thermosensitive sporulation mutant (ts-4) and the 168 trytry (168tt) parental strain were infected with the virulent phage e at various times during their growth cycle at 30 and 42 C (permissive and restrictive temperatures, respectively). It was shown that at the restrictive temperature the burst size in the parental strain was two- to threefold lower than in the ts-4 mutant. No such difference was observed at the permissive temperature. However, the time at which this difference was observed excludes a correlation between the burst size and initiation of the sporulation process. It was further found that the capacity to transcribe in vitro phage e deoxyribonucleic acid by partially purified ribonucleic acid (RNA) polymerase from both strains decreased sharply if the source of enzyme was sporulating cells instead of vegetative ones. However, a similar decrease, although to a lesser extent, was observed with the RNA polymerase isolated from stationary-phase cells of the ts-4 mutant grown at the nonpermissive temperature, or with the enzyme derived from several other zero-stage sporulation mutants. At no time was a structural modification in the β subunits of the RNA polymerase observed during growth of the sporulating bacteria. We have also shown that, in addition to the relatively low specific activity of the RNA polymerase, the level of the intracellular protease activity is about 15-fold lower in the ts-4 mutant grown at the restrictive temperature than that of the parental strain grown at the same temperature. At the permissive temperature no such difference was observed between these two strains. However, the present data do not allow us to establish a correlation among the low content of intracellular protease, the weak specific activity of the RNA polymerase, and the loss of the sporulation capacity in the ts-4 mutant grown at the restrictive temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号